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Preface

Modelling forms an implicit part of all engineering design but many engineers
are not aware either of the fact that they are making assumptions as part of
the modelling or of the nature and consequences of those assumptions. Many
engineers make use of numerical modelling but may not have stopped to think
about the approximations and assumptions that are implicit in that modelling—
still less about the nature of the constitutive models that may have been invoked.
Many engineers are probably not aware of the possibilities and implications of
physical modelling either at single gravity or on a centrifuge at multiple gravities.

I have worked for many years at the interface between research and industry
in developing numerical models of soil behaviour and in attempting to explain to
practising engineers the possibilities of soil modelling. In particular, in 1996 and
1997 I held a Royal Society Industry Fellowship to be seconded to work within
Babtie Group with both geotechnical and structural engineers and as a result
became more aware of the realities of the conditions within typical consulting
engineering companies. This book was conceived during that secondment. The
scope of the book attempts to cover the range of guidance that I believe that
engineers who are undertaking geotechnical modelling need. I hope that they
will find the approach accessible.

Much of the material in this book has been developed during courses given to
final year MEng and postgraduate students at Bristol University and elsewhere.
The reader is assumed to have a familiarity with basic soil mechanics and with
traditional methods of geotechnical design. Some modest mathematical ability
is expected: this is not intended to deter, but rather to indicate the nature of
the theoretical understanding that is necessary if geotechnical modelling is to
be safely undertaken.

My previous book Soil behaviour and critical state soil mechanics (Muir
Wood, 1990) used a particular constitutive model for soil behaviour, Cam clay,
as a vehicle for describing the mechanical behaviour of soils and of some simple
geotechnical structures. While Cam clay is presented briefly in section §3.4.2,
this present book deliberately tries not to repeat too much of the material in
that earlier book: there is more description of simple alternative constitutive
models and of the modelling of a range of geotechnical systems. The two books
should be seen as complementary.

I am grateful to the Royal Society for the Industry Fellowship and to Babtie
Group for welcoming me into their midst: they may not have anticipated that
this would have been the outcome. This book project has inevitably lingered
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iv Preface

and I am grateful to Bristol University for giving me a University Research
Fellowship during academic year 2002-2003 in order to give me slightly more
time to work on the manuscript. The final surge to completion was greatly
helped by a Visiting Professorship funded by the Foundation for the Promotion
of Industrial Science which Kazuo Konagai arranged for me at the Institute
of Industrial Science of the University of Tokyo. Osamu Kusakabe gave me
particular assistance in locating references at Tokyo Institute of Technology.
Jacques Garnier, Charles Ng and Sarah Springman were also generous with
information and images.

Erdin Ibraim and Adrian Russell provided some helpful suggestions for im-
provement. However, the rapid march to complete the manuscript—schnell zum
Schluß—will surely have left errors for which I apologise and accept full respon-
sibility. I can only hope that the irritation attendant on their discovery will be
more than compensated by the educational benefit associated with the working
through to the correct results.

I am grateful to editorial staff at E & FN Spon for their patience.
I thank Helen for tolerating my obsessive work on a second book.

David Muir Wood
Abbots Leigh

April 2004
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1

Introduction to modelling

1.1 Introduction

In the same way that we may be surprised to find that prose is what we have been
speaking all our lives, so scientists and engineers are often unaware that almost
everything that they do is concerned with modelling. This book is concerned
with the application of principles of modelling to soil mechanics and geotechnical
engineering.

A model is an appropriate simplification of reality. The skill in modelling
is to spot the appropriate level of simplification—to recognise those features
which are important and those which are unimportant. Very often engineers
are unaware of the simplifications that they have made and problems may arise
precisely because the assumptions that have been made are inappropriate in a
particular application.

Engineering is fundamentally concerned with modelling. Engineering is con-
cerned with finding solutions to real problems—we cannot simply look around
until we find problems that we think we can solve. We need to be able to see
through to the essence of the problem and identify the key features which need
to be modelled—which is to say those features of which we need to take ac-
count and include in the design. One aspect of engineering judgement is the
identification of those features which we believe it safe to ignore.

In this chapter the theme of modelling is introduced by reference to modelling
activities that are familiar from early and standard courses in soil mechanics
and geotechnical engineering within degree programmes in civil engineering and
which form the basis for the development of geotechnical design. The scope of
subsequent chapters of the book is then defined.

1.2 Empirical models

Although the preference in this book is for models which have a sound analytical
or theoretical basis there is a long history of empirical modelling in geotechnical
engineering. The dictionary tells us that empiricism rests solely on experience

1
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ζs ζs

ζu ζu

Figure 1.1: Bearing capacity of shallow foundation on clay

and rejects all prior knowledge (and defines an empiric as a ‘quack’). Precisely
because soils are tricky materials to deal with, a lot of geotechnical engineering
has had to be based on experience—because the more rigorous modelling tools
have tended to lag behind the demands of the industry. Many of the techniques
have been semi-empirical rather than purely empirical. A few examples are
given here. It may be objected that these are empirical procedures rather than
empirical models: the distinction is somewhat semantic. The key is that these
procedures have been found to provide satisfactory answers even though the
logical thread cannot always be continuously traced. (The prescription of many
medicines is based on knowledge that they work without necessarily being able
to state exactly why they work.)

1.2.1 Vane strength correction

Much of geotechnical design has hitherto relied upon ultimate limit state cal-
culations which are driven by estimates of soil strength hoping, thus, to guard
against geotechnical collapse. (Classically, a factored design based on an ul-
timate limit state calculation, with the factor chosen from experience, might
be used to guarantee satisfactory serviceability without performing a separate
serviceability calculation.) Thus the ultimate bearing capacity ζu of a footing
on a clay of undrained strength cu might classically be written as

ζu = Nccu + ζs (1.1)

where Nc is a so called bearing capacity factor and ζs is the surcharge on the
surface of the clay at the level of the foundation—which might simply be due to
the weight of overburden at this level (Fig 1.1). Then, if we can find values of
undrained strength, we can estimate capacities of footings; similar calculations
can be performed for other classes of geotechnical structure, such as embank-
ments and excavations.

Given a strength model it needs to be populated with values of soil strength
determined from laboratory or in-situ testing. Most of the widely used strength
models lack the subtleties of, for example, rate effects and anisotropy with which
the ground itself is certainly familiar. Particular tests measure soil strengths
in particular ways: if short term undrained strength of clay is of concern then
the in-situ vane is commonly used to estimate the undrained strength. The



1.2. Empirical models 3

T

h

d

Figure 1.2: Shear vane

Figure 1.3: Shear strength mobilised along slip surface in clay

vane (Fig 1.2) measures a mixed strength, combining shearing on horizontal
and vertical surfaces in the soil. A strength model is required to extract an
estimate of undrained soil strength from the actual measurement of the torque
required to rotate the vane and hence to generate a failure mechanism through
the clay. A simple assumption of uniform soil strength on all surfaces of the
failing block of clay of height h and diameter d indicates that the torque T is
given by

T =
1
6
πcud3(1 + 3

h

d
) (1.2)

Any actual failure mechanism of the geotechnical structure will require the clay
to shear along surfaces having completely different alignments (Fig 1.3).

The vane measures the strength in a matter of seconds—in practice a geotech-
nical structure may take weeks or months to complete and yet the permeability
of the ground may be sufficiently low for the behaviour still to be described as
undrained.

Comparisons of estimates of failure conditions (or margin of safety against
collapse) of embankments and excavations in soft clay (Bjerrum, 1972) indicate
that a ‘correction’ factor, µ, dependent on soil plasticity (section §1.8) must be
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Figure 1.4: Correction factor for vane strength (after Bjerrum, 1972)

applied to the strength emerging from the vane test (Fig 1.4). That is:

cu(design)

cu(fieldvane)
= µ (1.3)

Typically (at any rate for IP > 0.2) the field vane overestimates the strength
which is actually mobilised at failure.

These correction factors have been determined empirically and can be ap-
plied with some confidence to future ultimate limit state designs of embank-
ments and excavations which share the same generic character of the bank of
observations from which they were deduced. However, they do not provide a
secure route for extrapolation from vane strengths (or, more precisely, from the
torques required to rotate field vanes) to design calculations in other circum-
stances. This is an empirical correction to strength measured with a particular
device to provide input to traditional design calculations: the application is thus
very specific.

1.2.2 Consolidation settlement

Consolidation settlement beneath foundations in clays occurs as a result of dis-
sipation of pore pressures generated by the original loading. A logical argument
suggests that, if we can estimate these pore pressures and estimate a soil stiffness
which controls the vertical strains that develop as the pore pressures dissipate,
then we can combine these estimates to calculate the expected settlement. A
tractable procedure which cuts a few corners at each stage was proposed by
Skempton and Bjerrum (1957) and has been widely used. We will discuss it
for the simple case of an axisymmetric loaded area but it is evident that an
essentially similar procedure could be used for other shapes of foundation.
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Figure 1.5: (a) Uniformly loaded circular area on the surface of an elastic half-
space; (b) stresses on centreline beneath circular load

The magnitude of the pore pressures will depend on the constitutive be-
haviour of the soil. Typical characteristics of soil behaviour will be described
in Chapter 2 and various constitutive modelling possibilities will be presented
in Chapter 3. Let us suppose that we can estimate the changes in total mean
stress ∆p and deviator stress ∆q from an elastic analysis, applying the equa-
tions of Boussinesq1. For loads on the surface of an isotropic elastic half space
(to which we approximate our soil layer) the stress changes are independent of
elastic stiffness but are dependent on the Poisson’s ratio of the soil which for
undrained loading (of an isotropic elastic material) we can propose to be 1/2.
Although there are already several assumptions here it turns out that for verti-
cal loading of the halfspace the changes in vertical stress are rather insensitive
to the details of the constitutive description of the soil, being largely controlled
by a dispersed equilibrium. However, the changes in horizontal stress are ex-
tremely sensitive to the details of the soil model. Stress distributions for the
centreline of a uniformly loaded circular area on an elastic half space are shown
in Fig 1.5: the effect of Poisson’s ratio on horizontal stress is very apparent.

From these changes in total stress we can then use our experience with
similar soils, or our observations of behaviour of the actual soil in undrained
triaxial tests, to estimate the pore pressure using a pore pressure parameter a
(§2.6.2):

∆u = ∆p + a∆q (1.4)

For an isotropic elastic material a = 0 and the change in pore pressure is equal
to the change in total mean stress.

1The stress variables p and q are defined in §2.4.
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2R

H

Figure 1.6: Circular foundation on surface of elastic layer

Next it is proposed that the deformations that result from pore pressure
dissipation will be largely one dimensional so that the stiffness to be used, Eoed,
can be obtained from oedometer tests and this stiffness can be used directly to
convert pore pressure changes into settlement ρ:

ρ =
∫ H

0

∆u

Eoed
dz (1.5)

integrating the pore pressure changes with depth z over a layer of thickness H
(Fig 1.6). Substituting for the pore pressure (1.4) this becomes:

ρ =
∫ H

0

(∆p + a∆q)
Eoed

dz (1.6)

If it were assumed that the settlements resulted purely from the change in
vertical stress caused by the loading, then we could calculate an oedometric
settlement ρoed:

ρoed =
∫ H

0

(∆p + 2
3∆q)

Eoed
dz (1.7)

and the ratio of ‘actual’ settlement ρ to the oedometric settlement ρoed is, ne-
glecting variation of the stiffness Eoed, a function of pore pressure parameter a
and the geometry of the problem which controls the ratio of elastic total stress
changes ∆p and ∆q:

ρ

ρoed
=

∫ H

0

(
1 + a∆q

∆p

)
dz

∫ H

0

(
1 + 2

3
∆q
∆p

)
dz

(1.8)

or
ρ

ρoed
=

1 + aI
1 + 2

3I
(1.9)

where

I =
1
H

∫ H

0

∆q

∆p
dz (1.10)
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Figure 1.7: Ratio of consolidation settlement and one-dimensional settlement

Evidently the two settlements are equal if the pore pressure parameter a = 2/3.
The variation of the settlement ratio with a is shown in Fig 1.7 for a circular
footing on an elastic layer of thickness H where, for simplicity and illustration,
the effect of the finite thickness of the layer on the stress distribution within the
layer has been neglected. Skempton and Bjerrum give a more detailed analysis
of the settlement taking account of the elastic stress distribution within a finite
layer: the ratio remains linearly dependent on a.

This procedure for calculation of consolidation settlement combines elements
of a number of quite distinct soil models: an elastic model to calculate the
total stress changes (which, for a clay layer of uniform stiffness and of either
infinite depth or underlain by a rigid layer, are not actually dependent on that
stiffness); an empirical model to link total stress changes with changes in pore
pressure; and a one-dimensional model for conversion of pore pressure change
to settlement. Each of these models introduces its own simplifications which
could in principle be relaxed: isotropic elasticity, variable stiffness layered soil,
constant pore pressure parameter, constant oedometric stiffness. There is an
underlying logic and the success that the method has enjoyed is itself indicative
of the insensitivity of some aspects of soil response to the details and accuracy
of the calculation procedure: this is a conclusion that will be discovered again
in later chapters.
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Figure 1.8: Cone penetrometer

1.2.3 Cone penetration test and settlement of footings on
sand

Clearly the ease with which a conical object can be made to penetrate the ground
(Fig 1.8) will depend on the strength of the ground which will in turn depend on
the stresses in the ground and the density of packing of the soils. It is logical then
that correlations should be possible between penetration resistance and basic
material characteristics: these are empirical correlations but the results can
then be used as input to more general design procedures. Alternative empirical
rules jump directly from the penetration resistances to geotechnical designs:
here the degree of possible extrapolation must be borne in mind. Correlations
have been produced both for the Standard Penetration Test in which a rather
blunt object is hammered into the ground and for the Cone Penetration Test
in which a cylindrical object with a standard 60◦ conical tip is pushed steadily
into the ground at a standard rate. The latter seems to have more scope for
rational interpretation and one example of empirical modelling using the cone
penetration test will be briefly described.

Let us restrict ourselves to the estimation of the settlements at the centre of
a circular footing on sand. With the z axis vertical (Fig 1.5a) we observe that
settlement ∆ρ is an integration of vertical strain increments ∆εz

∆ρ =
∫ ∞

0

∆εz dz (1.11)

If the soil behaves isotropically and elastically then, from Hooke’s law, at any
depth

∆εz =
1
E

(∆σz − 2ν∆σr) (1.12)

where ∆σz and ∆σr are the increments in vertical and radial (horizontal) stress
produced by the footing (Fig 1.5b) and E and ν are Young’s modulus and
Poisson’s ratio for the soil. This can be written

∆εz =
1
E

[(1− 2ν)∆σz + 2ν(∆σz −∆σr)] (1.13)

in order to emphasise that settlement results both from increase in vertical
stress (∆σz) and from increase in deviator stress (∆q = ∆σz − ∆σr). The
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Figure 1.9: Distribution of stress ∆σsett driving settlement beneath circular
footing on elastic half-space

relative contributions of these terms to the settlement will depend on the value
of Poisson’s ratio. The variation with depth of the composite stress ∆σsett

∆σsett = [(1− 2ν)∆σz + 2ν(∆σz −∆σr)] (1.14)

that actually drives the settlement is shown in Fig 1.9 normalised with the
applied pressure ∆ζ and as a function of normalised depth z/R for different
values of Poisson’s ratio for a uniformly loaded circular area of radius R.

Even though the soil is unlikely to be elastic, (1.13) and Fig 1.9 show clearly
the contribution that shearing is likely to make to settlement: it is not enough
to consider only the change in vertical stress. (Of course, this same message
formed part of the Skempton/Bjerrum procedure for estimating consolidation
settlement that was discussed earlier.) Fig 1.9 also shows that the maximum
value of ∆σsett does not occur at the surface. Indeed for high values of Poisson’s
ratio ν → 0.5, the peak shear stress and hence peak value of ∆σsett occur at a
depth of about 0.7R.

So far this is a coherent modelling strategy based on an elastic analysis for a
uniform isotropic soil. Schmertmann (1970) takes inspiration from this to devise
a procedure which can be applied more generally. If we write

∆σsett = Iz∆ζ (1.15)

where Iz is a dimensionless influence factor that varies with depth, then

∆ρ = ∆ζ

∫ ∞

0

Iz

E
dz (1.16)
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Figure 1.10: Influence factor for calculation of settlement (adapted from Meigh,
1987)

A simplified profile is assumed for Iz (Fig 1.10), partly inspired by analysis
(Fig 1.9) and partly inspired by experiment. This assumes that the influence
of the footing peaks (Izpeak

= 0.6) at a depth equal to the radius of the footing
(z/R = 1) and becomes negligible for depths greater than twice the diameter
z > 4R. This is a logical engineering approach which acknowledges both that,
quite apart from the fact that the stress changes induced by the loaded footing
fall with depth (Fig 1.9), soils tend to become stiffer with depth and, also,
that we now understand that the stiffness of soils increases as the magnitude of
the applied strain increment reduces (see §2.5). The contribution to the footing
settlement of the actual strains in the deeper soils is expected to be insignificant.

The value of Young’s modulus is assumed to be correlated with cone pene-
tration tip resistance qc

E = 2.5qc (1.17)

Then the settlement becomes

∆ρ =
∆ζ

2.5

∫ 4a

0

Iz

qc
dz (1.18)

which is more usually evaluated as a sum over a finite number of layers (Fig
1.11). For each layer the quotient is calculated of the average value of Iz (Fig
1.10) and the average value of qc for that layer (Fig 1.11). The sum of these
quotients, weighted by the thickness of each layer replaces the integral in (1.18):

∆ρ ≈ ∆ζ

2.5

n∑

i=1

(
Īzi

q̄ci

∆zi

)
(1.19)



1.2. Empirical models 11

cone resistance

d
e
p
th

 b
e
lo

w
 f

o
u
n
d
a
ti

o
n

Figure 1.11: Cone penetration profile and division of soil into layers

Schmertmann, Hartman and Brown (1978) later introduced a slightly more
elaborate empirical expression for the peak value of the influence factor

Izpeak
= 0.5 + 0.1

√
∆ζ

σ′vz=R

(1.20)

and assumed that Iz = 0.1 at z = 0 (Fig 1.10). There are also empirical
correction factors for depth of embedment of the footing and for creep/time
effects but the principle remains the same: a profile of stiffness variation deduced
by an empirical correlation from in-situ testing is combined with a simplified
assumed profile of stress change, inspired by theoretical analysis.

1.2.4 Pressuremeter

The pressuremeter is a device which can be used to determine the properties
of the ground in situ (Mair and Wood, 1987). There are several different pres-
suremeter devices but in essence (Fig 1.12a): a cylindrical cavity lined with
a rubber membrane is created in the ground; the cavity is expanded and the
observed relationship between the cavity pressure and the cavity expansion pro-
vides some sort of stress:strain response from which certain properties of the
ground can be deduced (Fig 1.12b, c). The nature of this response depends to
a large extent on the degree of disturbance of the ground during the creation
of the cylindrical cavity: earliest pressuremeters used a preformed hole which
inevitably disturbed the surrounding soil because it was more or less completely
unloaded; more recent pressuremeters use a self-boring technique—a sort of ver-
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Figure 1.12: (a) Pressuremeter; (b) cavity expansion response of pressuremeter
presented in terms of cavity volume; (c) cavity expansion response of pres-
suremeter presented in terms of logarithmic volume change

tical tunnel boring machine—which attempts to reduce the disturbance to an
absolute minimum.

There are two ways in which the results of pressuremeter tests are used. The
expansion of a long cylindrical cavity in an infinite medium is a well defined
boundary value problem which is capable of exact theoretical analysis2. Armed
with such an analytical model, the cavity pressure:cavity expansion results can
be interpreted to give values of soil stiffness, soil strength, in-situ stresses and
perhaps even more detail of the mechanical response of the soil. These quantities
can be seen as fundamental properties of the soil which can then be applied to
the analysis of quite different geotechnical problems. Thus when a pressureme-
ter is rapidly expanded in clay the response curve (Fig 1.12b, c) can in principle
be interpreted to give the in-situ horizontal total stress, σho, the undrained
strength, cu, and the shear stiffness of the clay, G. The in-situ stress is deduced
from the cavity pressure at which expansion of the pressuremeter begins. The
interpretation of the results of a pressuremeter test in terms of the undrained
strength and the shear stiffness implies a certain assumed elastic-perfectly plas-
tic model for the shear response of the clay (Fig 1.13): discussion in subsequent
chapters will show that the picture is not quite as simple as that. This model
assumes that the soil is elastic as the shear stress increases until a limiting value
cu is attained. In such a material the response of the pressuremeter can be
written

p = pL + cu ln
∆V

V
(1.21)

where the limit pressure pL is the pressure developed at infinite cavity expansion,
when the change in cavity volume from the start of the expansion, ∆V , is equal
to the current volume V . This limit pressure is given by

pL = σho + cu

(
1 + ln

G

cu

)
(1.22)

2The analysis is essentially similar to that of a collapsing circular tunnel (§8.8) but with
the signs reversed.
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Figure 1.13: Elastic-perfectly plastic constitutive response

Thus (1.21) shows that the undrained strength cu can be deduced from the
ultimate slope of the pressuremeter expansion plotted in terms of p and ln

(
∆V
V

)
(Fig 1.12c) and the shear stiffness G can be subsequently deduced from pL and
(1.22). In practice it is preferred to determine the shear stiffness by performing
unload-reload cycles during the cavity expansion (Fig 1.12b): the slope of such
a cycle in a plot of cavity pressure p and cavity volume V is G/V .

So far the example of the pressuremeter merely indicates the use of an un-
derlying model to provide a rational route to the interpretation of the test. The
model may not be an accurate description of the way in which clay behaves but
it is at least theoretically consistent and, if this is the world view that we have
and intend to apply to other situations, then the logic is complete.

Knowing that the model is in fact too simplistic for all sorts of reasons (the
constitutive behaviour of the soil is wrong; the boundary conditions imposed on
the theoretical analysis are wrong—there is an assumption of plane strain and
potential drainage of excess pore pressures is ignored) an alternative possibility
is to regard the pressuremeter as some sort of index test (albeit a rather expen-
sive one)—and here the interpretation of the pressuremeter becomes equivalent
to the interpretation of cone penetration or even standard penetration test re-
sults. Empirical rules are used to convert index values from the test directly
into geotechnical design: emerging with axial capacities of piles, response of
piles under lateral loading, estimation of foundation capacity and settlement,
for example. Thus Baguelin et al. (1979) work with the cavity pressures p5 and
p20 (corresponding to proportional cavity volume changes ∆V/Vo = 0.05 and
0.2 respectively, where Vo is the original volume of the cavity (= V −∆V )) and
define a parameter β

β =
p20 − p5

p20 − σho
(1.23)

The value of this parameter β can be used to predict the soil type (in the
same way as can the measurements made with a piezocone: tip resistance, shaft
friction, pore pressure) but it can also be used as input to empirical design
procedures.

Again, there is a tenuous logic to this empirical use of the pressuremeter.
Such procedures are appropriate for interpolation within the range of experience:
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Figure 1.14: Seepage through three dimensional soil element

and, for known soils from which the empirical rules were originally generated,
such procedures may well be secure. However, there is less security attached
to extrapolation to new geological environments and new soil types, where the
application of a more complete underlying theoretical model appears to give
greater prospects of success.

1.3 Theoretical models

There are two reasons for the continued successful application of empirical mod-
els. On the one hand, geotechnical design cannot just come to a halt while more
rigorous models are developed: experience provides a reassuring mode of pro-
ceeding. On the other hand, even when accepted theoretical models exist it
may not be easy to apply them for the actual boundary conditions of a par-
ticular problem. Theoretical models can be seen as elegant solutions looking
for problems to which they can be applied: an initial step is often to assess
how the observed soil behaviour can best be fitted into the framework that the
theoretical model imposes. Once a theoretical model has been formulated there
are two possibilities for its application: either the boundary conditions of the
problem can be massaged in such a way that an exact analytical result can be
obtained; or a numerical solution is required. We will look at some of the issues
associated with numerical analysis in Chapter 4. Here we will look at one of
the many theoretical models which have been widely applied to geotechnical
engineering—others will be presented in Chapter 7.

1.3.1 Steady seepage

The steady flow of an incompressible fluid through a porous medium is gov-
erned by a familiar partial differential equation. Conservation of mass (volume)
requires (Fig 1.14) that the flows into and out of an element of the material
must balance (assuming that the element does not contain either a source or a
sink). If we assume that flow is driven by a potential gradient then Darcy’s law
applies:

vx =
kx

γw

∂uw

∂x
(1.24)
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where vx is the velocity of flow in the x direction across the complete cross
section of the material, kx is a permeability for flow in the x direction, γw is
the unit weight of the flowing fluid (assumed to be water) and uw is the total
water pressure. For a material with porosity n (ratio of void volume to total
volume), the speed at which the water flows through the pores is actually vx/n
(assuming that the ratio of areas of void and of solid material in the direction
of flow is also n).

The total water pressure uw = γwH (referred to some arbitrary datum, Fig
1.15) is made up of a pressure resulting from the elevation of the element γwz
(referred to the same datum, Fig 1.15) together with the actual pore water
pressure u = γwh (which is independent of the choice of datum). Clearly in
a swimming pool the pressure varies with depth but the total pressure is ev-
erywhere the same and no flow occurs. The same conclusion is drawn if soil
is shovelled into the swimming pool producing a soil with water in its pores.
Seepage can only occur in the presence of gradients of total pressure.

The mass conservation equation for a three dimensional element (Fig 1.14),
assuming constant soil permeability, is

kx
∂2uw

∂x2
+ ky

∂2uw

∂y2
+ kz

∂2uw

∂z2
= 0 (1.25)

The form of (1.25) allows for anisotropy of permeability (kx 6= ky 6= kz) but can
be simplified by working in a transformed coordinate space. If we write

x′ =

(√
kz

kx

)
x and y′ =

(√
kz

ky

)
y and z′ = z (1.26)

then the equation becomes

∂2uw

∂x′2
+

∂2uw

∂y′2
+

∂2uw

∂z′2
= 0 (1.27)
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Figure 1.16: Seepage under a sheet pile wall in permeable half-space

This is Laplace’s equation for steady seepage flow which occurs in many physical
problems—stress analysis, heat flow, electricity flow—and for which standard
methods of solution are available. Many of the geotechnical seepage problems
that are considered are two dimensional: plane flow or radial flow. For these,
exact analytical solutions can be obtained for certain simple boundary condi-
tions and these may be near enough to the real boundary conditions for the
results to be acceptable.

An example of flow through a permeable half-space under a sheet pile wall is
shown in Fig 1.16 in the form of flow lines and equipotential curves along which
the total pore pressure is constant (see, for example, Raudkivi and Callander,
1976). For this idealised problem, with the wall placed at x = 0 extending from
y = 0 to y = −a the flow lines are confocal ellipses:

( x

a sinhα

)2

+
( y

a cosh α

)2

= 1 (1.28)

and the equipotentials are confocal hyperbolae:

−
(

x

a sin β

)2

+
(

y

a cosβ

)2

= 1 (1.29)

where α and β take appropriate values: β varies from +π/2 to −π/2 from
the upstream to the downstream side of the sheet pile wall and α = 0 for the
degenerate elliptical flowline that hugs the sheet pile wall.

The presence of a horizontal impermeable boundary at some depth cuts
across the theoretical flow net. An alternative solution procedure is then to
sketch a flow net which satisfies the actual boundary conditions more closely
but starts from the theoretical net. It is usually found that the total flow
rates are not greatly affected by the accuracy with which the net is generated
(provided it is at least generally plausible): total flow rate is an integrated
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quantity. Estimation of pore pressure gradients, which may be important for
stability of the geotechnical structure, is more sensitive to the detail of the
solution: this requires differentiation of the results.

Because Laplace’s equation governs many different physical problems, solu-
tions for one case can also be obtained by studying physical analogues which
are governed by the same equation. Thus measurements of electric potential at
points on a sheet of conducting paper cut to correspond to the boundary con-
ditions of the seepage problem will be directly translatable into values of total
pore pressure driving seepage. Equally, full numerical solution of the equation
will provide another route.

Let us remind ourselves of the assumptions that have underpinned the de-
monstration that Laplace’s equation is appropriate for this geotechnical prob-
lem. The pore fluid has been assumed incompressible; the soil has been assumed
homogeneous, although possibly anisotropic; the flow has been assumed to be
governed by Darcy’s law. So far as the derivation of the equations governing the
flow is concerned, these assumptions can be readily relaxed, but this will lead
to a more complex form of the equation which might include spatial variation
of permeability, dependence of fluid density (or unit weight) on pore pressure,
and an alternative flow law. Under such relaxed conditions numerical solution
of the governing equations is likely to be the only option available.

1.4 Numerical modelling

There are several conclusions that can be drawn from discussion of theoretical
models that are in common regular use in geotechnical engineering.

Understanding the controlling physical constraints on each problem is cru-
cial. Within an understanding of the physics there is usually a need to idealise
the material characterisation and the representation of the boundary conditions
of the problem in order that a solution may be obtained. Exact, closed-form
solutions are in general only obtainable for a rather limited set of conditions.
There will always be a strong temptation to convince oneself that a problem can
be fitted into one of these limited sets because of the ease with which a solution
may thus be obtained. It is always necessary to consider whether the massag-
ing of the problem to fit these constraints removes any key characteristics of
the problem being considered. Where the departure from the ideal situation is
clearly too great there is the possibility of using numerical techniques to obtain
a solution, retaining the elegance of an underlying simple and widely accepted
theoretical description of the physics of the problem on a local scale but us-
ing the numerical approximation to allow realistic boundary conditions to be
accommodated.

Some of the implications of numerical solution of such problems are discussed
in Chapter 4. Numerical solution usually implies the replacement of a contin-
uous description of a problem by one in which the solution is only obtained
at a finite number of points in space and time. The quality of the numerical
modelling result can only be as good as the quality of the numerical approxi-
mation. Where key quantities are changing very rapidly with position or with
time then it is necessary either to increase the density of the discretisation used
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in the numerical modelling in order to be able to follow the changes or else to
incorporate within the numerical description some mathematical interpolation
which is able to follow the real variation between discrete modelling points. Of
course the speed and cost of numerical modelling increases as the density of the
modelling points increases. In general it should first be verified that a proce-
dure that is developed for numerical solution of problems is indeed able to give
correct results when applied to a situation for which an exact answer is known.
It can then be applied with greater confidence to the problem of concern.

1.5 Constitutive modelling

Numerical modelling is not only needed in order to manage irregular or non-
ideal boundary conditions. Much more serious often are the idealisations of
material behaviour that are necessary in order that simple theoretical models
can be developed. Elasticity is convenient because of the wide range of analytical
results to which access can be gained for elastic materials. Chapter 2 contains
discussion of typical aspects of the mechanical behaviour of soils and it will
become clear that linear isotropic elasticity can only provide a very inadequate
representation of the observed response (§2.5).

The nonlinearity that is observed in soil behaviour is usually an indication of
plasticity: permanent, irrecoverable changes in the fabric of the soil. A simple
illustration of the effects of soil plasticity on the character of the response of a
geotechnical structure is provided by the schematic illustration of the pattern
of deformation beneath a footing on a linear elastic soil and on a rigid-perfectly
plastic soil. The stress-strain responses of these ideal soils are shown in Fig 1.17
and the deformation patterns in Fig 1.18. The elastic material clings together:
a movement in one location is felt at great distance. The footing produces gra-
dients of deformation, and hence strains, to great depth. The plastic material
is happy to separate into separate blocks of soil as it gradually forms a failure
mechanism (Fig 1.3). The displacements are entirely contained within this fail-
ure mechanism; gradients of displacement only occur at the boundaries between
the sliding blocks, and here they are infinite; elements of soil at depths below
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Figure 1.18: Schematic illustration of settlement profiles with depth beneath
footing

the mechanism are completely unaware of the presence of the footing (the soil
has been assumed rigid before failure).

A second example is provided by the vertical displacements around a group
of piles in the same two contrasting materials (Fig 1.19). In the elastic mate-
rial each pile tends to drag down the surrounding soil in which the adjacent
piles are founded. In the plastic material, all displacement is concentrated at
the interfaces between the piles and the soil: beyond this interface there is no
effect. These are extreme types of soil model, but they serve to demonstrate
the effect that nonlinearity of constitutive response can have and, in particular,
to indicate that nonlinearity can have a major effect on the interaction between
neighbouring geotechnical structures.

Chapter 3 describes some of the alternative possibilities for constitutive mod-
elling of soils and attempts to open to the reader the vocabulary of constitutive
modelling and remove some of the mysteries of this modelling. A constitutive
model is still governed by equations which ultimately describe the link between
changes in strain and changes in stress for any element of soil. Each constitutive
model is itself certainly a simplification of soil behaviour but a simplification
inspired by experimental observation. The art of constitutive modelling is to
identify the features of soil behaviour that are vital in a particular application:
the penalty for increased complexity in constitutive modelling is the increased
number of material properties that must be defined from a greater number of
laboratory or in-situ tests. (An isotropic linear elastic model is completely
defined by just two material properties: Young’s modulus and Poisson’s ratio.)

Adequate complexity of constitutive modelling should be the goal in order
that analysis of boundary value problems should be efficient. For most constitu-
tive models it is impossible to obtain closed form estimates of the link between
stress and strain for anything but the simplest of histories and for single uniform
elements of soil. For realistic histories and boundary conditions numerical anal-
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ysis is again required in order to manage the basic integration of the constitutive
relations.

1.6 Physical models

Physical modelling plays a fundamental role in the development of geotechnical
understanding. In fact, taking the broadest possible interpretation of physical
modelling, we can declare that every experiment is a physical model intended,
if it is a good model, to advance our confidence in some supporting theoretical
model which the experiment was designed to probe. We can see the physical
modelling as forming the observation part of a ‘reflective practice’ cycle (Fig
1.20); theoretical modelling forms part of the prediction.

Physical modelling is performed in order to validate theoretical or empirical
hypotheses. Geotechnical construction is thus also physical modelling: geotech-
nical design makes hypotheses about expected behaviour which may be tested
in greater or lesser detail depending on the extent to which the response of
the geotechnical system is observed. At the very least there will be a binary
observation: has the geotechnical structure failed? A failure will be a pretty
clear indication of inadequacy in the supporting models. If the designer is less
confident in the supporting design models then more extensive observation—for
example of displacements or pore pressures—may provide more secure informa-
tion about the way in which the geotechnical materials are in fact behaving.
Reflection on these observations then provides the route for improved future
design or modelling.

Laboratory testing of small elements of soil (for example in triaxial appa-
ratus, shear box, etc) and in-situ field testing (geophysical testing, penetration
testing, pressuremeter testing, etc) presuppose some model for the way in which
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the soil is going to respond. In many cases the underlying models are hidden in
experience: we have particular stiffness and strength models which we have used
for similar materials in the past so we can choose particular test types—rates of
loading, expected stress levels, ranges of transducers—almost without thinking
about them. Routine testing is usually merely trying to scale an existing model
to fit a given material or set of data—it is less usual that the testing sets out
either to demonstrate that the model is inappropriate or to discover information
which might be used to improve the model.

A well designed physical model provides an important opportunity in the
modelling cycle. It is always tempting to assume that a theoretical model (par-
ticularly if, mathematically, it is a very elegant model) somehow encapsulates
truth. We can never prove a theoretical model to be true; all we can say about
a successful model, or a conjecture on which that model is based, is that it
has not yet been falsified or refuted. In practice, all geotechnical models are
probably very easily refuted and our interest as engineers is in identifying the
range within which the refutation of individual models is weakest since it is this
which defines the range of relevance of those models.

A well designed physical model—retaining the broad interpretation—can de-
liberately set out to probe rival conjectures. Poorly designed physical modelling
is mere data gathering. If the models to be tested are not understood or recog-
nised then it is unlikely that the correct data will be assembled: the physical
modelling is then stuck in the prediction/observation part of the loop which is
not closed by the need for precedent and subsequent reflection.

1.6.1 Physical models: full-scale

The term ‘physical modelling’ is usually associated with the performance of
physical testing of complete geotechnical systems. Where there is a distrust of
theory and analysis, because the assumptions are seen to be too sweeping or
the relevant aspects of material response too complex or the realities of reliable
numerical solution too far-fetched, physical modelling can seem an appropri-
ate route. Physical modelling can use real geotechnical materials, so the need
for theoretical modelling of their behaviour disappears. Physical modelling of
geotechnical systems can (and indeed should) provide data for validation of ana-
lytical modelling approaches and can thus provide a basis for extrapolation from
the physical model to the geotechnical prototype—although, as noted, an in-
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strumented and monitored geotechnical prototype can itself be a physical model
serving this validation purpose.

Logically, if we are performing physical modelling because we are unsure
about the ways in which we might reproduce the detail of a geotechnical sys-
tem, then our optimum strategy might be to perform the physical modelling
at full scale. We will not concern ourselves particularly with full-scale models
in this book but it may be helpful to see them as indeed examples of models.
Given the uncertain and variable nature of the ground there is obvious value
to be obtained from conducting trials at full scale which will load real soils un-
der real loading conditions. Full scale testing is usually performed to evaluate
geotechnical processes which it is believed may be so dependent on the detail of
actual soil fabric and structure that it is imperative to use real soils as prepared
by nature.

Trial embankments provide an obvious example: usually the need is to eval-
uate processes of ground improvement. For example, the use of different types
and spacings of drains to speed the process of consolidation of soft ground may
be studied. It is known that drain installation produces fabric change of the
soils local to the drains; it is also known that the in-situ fabric of the ground
has a strong influence on the flow characteristics which will also have a major
influence on rates of flow and hence of consolidation.

Other processes of ground improvement might be considered as means of
increasing embankment or structural stability without actually necessarily in-
creasing the rate of consolidation: examples include ground reinforcement using
grids and fabrics; cement treatment of the ground or sections of it; installation
of columns of compacted granular material to provide local strengthening of the
ground. Model testing at small scale may be possible in all cases but the details
of the process may be best evaluated at full scale.

Our understanding of the behaviour of piled foundations is improving but
there is still a general feeling that the supporting theoretical models of pile-
ground interaction are not completely reliable. Again, the uncertainties may
well attach to the process of pile installation—whether by driving/jacking or by
boring and concreting—and to the detail of the interaction of this installation
process with the ground. Test piles are consequently regularly required—these
can use actual intended installation procedures and actual ground conditions
and, of course, full scale component dimensions (Fig 1.21). The unreliability of
theoretical models of pile response is such that Eurocode 7 (EC7, 1995) makes
it clear that all pile design calculations must be related, directly or indirectly,
to the results of static pile load tests which must be shown to be compatible
with general experience. There is thus a Eurocode requirement to complete the
prediction, observation, reflection loop (Fig 1.20): the design model should be
modified in the light of the experience of the full scale physical modelling.

The principal advantage of full scale modelling is that we are working with
real ground conditions, real soils, real loads, real stress levels, real stress histo-
ries: these are all things that need to be considered in any geotechnical mod-
elling. Over some of these we have direct control: we can be sure of the di-
mensions of structures we create, heights of embankments, diameters of driven
piles. However, we have no control over the ground conditions and the extreme
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Figure 1.21: Full scale pile loading test

realism may in the end be a disadvantage. The physical modelling is seen as
part of a coordinated cycle of theoretical and physical modelling. If we are not
sure exactly what the ground conditions are then we cannot be sure how we
should tune our theoretical model, and we cannot be sure whether the source of
discrepancy with the theory lies in the theory itself or in some unknown detail
of the ground conditions (the anisotropy of the mechanical behaviour or the
drainage properties, for example).

There are obvious disadvantages of full scale modelling. Often smaller scale
modelling leads to much more rapid results purely because of the smaller size.
Construction of an embankment over soft soils, for example for a road or airport,
may take years to complete. Full scale testing to study the rates at which
the embankment can safely be built can occur no more rapidly (though one
of the purposes of the full scale testing may be to explore ways in which the
construction process can be safely accelerated); cost will increase with the scale
of modelling. For both these reasons small scale modelling may be preferred
because it permits more tests to be performed and more variables to be explored.
Real conditions may be a problem as much as a benefit because if the physical
modelling is to be used as part of a process of validation of theoretical modelling
then it must be a fair competition—the physical and theoretical approaches must
be considering the same problem.
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1.6.2 Physical models: small-scale

If the physical modelling is to be performed at any scale other than full scale
then the key question is concerned with establishing the validity of the models
and ensuring that we have a secure route to extrapolation from the behaviour
we observe at model scale to the behaviour that we could expect at prototype
scale: eventually all geotechnical modelling is seeking to improve geotechnical
practice. The existence of supporting theoretical models is thus even more
important for interpretation of small scale physical models than for full scale
models. The understanding of relevant scaling laws and the dimensional analysis
which controls them is essential.

Seepage model

Let us consider the physical modelling of a seepage problem, such as the flow
under a sheet pile wall (Fig 1.16), as an example. In this case the underlying
theoretical model is quite well established: steady flow through a porous soil is
governed by Darcy’s law. We know that flow rates will be directly dependent
on soil permeability so we need to know the representative field permeability,
kf , and a corresponding model permeability, km. We note immediately that the
permeability may be anisotropic and we guess that we need to ensure that the
nature of this anisotropy is the same in the field and in the model. We note also
that the permeability is likely to depend on the porosity or density of packing
of the soil: the actual density of packing does not have to be the same in the
field and the model but we need to be confident that the spatial variation of
permeability is the same in both.

Applying Darcy’s law at the system level rather than the element level tells
us that we can expect the flow velocities, v, to be proportional to the overall
hydraulic gradient and permeability

v ∝ k

γw

∆p

L1
(1.30)

where ∆p is the pressure drop across the sheet pile wall, and L1 is a typical
dimension controlling the distance over which this pressure drop occurs (Fig
1.22). The volume flow rate per unit length of a long wall, Q, which is of
primary concern if the ground on one side of the wall is to be kept dry, is then
given by

Q = λ
k

γw

L2

L1
∆p (1.31)

where L2 is a second typical dimension controlling the distance through which
the flow is occurring (Fig 1.22). The multiplier λ is likely to be a function of the
geometry of the problem. The theoretical model governing the quantity of flow
under the wall is thus extremely simple: the flow is proportional to a material
quantity, the permeability k, and to an input quantity, the pressure drop ∆p;
the flow is controlled by a system quantity, a dimensionless geometrical property
of the problem λL2/L1, which will be related to the depth of penetration of the
piles and might well be a variable whose influence would need to be studied
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Figure 1.22: Parameters controlling seepage under a sheet pile wall

using the physical modelling. In fact, this simple theoretical analysis shows
that the geometry is really the only variable to consider. If we write

Qγw

k∆p
= f

(
L2

L1

)
(1.32)

then we see that we need only make one measurement of flow for each geometry
(L2/L1) and that it is entirely superfluous to vary ∆p or k as well. Field
flow rates can then be estimated knowing the field permeability and the field
pressure differential combined with the geometrical factor deduced from the
physical modelling.

This simple example is intended to illustrate the benefit of understanding the
theoretical model which underlies the physical problem. It secures the extrap-
olation and can focus the modelling energies on the key controlling parameters
of the problem. In this case too there is a well accepted route through sketching
of flow nets which can be used both to predict the physical capacities required
for the physical modelling (for example, pump capacities) and to ensure that
the measured results are in accord with expectation.

Small scale models

The great advantage of small scale laboratory modelling is that we have full
control over all the details of the model. We can choose the soils that we
test and ensure that we have supporting data to characterise their mechanical
behaviour. We can choose the boundary and loading conditions of the model
so that we know exactly how the loads are being applied, and to what extent
drainage is permitted or controlled at the boundaries. The nature of the problem
to be modelled theoretically in parallel with the physical modelling is thus well
defined. Small quantities of soil are required; drainage paths are short so test
durations may also be short; and the possibility exists of performing many tests
repeating observations and studying the effect of varying key parameters. The
costs of individual tests will be correspondingly lower than full scale tests.

The size of the models is both an advantage and a disadvantage. If a partic-
ular prototype is to be modelled physically then a length scale must be chosen.
A typical length scale might be 1:100 so that a 10 m high prototype structure
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becomes a 100 mm high model. Features of the fabric of the ground—for ex-
ample, seasonal layering of silts and clays—having a prototype spacing of the
order of a few millimetres would have to be modelled with spacings of a few
tens of microns—or an alternative modelling decision would have to be made.
A prototype granular material might have a typical particle size of the order of a
few millimetres, so that the ratio of structure dimension to particle size is of the
order of 103. Use of this same material in the physical model, which would be
very desirable if continuity of mechanical behaviour were to be assured, would
then lead to the ratio of structure dimension to particle size falling to only of
the order of 10. This ratio might be too small to guarantee correct response in
the physical model. There are ways in which such difficulties can be solved (see
§5.3.6)—the important point is that they cannot merely be ignored.

1.7 Geological model

This is not a book about geology: the emphasis is on mechanical aspects of
geotechnical modelling. The questions to be answered relate to the engineering
characteristics and properties of the geotechnical materials. However, these
materials have been placed either by geological and geomorphological history or
by man. Knowledge of this history can help to focus our ideas about the likely
mechanical characteristics and a geological or stratigraphic model is usually
recommended as a precursor to and underpinning feature of the geotechnical
model.

A reasonably well developed geological model can lead to economy and ef-
ficiency in subsequent site investigation to determine quantitative properties of
the ground. Parallels can be drawn with past experience and with adjacent
sites with similar geologies. The expected properties, the nature and mineral-
ogy of soil particles, the appropriate constitutive models (which may in some
ways predefine the in-situ or laboratory testing), and the likely pitfalls can be
predicted. For example, fractured rock associated with faulting or irregular
buried erosion features in weaker rocks may be anticipated. Although geophysi-
cal techniques can be used to obtain an overview of the structure of the ground,
detailed knowledge usually comes from discrete boreholes. A geological model is
necessary to be able to propose continuity (or lack of continuity) of stratigraphy
between boreholes (Fig 1.23, Fig 1.24). The ground is usually not homogeneous.
Vertically the inhomogeneities may primarily result from depositional layering:
different rock layers at one scale—with spacings perhaps of the order of metres;
varves resulting from seasonal variations in sediment transport and water veloc-
ities at another—with spacings perhaps of the order of millimetres. Horizontally
there may also be variations. The geological model can help to understand the
reason for and the nature of the spatial variations.

At the simplest level, the boundary between the soil-like materials which are
expected to deform and control the behaviour of the geotechnical system, and
the rock-like materials which are expected to be more or less rigid (and possibly
impermeable) in comparison, is important in defining the extent of the ground
that needs to be modelled either physically or numerically. Of course a rock
layer is not always the boundary beyond which nothing of interest or concern
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Figure 1.23: Geological model deduced from borehole exploration (solid lines)
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Figure 1.24: Model of stratigraphy of surface deposits deduced from borehole
exploration (solid lines)
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Figure 1.25: Particle size distributions

Figure 1.26: Particle sizes determined by sieving

will occur but very often it will indeed serve to limit the size of the physical or
numerical model (see §4.10.2).

1.8 Classification model

Before any tests to determine the mechanical properties of the soils are per-
formed, and as an almost subliminal guide to the sorts of models that might
be used to inspire the design of a programme of testing, a classification model
is usually invoked with which the soils that are encountered are popped into
categories. Samples have been recovered; they are possibly disturbed but one
can from simple visual inspection categorise the soil as broadly gravelly or sandy
or silty or clayey. Particle size distributions can be obtained (Fig 1.25) which
confirm this initial visual classification. The determination of these distribu-
tions itself invokes a simplified model of the soil in which the particles of which
it is formed are replaced by equivalent spheres. For a soil with particles large
enough to sieve, the size of the equivalent spheres is defined by the size of the
mesh spacing through which the particles—of whatever actual shape—will fit
(Fig 1.26). For a soil with finer particles, Stokes’ law, which describes the ter-
minal velocity of spheres falling through a viscous fluid (Fig 1.27), is used to
define the size of the spheres to which the actual soil particles in their rate of
descent through the fluid are equivalent. In addition, sometimes as a luxury or
afterthought, some assessment may be made of the typical particle shapes (Fig
1.28) (and possibly also particle mineralogy).



a.
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Figure 1.27: Particle sizes determined by sedimentation: (a) actual soil particles;
(b) equivalent spherical particles

angular

sub-angular

subrounded

rounded

well rounded

Figure 1.28: Particle shapes
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Figure 1.29: Plastic limit test

If the soil is basically sandy then standard index tests can be used to de-
termine the typical range of densities over which the dry soil can exist (Kol-
buszewski, 1948). A standard vibratory procedure is used to discover the max-
imum density, or minimum void ratio emin, of the soil. A series of repeated
inversions of a large tube containing a sample of the sandy soil is used to es-
timate the minimum density, or maximum void ratio, emax. If the soil is then
prepared or found to exist at any other void ratio, e, then a relative density,
Dr, can be defined

Dr =
emax − e

emax − emin
(1.33)

It is to be expected that this range of void ratios will itself depend on the range
of particle sizes and the typical particle shapes. Many empirical links have been
proposed between relative density (often combined with some statement about
stress level) and other soil properties—such as stiffness and strength. Some
sophisticated soil models reckon to obtain all their constitutive parameters by
correlation with this standard range of void ratios (Herle and Gudehus, 1999).

It is found that the maximum and minimum void ratios do not actually define
the extremes of packing: they merely provide a useful index for the soil. There
are some repeated shearings which can lead to even greater densities, lower void
ratios, than the standard procedure. The standard procedures are evidently
conducted at very low stress level: in the large tube used for estimating the
maximum void ratio the vertical stress in the sand is unlikely to be greater than
a few kilopascals.

If the soil is basically clayey and sticks together as a sample then the so-called
Atterberg limits again provide an indication of the range of packings at which
the soil can ideally exist (Atterberg, 1911). Atterberg’s limits seem almost more
relevant to the selection of clays for use in making pots:

Then said another with a long-drawn Sigh
‘My Clay with long oblivion is gone dry:
But, fill me with the old familiar Juice,
Methinks I might recover By-and-bye’

(stanza LXV: Rubáiyát of Omar Khayyám)

As water is added to a clay there is a range of water contents for which the
clay can be readily moulded without cracking. If the water content is too high
the clay becomes a slurry and flows like a liquid. If the water content is too low
the clay tends to crumble when it is moulded. Thus broadly were defined the
liquid limit and plastic limit for a clay soil.
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Figure 1.30: Liquid limit test

The plastic limit, wP , is still determined by a procedure similar to that
proposed by Atterberg: a thread of soil of diameter 3 mm is rolled out (Fig
1.29) until it starts to crumble. The rolling hand gradually draws off water,
thus steadily moving the water content towards the plastic limit.

Atterberg’s test to determine the liquid limit was indeed a test to spot the
occurrence of flow in the soil. However, this test has been abandoned in many
countries (because it was found to be somewhat operator sensitive) and replaced
by a test which is actually a strength test (Wood, 1985)(§5.2.2). A cone of
standard geometry and standard mass is allowed to fall into the soil under its
own weight from contact with the flat surface of the soil (Fig 1.30). If the cone
angle is 30◦, the cone mass 80 g and the depth of penetration 20 mm then,
according to the British Standard (BS1377, 1990), the soil must be exactly at
its liquid limit, wL. (In Scandinavian countries the cone angle is 60◦, the mass
60 g and the depth of penetration 10 mm (Karlsson, 1977).)

This cone test is exactly equivalent to the indentation hardness tests used,
in a nondestructive way, to estimate the yield strength of metals. A test which
was originally required to set a standard limit to the volumetric packing of the
clay has become a test which measures soil strength. It can be shown that
the undrained strength of a clay soil at its liquid limit is about 2 kPa (Wood,
1985; see §5.2.2), and that the British Standard and the Scandinavian standard
procedures both seek the water content at which the clayey soil has this strength.

Results of site investigation are frequently presented in terms of the profiles
of liquid limit, plastic limit and natural water content w with depth (Fig 1.31)
because these profiles can reveal a lot about the nature of the soils (and the
internal consistency of the site investigation). There are many correlations of
soil mass properties with plasticity index, IP

IP = wL − wP (1.34)

If the actual water content, w, of the soil is known then a liquidity index,
IL, can be defined which is somewhat equivalent to relative density3

IL =
w − wP

wL − wP
(1.35)

3Relative density increases with decreasing void ratio, but liquidity index increases with
increasing void ratio.
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Figure 1.31: Profiles of index properties and natural water content

and correlations of certain properties with liquidity index can be obtained (Muir
Wood, 1990).

These classification index tests are simple standard tests which can be rapidly
performed with low cost equipment but whose results can help to slot the soils
into an explicit or implicit bank of past experience. They make up a classifica-
tion model which can be useful for sharing information across different sites and
can provide a basis for moderation of other estimates of soil properties. If soils
from two sites have similar index properties and similar particle characteristics
(and similar geological histories) then it is to be expected that other mechanical
properties will fit into a consistent pattern across the sites.

1.9 Conclusion

Various modelling issues have been aired in this introductory chapter and ex-
amples have been given of some of the different types of modelling activities
that are in regular use by geotechnical engineers. The remainder of this book
will concentrate on theoretical, numerical and physical modelling.

The equations of equilibrium and of strain compatibility for a continuous
material are well established. In order to analyse the deformations of a geotech-
nical system it is necessary to provide a link between stresses and strains in
the form of a constitutive model. In Chapter 2 we will discuss elements of
the mechanical behaviour of soils and deduce that simple linear elastic or per-
fectly plastic models are inadequate in detail—though they may be appropriate
in certain circumstances. Chapter 3 will then explore some of the alternative
possibilities for forms of constitutive model which may be more generally appli-
cable to soils. This is something of an open field and the intention is to open
the eyes of geotechnical engineers to the possibilities of constitutive modelling
without suggesting that work has come to a conclusion in this area. In fact it
will be shown that there are often several ways in which the same experimental
observation can be modelled.

The extreme nonlinearity of most plausible constitutive models makes it
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essential to use numerical procedures to obtain solutions to boundary value
problems—the behaviour of complete geotechnical systems of interest to geotech-
nical engineers. The essence of numerical approximation is discussed in Chapter
4 but numerical analysis is seen as a tool to be used and the emphasis is cer-
tainly not on the theoretical basis of numerical analysis. However, the power of
the computers that are available to all geotechnical engineers has increased so
much that it is quite reasonable to suggest that numerical analysis tools should
be used much more as part of the routine of geotechnical design, incorporating
the constitutive models of today and recognising the inadequacy of some of the
simplifying assumptions that have been imposed in the past for reasons of cal-
culational expediency. However, increased use of numerical tools cannot obviate
the need to ensure the reliability of the results.

The importance of scaling laws in the design and interpretation of physical
models will be described in Chapter 5. It will be shown in Chapter 2 that soils
are nonlinear history dependent materials. The understanding of scaling laws
for stress related quantities for such materials is not necessarily straightforward
and the extrapolation of observations made in small scale physical models to
the full scale prototype response is simplified if the stress level of the physical
models is similar to that of the prototype. This can be achieved by subjecting
the physical model to an artificial gravitational field on a geotechnical centrifuge.
Chapter 6 provides an introduction to geotechnical centrifuge modelling.

Modelling should always be of only adequate complexity. Numerical mod-
elling will not be required or appropriate in all circumstances. Elastic analyses
are regularly used as part of geotechnical design and for validation of compu-
tational tools that are to be used for more elaborate calculations. The use of
perfect plasticity underpins much of the ultimate limit state design in geotechni-
cal engineering. Some of the possibilities for simple calculations using plasticity
models and other theoretical models of aspects of geotechnical behaviour are
described in Chapter 7.

One of the prime applications of geotechnical modelling, whether theoreti-
cal/numerical or physical, is to assess the consequences of soil-structure inter-
action. Soil-structure interaction problems tend to be driven by stiffness or
deformation properties of soils. Constitutive modelling of prefailure deforma-
tion properties is thus vital. The importance of soil-structure interaction will
be demonstrated in Chapter 8.





2

Characteristics of soil
behaviour

2.1 Introduction

It has been shown briefly in Chapter 1 (and will be shown more extensively
in Chapter 5) that application of techniques of physical geotechnical modelling
requires correct application of scaling laws in order to be able to extrapolate
behaviour observed in (usually) small physical models to the behaviour that
can be expected in a prototype geotechnical structure. Correct development of
these scaling laws requires some understanding of the factors that influence the
behaviour of the materials that are being modelled.

Numerical geotechnical modelling combines uncontroversial laws of equilib-
rium and of compatibility—continuity of displacement fields—through so-called
constitutive relations which relate the changes in loads applied to elements of
geotechnical materials to the deformations or gradients of displacement that
develop in those elements. In this chapter we are concerned to describe some of
the characteristics of the mechanical behaviour of geotechnical materials, pri-
marily soils, which make them interesting and challenging materials to model.
A hierarchy of possibilities for constitutive models that attempt to reproduce
some of these characteristics is presented in Chapter 3 (see §3.4.1, for example).
An extensive discussion of soil behaviour in the context of so-called ‘critical
state soil mechanics’ is given by Muir Wood (1990) and that book will provide
a complement to the descriptions of soil behaviour in this chapter.

We will include a very brief discussion of the influence of strain rate on the
mechanical behaviour of soils in section §3.7. However, our concern will primar-
ily be with slow deformation of soils. Several phenomena that are important
in understanding certain applications of soils or soil-like materials will therefore
be excluded. Many granular materials are stored in silos and are subsequently
discharged as a more or less rapid flow through a hopper. Rock avalanches
and rapid landslides involve inertial effects and the mechanics of collisions be-
tween individual blocks. Sediment transport by flow of water in rivers, lakes and
oceans is obviously extremely important in its influence on the structure of the

35
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Figure 2.1: Particle-continuum duality for geotechnical system

soils that are eventually formed by sedimentation. Large changes in geometry
will not be specifically addressed although they certainly occur in each of the
applications just cited. Numerical procedures and constitutive models need to
be specially formulated and adapted to cope with such large deformations.

2.2 Particle-continuum duality

If you pick up a handful of dry sand it can be poured, flowing almost like a liquid.
Yet we know that, contrary to biblical expectations, we can safely construct
major buildings sitting on the sand. We know that most soils have reached
their present location by being transported by wind, water or ice. While being
transported they were, at least if transported by air or water, present as dilute
particle suspensions with little interaction between individual particles. We are
faced with the problem of describing materials which clearly are composed of
individual particles but which clearly also exist in forms in which the particles
interact beneficially so that they appear to be strong materials which can be
relied upon for engineering applications which are usually so much larger than
the individual particles that we have to smear out the properties and create an
equivalent continuum for any analysis. In deciding how we should describe and
model the mechanical behaviour of soils we have to come to terms with this
particle-continuum duality (Fig 2.1).

As we have seen in the brief presentation of the classification model (§1.8),
soils can exist in a wide range of densities or volumetric packings and it is certain
that the interesting properties of soils require us to develop models which are
able to describe and accommodate large changes in volume as the particles
rearrange themselves and displace some of the fluid which fills the surrounding
voids. There may in general be more than one fluid in the voids—typically water
and air at near surface depths in temperate climates—but there could be water,
and liquid and gaseous hydrocarbon in certain circumstances. It will suffice
here to think merely of soils which are saturated with a single pore fluid. There
are two approaches which might be used to attempt to construct constitutive
models of soil behaviour.

Computing power exists today to be able to describe assemblies of very large
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Figure 2.2: Hertzian contact of two spherical particles

numbers of individual particles interacting in three dimensions. Computation of
the response of such an assembly requires two things. A house-keeping operation
is required to check on the relative position of neighbouring particles and note
when they begin to interact. If they do interact then an assumption is required
concerning the physical law governing their interaction: basically a law relating
approach of two particles in contact with the forces generated at the contact.
The summation of all the effects at the particle contact level then produces the
response of the entire assembly.

Textbook solutions (eg Johnson, 1985) can be obtained as a first attempt
at describing the interaction of pairs of particles. The elastic contact of two
spherical particles of radii R1 and R2 (Fig 2.2) is described by Hertzian contact
theory which suggests that the load P should vary with a power of the relative
approach of their centres δ:

P =
4
3
E∗(R∗δ3)α (2.1)

The exponent α = 1/2 and R∗ and E∗ are given by

1
R∗

=
1

R1
+

1
R2

(2.2)

1
E∗ =

(
1− ν2

1

)

E1
+

(
1− ν2

2

)

E2
(2.3)

where E1 and ν1, and E2 and ν2 are Young’s modulus and Poisson’s ratio for
the material of the two spheres.

This is of interest because it demonstrates that even for elastic particle ma-
terial response the contact law is nonlinear. The behaviour of a contact under
combined normal and tangential forces can also be analysed theoretically for
elastic spheres and this can be extended to allow for limiting friction (local
ratio of tangential to normal stress) across the region of contact.

Actual sand particles are usually rather unspherical (the shapes which influ-
ence the particle interaction will be linked with the crystalline structure of the
material around the contact points) and the difficulties of geometric characteri-
sation have rather limited the analyses of assemblies of particles of more realistic
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Figure 2.3: Agglomerated spherical particles

shapes in either two or three dimensions. An approximation to non-spherical
particles can be created by glueing together two or more spherical particles of
different diameters (Fig 2.3), but the spherical nature of the contact remains.
Analytical results are also available for the contact between a conical and a
spherical object. In real soils it is likely that abrasion will also occur at the
contacts, where the level of local stress is often rather high, and in principle
particle fracture should therefore be included. Such analyses have their attrac-
tion for studying the behaviour of assemblies of sand- or gravel-like particles
where the particles interact by (apparently) rather straightforward mechanical
laws at their contacts.

For clay-like materials on the other hand electron micrographs indicate that
the ‘particles’ consist of packets of clay molecules which are distinctly non-
spherical (Fig 2.4). The particles are sufficiently small that surface electrical
forces between particles are significant and it is no longer sufficient to describe
particle interactions in purely mechanical contact terms. Being formed of pack-
ets of molecules one should also consider the possibility of deformations oc-
curring within the packets as well as between the packets. The shape of such
particles makes it likely that particle bending will have a significant influence
on the deformation response of a system of particles. The analysis of assemblies
of such particles has been much more rarely attempted.

Classic experiments were conducted by Drescher and De Josselin de Jong
(1972) on the shearing of a two-dimensional random assembly of photoelastic
discs having six different diameters from 8 to 20 mm. The photoelastic property
of the material of the discs and the size of the discs allowed the way in which
stresses were transmitted through particle contacts to be very clearly observed—
and the actual stresses in individual discs to be determined. Fig 2.5 is very
illuminating: from it can be deduced a diagram such as Fig 2.6 which shows
the network of contact forces passing through the particles. The lines in Fig
2.6 have a thickness which indicates the magnitude of the contact force; the
line is drawn linking the centres of the contacting particles. It is found that
some contacts are loaded much more heavily than others—and some particles
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Figure 2.4: Scanning electron micrograph of Bothkennar clay (reproduced by
kind permission of Professor MA Paul and Dr BF Barras)

hardly loaded at all—so that ‘force chains’ appear, roughly aligned with the
direction of the imposed major principal stress. Soil particles are born free but
are everywhere in chains.

Numerical calculations with random assemblies of (usually) circular particles
have managed to introduce much larger numbers of particles—and can tackle
three-dimensional assemblies too. These have confirmed the character of the
load carrying networks revealed in Figs 2.5 and 2.6.

The arrangement of the soil particles adjusts itself to accommodate these
force chains which form a network with a typical dimension much larger than
that of individual particles—perhaps of the order of ten particle sizes in these
simple analyses. The mechanical response of the assembly is intimately linked
with the creation and adjustment of this fabric of more heavily loaded particle
contacts. As loads are increased in such analyses deformation is seen to occur
by buckling of chains of particles and the establishment of new sets of contacts.
In particular, rotation of principal axes requires realignment of the load car-
rying contacts and is likely to imply softer material response than a loading
which retains the current direction of principal stresses. Buckling remains a
helpful analogy: the application of even a small lateral perturbation to the top
of a structural column has a dramatic effect on the load at which a buckling
instability will occur. Physicists see sand piles as examples of self organised
criticality and have called the material ‘fragile matter’ because the structure is
so sensitive to small changes in the nature of the loading (eg Cates et al, 1998).

If one were confident about one’s ability to describe the mechanical behaviour
at particle contacts then one could envisage modelling real geotechnical proto-
type situations as boundary value problems containing assemblies of particles.
The numbers of particles involved are, however, daunting. Suppose the typical
particle size is about 5 mm and a typical prototype dimension 10 m. For a plane
strain problem a block of soil of the order of 10× 10× 1 m will need to be anal-



Figure 2.5: Photoelastic picture of random assembly of circular discs (from
Drescher and De Josselin de Jong, 1972)

Figure 2.6: Network of chains of contact forces determined from photoelastic
experiments on assembly of circular discs (from Drescher and De Josselin de
Jong, 1972)
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ysed: effects of geotechnical structures are expected to extend away from the
structure to distances at least of the same order as the size of the structure—the
height of a retaining wall for example. The width of the block being studied
needs to be large enough to accommodate any effects of patterned soil fabric
or particle structure that may develop as described in the previous paragraphs.
The number of particles contained in this volume is then of the order of 8× 108

which is not completely out of reach but would probably require quite long run-
ning analyses. (Of course, if the problem of concern actually involves rockfill
with individual particles having dimensions of the order of 1 m then the possibly
of analysing every particle in the boundary value problem is entirely reasonable,
provided that the detail of the contact laws is fully understood.)

The number of particles to be included in the analysis could perhaps be
reduced by replacing the actual particles by ‘macroparticles’ which were small
enough in comparison with typical problem dimensions for the overall response
not to be dominated by individual particles but sufficiently large to keep the
numbers of particles to a reasonable level. This has the apparent attraction
of retaining the particulate nature of the material. It is evident that it is the
fabric of the network of force chains rather than the size of individual particles
that must be small by comparison with the problem dimension. There remains
the problem of tuning the mechanical properties of the macroparticle contacts
to ensure that the overall response is satisfactory: these macroparticles have
somehow to scale up the properties of the smaller particles.

The alternative to the particulate approach is the continuum hypothesis.
Here we propose that the material is continuous at all scales that interest us—
all quantities are infinitely differentiable. Instead of working in terms of forces
and relative displacements at particle contacts we now work in terms of con-
tinuum concepts such as stress and strain. Stress is only relevant at a scale
considerably larger than the individual particles and the network of force chains
between particles. Strain is defined in terms of gradient of a field of displace-
ment. Analyses and observations of particle assemblies show that individual
particles rotate as well as slide at particle contacts—in fact for some assemblies
of circular particles rotation seems to be the dominant mechanism (consistent
with the buckling of force chains) and interparticle friction has a lower effect
than might have been anticipated (see, for example, Thornton, 2000). Conven-
tional definitions of strain do not admit rotation as a field variable. Particle
rotation can be seen as a consequence of out of balance moments being imposed
on the particles. These too cannot be incorporated in conventional definitions of
stress: we assume that only normal and shear tractions (and not moments) can
be transmitted across any surface in the continuum and the need for moment
equilibrium forces the symmetry of the stress tensor.

There are some features of response of granular materials—particularly those
associated with high gradients of displacement and particle rotation in narrow
failure zones—which cannot be satisfactorily modelled unless enriched contin-
uum approaches are adopted (see, for example, Oda and Iwashita (eds) (1999)).
For example, we might permit ‘couple stresses’ to apply moments across the
boundaries of our element and then correspondingly include rotations in our
description of displacement gradient. This is well beyond the scope of this book
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Figure 2.7: Volume element used for estimation of average stress state

but is mentioned to indicate that we may need to be prepared to question some
of our starting hypotheses in order to make progress in modelling strange or
difficult phenomena.

Practically, we have to work in terms of the continuum quantities stress and
strain in order to be able to estimate the behaviour of geotechnical systems. It
is also inevitable that our understanding of the behaviour of soils as assemblies
of individual particles should in general be mediated through observation of the
behaviour of samples of soils in the laboratory—each sample containing a very
large number of particles. The constitutive models that we present in Chapter
3 are therefore all constructed in terms of components of stress and strain. The
most appropriate use of analyses of particulate assemblies seems at present to
be to provide inspiration for the continuum constitutive models.

Given such an inhomogeneous numerical (or photoelastic) assembly we have
to go through a homogenisation process in order to derive an average continuum
behaviour from the local observations (Drescher and De Josselin de Jong, 1972).
With a finite volume V of a continuum, the stress state σij wil be everywhere
in equilibrium but variable. An average stress state σ̄ij is

σ̄ij =
1
V

∫

V

σijdV (2.4)

which, by application of Gauss’ divergence theorem, can be converted to a
surface integral of tractions tj over the surface S of the volume

σ̄ij =
1
V

∫

S

xitjdS (2.5)

where xi is the coordinate of a point on S. For a boundary intersecting a
physical or numerical assembly of particles, the integral becomes a summation
of discrete forces T , with components Tj , over all the particle contacts on the
boundary (Fig 2.7)

σ̄ij ≈ 1
V

N∑
m=1

xm
i Tm

j (2.6)
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and moment equilibrium of the assembly of particles should ensure that σ̄ij =
σ̄ji.

An exactly similar argument can be used to develop an average strain tensor.
Strain is calculated from gradients of displacement so we need to consider the
construction of the average, over the volume, of typical displacement gradients
ui,j , adopting this shorthand notation for ∂ui/∂xj . As before:

ūi,j =
1
V

∫

V

ui,jdV (2.7)

and from the divergence theorem this can again be converted to an integral over
the surface S of the volume V :

ūi,j =
1
V

∫

S

uinjdS (2.8)

where nj is the normal to the elemental surface area dS. For a system of
particles we convert this to a summation

ūi,j ≈
N∑

m=1

∆um
i dm

j (2.9)

where ∆ui is the relative translation of the centres of two particles on the edge
of the volume and d, with components dj , is a ‘complementary area vector’
which assigns an area and a direction to each contact on the boundary (Fig
2.8). The macroscopic average strain ε̄ij is then

ε̄ij =
ūi,j + ūj,i

2
(2.10)

and the average rigid body motion ω̄ij is given by the skew symmetric part of
ūi,j ;

ω̄ij =
ūi,j − ūj,i

2
(2.11)

There is thus a clear route for moving from particle analysis to continuum
interpretation—although, of course, much richness of the actual particle re-
sponse and nature of the transmission of loads is lost in the transformation.

As well as providing information about particle movements and the trans-
mission of forces through the granular medium, numerical analyses of particle
assemblies can give information about the evolving ‘fabric’ of the material. The
fabric includes various elements (Oda and Iwashita, 1999):

• the orientation fabric, describing the orientation of non-spherical particles;

• the void fabric, describing the size and orientation of voids; and

• the multigrain fabric, describing the interaction betwen neighbouring par-
ticles.
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Figure 2.8: Definition of complementary area vector d for boundary of element
used to define average strain state

There are two elements to the multigrain fabric: the geometric fabric which
simply describes the orientation of contacts, and the kinetic fabric (Chen et al.,
1988) which describes how these contacts are actually being used to carry forces
through the soil. Evidently the same orientation and geometric fabrics can carry
many different external loads and, as a corollary, one might propose that kinetic
fabric can change very much more rapidly—through formation and elimination
of particle contacts—than orientation fabric which requires significant particle
rotation and relative movement.

2.3 Laboratory element testing

The possibilities for performing real physical experiments on homogeneous soil
samples (even ignoring for the moment the actual particulate nature of the soil)
are limited by the ingenuity of the designers of soil testing devices; the possi-
bilities for performing and deconstructing numerical experiments on assemblies
of soil particles are much greater. Any general element of soil in a geotechnical
system will experience changes in all of the six components of stress to which
it is subjected (Fig 2.9)1. Any constitutive model (Chapter 3) that is used in
numerical analysis (Chapter 4) will be expected to make reasonable predictions
of the soil behaviour under such general stress changes. The reliability of the
constitutive model can best be checked by pitting it against carefully conducted
laboratory experiments which expose uniform soil samples to similarly general
stress or strain changes.

Most data from laboratory tests on soil elements have come from tests per-
formed in the standard triaxial apparatus (Fig 2.10). A sample is contained
in a membrane and subjected to lateral pressure through this membrane. It is
also subjected to axial deformation through rigid end platens. The loading is
axisymmetric and (neglecting end effects and possible problems associated with

1The sign convention adopted throughout this book except where specifically noted assumes
that compressive stresses and strains are positive. A shear stress τij is positive if it acts on a
plane facing in the positive i direction but is directed in the negative j direction.
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Figure 2.9: Soil element subjected to general state of stress
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Figure 2.10: Axisymmetric (triaxial) testing configuration

initial anisotropy of the sample) we have two lateral principal stresses equal to
the cell pressure σr

σx = σy = σr

and an axial principal stress σz = σa. Depending on the way in which the test is
conducted the axial stress may be the major principal stress (‘compression’)—so
that the intermediate and minor principal stresses are equal—or the minor prin-
cipal stress (‘extension’)—so that the intermediate and major principal stresses
are equal. The test has two degrees of freedom and is more strictly described
as a confined uniaxial test than a triaxial test. However, it is likely to remain
the most widely used soil testing device. The other test apparatus described
here are, on the whole, either purely research devices or will enter commercial
application only for particularly subtle or sensitive geotechnical projects.

Axial symmetry may not seem particularly relevant to many geotechnical
systems: it matches exactly the conditions on the centreline beneath a circular
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Figure 2.11: Plane strain element test

load (such as an oil tank), but not the stresses at any point off the centre-
line. Plane strain may seem more generally applicable (Fig 2.11). The relevant
element test can be achieved either by inserting fixed lateral boundaries in a
triaxial cell or by development of a dedicated biaxial apparatus. The latter
may be advantageous in permitting either σx or σz to be the major principal
stress. In either, the intermediate strain increment, which from symmetry is
also a principal strain increment, is zero and the corresponding stress σy will be
the intermediate principal stress (and will be a dependent stress quantity taking
whatever value is required to maintain the plane strain condition):

δεy = 0; σy = σ2

Such a device also has two degrees of freedom.
True triaxial apparatus or cubical cells permit the application and control of

three independent principal stresses, and corresponding principal strain incre-
ments, with fixed coincident principal axes (Fig 2.12). Loads can be imposed
either by means of flexible cushions (Ko and Scott, 1967)—imposing direct con-
trol of stresses—or by a cunning arrangement of nested rigid platens (Hambly,
1969)—imposing direct control of strains. Suitable control systems can permit
either device to be used, in principle, for stress or strain controlled testing with
three degrees of freedom.

The simple shear apparatus (Fig 2.13) permits some control of rotation of
principal axes and has been somewhat widely used for commercial testing—
especially for cyclic testing linked with offshore and seismic applications. It is a
plane strain device, δεy = 0, but also prevents any direct strain in the x direc-
tion, δεx = 0. The only two degrees of freedom are therefore the shear strain,
γzx, and the vertical strain, εz, which is therefore also the volumetric strain.
There are stresses τzx and σzz associated with each of these strain components.
The intermediate principal stress σy is not an independent quantity because it
has to take an appropriate value to maintain the plane strain condition. The
final stress component, σxx, is also dependent on the response of the soil. The
simple shear apparatus was developed as an improvement on the shear box
(Fig 2.14) (Roscoe, 1953) which clearly makes no pretence of imposing uniform
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Figure 2.15: Directional shear cell

conditions on the soil being tested. Unfortunately, the need for the soil to be
able to change in volume, and the kinematic need for the ends of the sample to
become longer as the sample changes section from rectangle to parallelogram
(even at constant volume), mean that there is a difficulty in providing the nec-
essary complementary shear stress τxz on the ends of the sample. Stresses and
strains within a simple shear sample are inevitably nonuniform and it has to
be interpreted as a boundary value problem rather than a single homogeneous
element (Airey, Budhu and Wood, 1985).

The directional shear cell (Fig 2.15) (Arthur et al., 1977) is another plane
strain device (δεy = 0 which aims to impose controlled shear and normal stresses
on two sets of initially orthogonal flexible boundaries of a sample which is free to
undergo all the associated deformations, in principle homogeneously. This single
element test has three degrees of freedom (σxx, σzz, τzx) but the complexities
of the loading arrangements have severely limited its use.

The torsional hollow cylinder apparatus (Fig 2.16) (Saada and Baah, 1967),
on the other hand, has been much more widely adopted. A hollow cylindrical
sample is subjected to axial load F , and axial torque T through rigid end platens,
and internal and external pressures (pi, po) through containing membranes.
This gives us four degrees of freedom, which is nice, but one should quickly
understand that this is at the expense of inevitable internal variations of stress
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Figure 2.16: Torsional hollow cylinder apparatus

and strain. We are testing a closely controlled boundary value problem not a
single homogeneous soil element. Any discussion of stress:strain response has
to be deduced from average quantities.

For example, with internal and external radii ri, ro, we could propose an
average axial stress

σ̄zz = F/π
(
r2
o − r2

i

)
(2.12)

and shear stress
τ̄zx = 3T/

[
2π

(
r3
o − r3

i

)]
(2.13)

But this has assumed a uniform shear stress over the section whereas, for a
rotation θ of the top of a sample of height h, the imposed shear strain varies
linearly from riθ/h at the inner edge to roθ/h at the outer edge of the hollow
cylinder. Should we assume some corresponding linear variation of shear stress
with radius? This will certainly change the average in (2.13)—in fact the volume
average for the shear stress then becomes

τ̄zx =
4T

3π

(
r3
o − r3

i

)

(r2
o − r2

i ) (r4
o − r4

i )
(2.14)

And if the stress:strain response is not in fact linear—elastic-plastic perhaps?—
then the radial variation (and volumetric average) of shear stress will be different
again.

If the internal and external pressures are different then the obvious average
radial stress is

σ̄r = σ̄yy = (pi + po) /2 (2.15)

(although this is not actually the volume average of the radial stress). The
corresponding average circumferential stress, from radial equilibrium of a small
element of the hollow cylinder (Fig 2.16), is

σ̄θ = σ̄xx = (poro − piri) / (ro − ri) (2.16)
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Figure 2.17: Mohr’s circle of stress for torsional hollow cylinder

In all proposed expressions for average stress quantities the departure from
uniformity is reduced as the ratio of wall thickness to average radius reduces—
large thin samples are preferred. There are evidently compromises to be made
between apparatus size, ease of sample preparation and internal stress unifor-
mity.

If we sacrifice one degree of freedom and keep pi = po then σ̄r = σ̄θ = σ̄xx =
σ̄yy = σ2 but now, as we vary the axial load and torque, the geometry of Mohr’s
circle (Fig 2.17) tells us that

σ2 = σ1 sin2 α + σ3 cos2 α (2.17)

or that the quantity b which indicates the value of the intermediate principal
stress relative to the other two principal stresses is

b =
σ2 − σ3

σ1 − σ3
= sin2 α (2.18)

where α is the angle made by the major principal stress to the horizontal.
This relationship of the intermediate stress to the major and minor principal

stresses is now a function of the value of α and cannot be chosen independently.
This sacrifice of a degree of freedom, while leading to reduced uncertainty of
the values of some of the averaged stress components, somewhat constrains the
stress paths that can be followed in the torsional hollow cylinder apparatus.

Interpretation of the results of hollow cylinder tests is something of an ex-
ercise in deconvolution—working back from system response to underlying con-
tributory elemental behaviour. Four degrees of freedom seem to be the maxi-
mum that we can achieve in laboratory element testing and we are always going
to have to extrapolate using our constitutive model in order to describe the final
two degrees of freedom (and we have to use a postulated model to deconvolve
the hollow cylinder response itself).

2.4 Stress and strain variables

Having established that concepts of stress are likely to be helpful we need to con-
sider the ways in which we can most usefully characterise the stresses to which
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Figure 2.18: ‘Wavy’ plane through granular material

elements of soil are subjected. Triaxial testing provides the bulk of the avail-
able data on the mechanical behaviour of soil elements and therefore provides
a useful background against which to introduce ideas of constitutive modelling
of soils in Chapter 3—even though the bulk of the applications in geotechni-
cal engineering do not have the axial symmetry that is implied by the triaxial
apparatus.

The triaxial apparatus provides the possibility for confined uniaxial testing
of soils or other materials and evidently provides two degrees of freedom in
control of externally applied stress states. There are, however, many different
ways in which these two degrees of freedom can be chosen for presentation
and interpretation of test results: there are many different national traditions.
However, when it comes to the development of constitutive models then it is
necessary to start to impose some constraints on the choice of variables.

Development of constitutive models describing the link between changes in
stress and changes in strain requires correct choice of strain increment and stress
variables. Soils consist of more or less rigid particles separated by voids. Volume
changes are recognised to be an important feature of the mechanical response
of soils. Volume changes of saturated soil require pore water movement which
is controlled and limited by the permeability of the soil. Our experience tells us
that undrained response of soils is often important where the permeability of
the soil prevents flow of water. Undrained deformation implies constant volume
deformation (the compressibility of pore fluid is usually negligible in most civil
engineering applications) and hence pure distortion, change in shape at constant
size. It is convenient, then, to divide soil deformations into compression (change
of volume) and distortion (change of shape) and to choose the strain increment
variables correspondingly.

The principle of effective stress proposes that it is the effective stresses that
control the deformation behaviour of the soil—all the constitutive models that
are discussed in Chapter 3 will take this principle as axiomatic. Various attempts
have been made to prove the validity of the principle of effective stress: here it
will be taken simply as a hypothesis or conjecture only weakly non-falsified which
has been found to work well within the context of understanding of saturated soil
behaviour. Drawing a ‘wavy plane’ through a granular material (Fig 2.18) (see,
for example, Lambe and Whitman (1979)) to support an argument of partition
of total stress between pore pressure and intergranular stress (intergranular
normal forces averaged over the whole area) can only support the principle of
effective stress if the area of contact—over which the intergranular stress but
not the pore pressure acts—is small by comparison with the total area. Classic
experiments by Laughton (quoted by Bishop (1959)) on lead shot, subjected
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to such high pressures that the observed flats on the surface of the originally
spherical particles indicated a contact area of 60%, showed that the principle of
effective stress still applied under these extreme conditions.

Formally, given a total stress tensor σij (compression positive) and pore
pressure u, the effective stress tensor σ′ij is given by

σ′ij = σij − uδij (2.19)

where δij is the Kronecker delta

δij = 1, i = j; δij = 0, i 6= j (2.20)

Expression (2.19) simply tells us that the pore pressure affects only the
normal stresses and not the shear stresses supported by the soil element: this
does not surprise us because we know that, in the context of soil mechanics,
water has negligible shear stiffness and negligible ability to carry shear stresses.

In presentation of constitutive models in Chapter 3, we will concentrate on
conditions which are attainable in conventional triaxial tests, where the states of
stress and strain are assumed to be axisymmetric. In any test we can obviously
identify the axial and radial strain increments δεa and δεr respectively, and
corresponding axial and radial effective stresses σ′a and σ′r. However, since
volumetric effects are recognised to be important let us choose as our first strain
increment variable for constitutive modelling the volumetric strain increment
δεp:

δεp = δεa + 2δεr (2.21)

At many stages in numerical and constitutive modelling we need to make
statements about increments of work done in deforming soil elements. This
leads to the idea of work conjugacy of strain increment and stress quantities. In
the context of volumetric deformations we need to choose a ‘volumetric’ effective
stress p′ such that the work done in changing the volume of a unit element of
soil is given by

δWv = p′δεp (2.22)

This requires that this volumetric stress should be the mean effective stress:

p′ =
1
3

(σ′a + 2σ′r) (2.23)

The subscript p for the volumetric strain indicates that this p strain is linked
with the p stress.

Our two degrees of deformational freedom for soil samples in the triaxial
apparatus are compression (change of size) and distortion (change of shape).
We need next to choose a pair of strain increment and stress variables which
can describe distortional processes. We are now bound more by convenience
than by any direct theoretical constraint. When we perform triaxial tests we
directly measure the ‘deviator stress’ q which is the amount by which the axial
stress exceeds the radial stress:

q = σa − σr = F/A (2.24)
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where F is the axial force and A is the cross sectional area of the sample. If we
choose q as our distortional or shear stress then we have no remaining choice in
the definition of the distortional strain increment δεq

δεq =
2
3

(δεa − δεr) (2.25)

and the increment of work required to change the shape of a unit element of soil
is given by

δWd = qδεq (2.26)

and again the subscript q reminds us of the link between the distortional q strain
increment and the q stress.

The total work done per unit volume during any strain increment is the sum
of the volumetric and distortional terms:

δW = δWv + δWd = p′δεp + qδεq = σ′aδεa + 2σ′rδεr (2.27)

The relationships between stress variables and between strain increment vari-
ables can be summarised in matrix form

(
p′

q

)
=

(
1
3

2
3

1 −1

)(
σ′a
σ′r

)
(2.28)

(
σ′a
σ′r

)
=

(
1 2

3
1 − 1

3

)(
p′

q

)
(2.29)

(
δεp

δεq

)
=

(
1 2
2
3 − 2

3

)(
δεa

δεr

)
(2.30)

(
δεa

δεr

)
=

(
1
3 1
1
3 − 1

2

)(
δεp

δεq

)
(2.31)

q

p′
=

3 [(σ′a/σ′r)− 1]
(σ′a/σ′r) + 2

(2.32)

σ′a
σ′r

=
1 + (2/3) (q/p′)
1− (1/3) (q/p′)

(2.33)

δεp

δεq
=

3 + (3/2) (δεa/δεr)
(δεa/δεr)− 1

(2.34)

δεa

δεr
=

3 + (δεp/δεq)
(δεp/δεq)− (3/2)

(2.35)

It is also convenient to define a stress ratio η

η =
q

p′
(2.36)

which is equivalent to a mobilised friction φ′m. Under conditions of triaxial
compression, in which q > 0 and the axial stress is greater than the radial
stress,

σ′a
σ′r

=
1 + sin φ′m
1− sin φ′m

=
3 + 2η

3− η
(2.37)
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and

sin φ′m =
σ′a − σ′r
σ′a + σ′r

=
3η

6 + η
(2.38)

so that

η =
6 sin φ′m

3− sin φ′m
(2.39)

Under conditions of triaxial extension, in which q < 0 and the axial stress is less
than the radial stress,

σ′a
σ′r

=
1− sin φ′m
1 + sin φ′m

=
3 + 2η

3− η
(2.40)

and

sin φ′m =
σ′r − σ′a
σ′a + σ′r

= − 3η

6 + η
(2.41)

so that

η = − 6 sin φ′m
3 + sin φ′m

(2.42)

It is unfortunate that the symbols p′ and q have frequently also been used for
the quantities (σ′a + σ′r) /2 and (σ′a − σ′r) /2 respectively. These definitions are
not helpful in the context of constitutive modelling of response in triaxial tests
because it is not possible to use them to develop correct work statements—
there are no corresponding work-conjugate strain increment quantities. The
engineer must be careful, in using quoted experimental data, to ensure that the
definitions of p′ and q are indeed as anticipated.

For axisymmetric states of stress there are only two degrees of freedom and
the introduction of the stress variables q and p′ clearly implies no loss of infor-
mation. However, the complete stress state at any location (a symmetric second
order tensor) has six independent components. We can choose these to be the
normal and shear stresses on three mutually orthogonal planes (Fig 2.9) but for
every stress state there is a set of three mutually orthogonal planes on which
the shear stresses vanish (Fig 2.19). The normals to these three planes define a
set of three principal directions or principal axes and the corresponding normal
stresses are the three principal stresses σ1, σ2, σ3. The two stress states in Figs
2.9 and 2.19 are exactly equivalent and related to each other by the rules of
tensor transformation—or stress resolution.

If we know that the directions of the principal axes are not changing or if
we choose to ignore the effects of changing the directions of the principal axes
(this may be unwise) then the principal stresses alone are sufficient to describe
the stress state. If we reckon that even for these more general stress states it is
still important to think of the volumetric effects separately from the distortional
effects then we can propose that the mean stress p will still be a useful stress
variable:

p =
1
3

(σ1 + σ2 + σ3) =
1
3

(σxx + σyy + σzz) (2.43)

This mean stress can also be defined as

p =
1
3
tr (σij) (2.44)
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Figure 2.19: Principal axes and principal stresses for general state of stress

where tr signifies the trace, or the sum of the leading diagonal terms of the
tensor.

For a given state of stress at a point in a continuum the elements of the stress
tensor σxx, σyy, σzz, τyz, τzx, τxy will change if the directions of the coordinate
axes x, y, z are changed. However, the values of the principal stresses will not
change: these quantities are said to be ‘invariant’ to choice of coordinate axes.
Any function of the three principal stresses will also be invariant to choice of
axes but, by convention, the three invariants of a stress tensor are defined as

I1 = σ1 + σ2 + σ3 = tr(σij) = 3p (2.45)

I2 =
1
2

{
[tr (σij)]

2 − tr
(
σ2

ij

)}
= σ2σ3 + σ3σ1 + σ1σ2 (2.46)

I3 = detσij = σ1σ2σ3 (2.47)

If we subtract the volumetric stress then we can create a stress deviator
tensor sij which describes solely the distortional components of stress

sij = σij − pδij (2.48)

It is easy to see that
tr (sij) = 0 (2.49)

The second invariant of the stress deviator tensor is defined (as in (2.46)) as

J2 =
1
2
tr

(
s2

ij

)
=

I2
1

3
− I2 (2.50)

Alternative expressions for J2 are

J2 =
1
2

[
(σ1 − p)2 + (σ2 − p)2 + (σ3 − p)2

]
(2.51)

and

J2 =
1
6

[
(σyy − σzz)

2 + (σzz − σxx)2 + (σxx − σyy)2 + τ2
yz + τ2

zx + τ2
xy

]
(2.52)

Noting that, for an axisymmetric system of stresses

J2 =
1
3

(σzz − σxx)2 (2.53)
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Figure 2.20: (b) π-plane deviatoric view of (a) principal stress space down space
diagonal σx = σy = σz

we deduce that a generalised definition of our distortional stress q (2.24) will be

q = (3J2)
1/2 (2.54)

There is a class of theoretical constitutive models that can be constructed
within the framework of so-called J2 plasticity for which the stress:strain re-
sponse is controlled only by the first and second invariants of the stress tensor,
p and J2. This might also be called the Von Mises generalisation from the
axisymmetric condition. It will be shown subsequently (§2.7) that this generali-
sation is not obviously directly appropriate for soils, though it does confer some
mathematical simplification.

The generalised distortional stresses for true triaxial tests—in which all three
principal stresses are changed without changing the orientations of principal
axes—can be displayed in a two-dimensional diagram which is a view of the
so-called π-plane—a view of principal stress space down the line σx = σy = σz

(Fig 2.20). For plotting purposes this is equivalent to projecting onto orthogonal
axes ςx and ςy (Fig 2.20):

ςx =
σy − σx√

2
; ςy =

(σz − σx)− (σy − σz)√
6

(2.55)

which are both clearly functions of independent stress differences. Under con-
ditions of axial symmetry, σx = σy, and ςx = 0 and ςy =

√
(2/3)q. Contours of

constant generalised q (2.54) are circles in the π-plane.
For test apparatus which permit rotation of principal axes we have to include

the imposed shear stresses in our selection of stress variables. For example, for
simple shear (Fig 2.13) or directional shear cell (Fig 2.15) tests we can display the
two distortional degrees of freedom in a diagram with axes β = (σzz − σxx) /2;
and τzx (Fig 2.21) with corresponding work-conjugate strain increments δζ =
δεzz − δεxx and δγzx. In this form of plotting of deviatoric stress information
the length of the stress vector is (σ1 − σ3) /2 where σ1 and σ3 are major and
minor principal stresses respectively. The inclination of the stress vector to the
β axis is 2α where α is the inclination of the major principal stress to the z
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Figure 2.21: Deviatoric stress plane for rotation of principal axes
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Figure 2.22: Additional deviatoric stress axis for intermediate principal stress

direction. Mobilised friction only involves major and minor principal stresses
and, provided the out-of-plane stress σ2 is indeed the intermediate principal
stress, contours of constant mobilised friction for given values of mean stress
become circles in the β:τzx stress plot (Fig 2.21).

For the torsional hollow cylinder apparatus (Fig 2.16) we need to display
three degrees of freedom of distortional information: the third axis could logi-
cally be σ2 − p = σyy − p (from (2.48)) (Fig 2.22).

As an example of the application of these stress variables we can consider
the stress path followed in a simple shear test (Fig 2.13). The results relate to
tests on dry sand so that total and effective stresses are identical. It is found
experimentally (Airey, Budhu and Wood, 1985) that data from simple shear
tests on sands and clays, in which complete information about the stress tensor
is available from boundary stress measurements, fit quite closely a relationship
(Fig 2.23):

τzx

σzz
= k tanα (2.56)

where k is a soil constant. In plane strain tests such as this the intermediate
principal stress σ2 is a dependent quantity, taking whatever value is required in
order to maintain the plane strain condition. It is consequently helpful to think
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Figure 2.23: Relationship between shear stress ratio and principal stress axis
direction for simple shear tests on Leighton Buzzard sand (after Airey et al.,
1985)

of stress changes using a plane strain mean stress s:

s =
σxx + σzz

2
=

σ1 + σ3

2
(2.57)

Since it is found that, in simple shear tests on sand, σ2 ≈ 0.8s (Stroud, 1971)
or more generally σ2 ≈ k2s, we have

p

s
≈ (2 + k2)

3
(2.58)

Equation (2.56) can be converted into a stress path (Fig 2.24)

τ2
zx = k2σ2

zz − 2kβσzz = 2ksσzz − k (2− k)σ2
zz (2.59)

s = σzz − β (2.60)

and we see that the kinematic constraints of the simple shear test empirically
constrain the distortional stress path to take a parabolic form (Fig 2.24a).

The mobilised friction is given by

sin φm =
kσzz − β

σzz − β
(2.61)

and a link can be obtained between the orientation α of the major principal
stress and the mobilised friction:

tan2 α =
2 sin φm − k (1 + sin φm)

k (1− sin φm)
(2.62)
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Figure 2.24: Empirically deduced stress paths for simple shear tests (after Muir
Wood et al., 1998)
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normals: (a) one-dimensional compression to 12% vertical strain and (b) simple
shear to 12% shear strain (after Oda and Iwashita, 1999)
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Figure 2.26: Orientations of principal axes of stress, stress increment and strain
increment in a cycle of simple shear on Leighton Buzzard sand (after Wood and
Budhu, 1980)

The dramatic effect of simple shear deformation on the fabric of a granular
material is shown in Fig 2.25 (Oda and Iwashita, 1999) for a test on a two-
dimensional random assembly of cylindrical rods of three different diameters.
The geometric fabric of this pseudo-granular material is described in terms of the
numbers of particle contacts in different directions. The effect of compression
in the z direction to 12 % strain is to generate contacts in this vertical direction
and to lose contacts in the orthogonal horizontal direction (Fig 2.25a). The
effect of subsequent simple shear to γzx = 12% is to generate contacts at some
inclination to the horizontal (Fig 2.25b): the fabric is changing dynamically
during the shearing process.

Another indication of a related effect can be detected from observations of
the way in which the principal axes of strain increment vary during a simple
shear test. Typical data for a single simple shear cycle on a sample of sand
are shown in Fig 2.26). The principal axes of stress increment are in one sense
not independent but are linked with the slope of the stress path shown in Fig
2.24a—that path was an empirical deduction and not theoretically ordained.
When studied directly, it is found that, after each reversal of straining, the
principal axes of strain increment initially coincide with those of stress increment
but progressively tend towards those of stress as the strain is monotonically
increased. From a constitutive point of view this could be interpreted as a
progressive transition from an elastic to a perfectly plastic model of response.

If the simple shear test eventually reaches a condition where shearing contin-
ues without further change in volume then the Mohr circle of strain increment is
centred on the origin (Fig 2.27) and with coincident axes of principal strain in-
crement and of principal stress the measured shear stress τzx must lie at the top
of the Mohr circle of stress (Fig 2.27), with α = π/4, so that τzx/σzz = sin φcv
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Figure 2.27: Mohr’s circle of (a) strain increment and (b) stress for simple shear
sample undergoing constant volume (critical state) deformation

where φcv is the angle of friction for constant volume (or critical state) shearing
(§2.6.1). We can then deduce that k = sin φcv in (2.56).

2.5 Stiffness

We perform laboratory tests in order to assemble observations which can help us
to develop and calibrate constitutive models of soil response which provide the
link between strain increments ε and stress increments σ which will be required
for performance of numerical analysis of geotechnical systems. Formally we
require to develop and populate a stiffness matrix D

δσ = Dδε (2.63)

and this incremental link between stress and strain is probably the most useful
definition of stiffness.

2.5.1 Nonlinearity: secant and tangent stiffness

Typical stress:strain relationships for soil are not linear. This nonlinearity has
to be characterised and then modelled. One way in which the nonlinearity can
be described is by showing how the stiffness varies with strain. Stiffness for
nonlinear materials can be defined in two quite different ways (Fig 2.28), using
either secant stiffness

Gs =
τ

γ
(2.64)

or tangent stiffness

Gt =
δτ

δγ
(2.65)

The use of the term ‘stiffness’ can quickly lead to false expectations because
of its general association with ‘elasticity’—and even more general association
with ‘linear elasticity’. This confusion is greatest when secant stiffness is being
used because this stiffness merely defines an average stiffness over a chosen range
of strain from an arbitrary zero. Tangent stiffness is more obviously useful
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Figure 2.29: Cantilever under tip loading

because it is describing the way in which the soil will respond in generating
change in stress as a result of a small imposed deformation from the current
state of the soil—and the elastic-plastic models to be developed in Chapter 3
will generate just such general stiffness relationships.

One of the dangers of adopting any elements of the language of elastic-
ity is that one can be rapidly seduced into adopting the entire accompanying
framework of elastic analysis. Let us give a simple example, using a structural
analogy: a steel cantilever beam, built in at one end and subjected to a tip
point load W (Fig 2.29). This structural problem is capable of exact analysis
whereas for most geotechnical systems we have to resort to numerical procedures
or approximations and the direct physical insight is obscured.

The beam is of length `, with flexural rigidity EI, rectangular cross section
(b×2d) and full plastic moment Mp. A familiar problem might be to determine
the limiting value of W to cause plastic collapse of the beam. A slightly more
subtle problem is to compute the relationship between the tip deflection δ of
the beam and the force W necessary to produce this deflection.

While the beam is behaving purely elastically the link between W and δ is

W

δ
=

3EI

`3
(2.66)
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Figure 2.30: Idealised elastic-perfectly plastic stress:strain response for steel

As the deflection and the load increase there comes a point at which the moment
at the root of the cantilever is sufficiently large that the stress in the extreme
fibres of the beam just reaches the yield stress σy of the steel. The corresponding
moment is the yield moment My which, for a beam of rectangular section, is:

My =
2
3
Mp (2.67)

The yield value of the tip load is

Wy =
My

`
=

2Mp

3`
(2.68)

and the corresponding tip deflection is

δy =
2Mp`

2

9EI
(2.69)

The compression and extension behaviour of the steel is assumed to be given
by the bilinear relationship shown in Fig 2.30. Once the steel starts to yield then
it is no longer able to accept any additional stress. As the deflection is increased
beyond the yield value the stiffness of the cantilever must fall. Following Baker
and Heyman (1969) we can obtain an explicit solution as follows.

Let the moment at the root of the cantilever be λMp (2/3 ≤ λ ≤ 1) so that
the tip load for this statically determinate cantilever is

W =
λMp

`
(2.70)

There will be a zone of partial plasticity extending into the cantilever from
the root. At any particular location the elastic region occupies a fraction α of
the section (1 ≥ α ≥ 0) (Fig 2.31) and the moment in the partially plastic state
is

M =
(

1− α2

3

)
Mp (2.71)

At the root of the cantilever

α = αo =
√

3(1− λ) (2.72)
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Figure 2.31: Strain and stress distributions across section of beam with partial
plasticity

Moment equilibrium then tells us that, within this partially plastic region (Fig
2.29), measuring x from the root of the cantilever,

1− α2

3
= λ

(
1− x

`

)
(2.73)

and hence, substituting α = 1, that the partially plastic section extends a
distance xo from the root:

xo =
(

1− 2
3λ

)
` (2.74)

The elastic core of the beam controls the curvature in just the same way as
for a fully elastic beam so that we can write

d2y

dx2
=

σy

αEd
=

2
3

Mp

αEI
(2.75)

Integrating this equation we deduce that the slope of the cantilever at position
xo is:

dy

dx

∣∣∣∣
x=xo

=
4
9

W`2

EIλ2
(1− αo) (2.76)

and the deflection is

y|x=xo
=

4
81

W`3

EIλ3

(
2− 3αo + α3

o

)
(2.77)

Combining these values with the behaviour of the elastic cantilever of length
2`/3λ we find that the deflection of the tip of the cantilever is

δ =
4
81

W`3

EIλ3

(
10− 9αo + α3

o

)
(2.78)

where αo and λ are parametrically linked.
The resulting elastic-plastic relationship between load and deflexion is shown

in Fig 2.32. The limiting load is Wp = Mp/` corresponding to λ = 1, αo = 0
and the corresponding (finite) tip deflection is

δp =
40
81

Wp`
3

EI
=

20
9

δy (2.79)
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Figure 2.34: Incremental (tangent) and secant stiffness for cantilever

Now at the moment that this fully plastic collapse tip deflection is reached
the shape and slope of the deflected cantilever are as shown in Fig 2.33a, b (and
the variation in degree of plasticity is shown in Fig 2.33c). For comparison, the
shape of an elastic cantilever with the same tip deflection is also shown. So far
as the tip response is concerned we could happily describe an equivalent elastic
secant stiffness which would have to vary with deflection as shown in Fig 2.34.
However, while this would describe the overall system response in some respects
it would mislead us into deducing that the distribution of deflection along the
cantilever had still the elastic form. Figs 2.33a and b show this deduction to be
false.

This simple structural system provides an illustration of two other points.
Tangent stiffness falls much more rapidly than secant stiffness because it effects
the way in which the cantilever wants to behave now. Once the cantilever has
a fully developed plastic hinge at its root the tangent stiffness (in terms of
increment of tip load/increment of tip deflection) falls to zero—the cantilever
has no further ability to accept additional load. The secant stiffness continues
falling gently and only reaches zero at infinite deflection.

If we consider a one-dimensional normalised loading diagram (Fig 2.35a) we
find that there are three identifiable regimes. For 0 ≤ λ ≤ 2/3 the response is
elastic; for 2/3 ≤ λ ≤ 1 the response is elastic-plastic. The value λ = 1 indicates
the collapse load. The regime λ > 1 is inaccessible.

We can now consider a corresponding one-dimensional deflection diagram
(Fig 2.35b), using a normalised deflection δ∗

δ∗ =
EIδ

Mp`2
(2.80)

we find that the elastic region corresponds to 0 ≤ δ∗ ≤ 2/9; the elastic-plastic
region corresponds to 2/9 ≤ δ∗ ≤ 40/81; and that the collapse load corresponds
to all deflections δ∗ > 40/81. There is a many to one mapping from deflection
to load.
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Figure 2.35: Regimes of response of cantilever terms of (a) load and (b) deflec-
tion

More importantly, whereas the whole of the deflection diagram is accessi-
ble (there is no limit to the deflections that can be imposed on the tip of the
cantilever—we are not concerned with changes in geometry and the practical
details), the accessible part of the load diagram is restricted to the region below
the collapse load. This gives us some hints about problems of experimental con-
trol (if we want to explore the whole of the load:deflection relationship we will
be well advised to do this by steadily increasing the deflection rather than pro-
gressively increasing the load) and numerical control (we will see subsequently
(§3.3, §3.4) that it is always more secure in using constitutive models to com-
pute soil response to work from strain increment to stress increment, than from
stress increment to strain increment, because it is quite likely that some stress
increments will try to take the soil into a forbidden area—beyond the collapse
condition).

2.5.2 Stiffness and strain measurement

Perceptions of stiffness are intimately linked to one’s ability to measure strains
from changes in length of a known initial gauge length. Stiffness variation in
a monotonic test—for example, a triaxial compression test—is typically pre-
sented (Fig 2.36) in a plot of shear modulus (usually, regrettably, secant modu-
lus) against strain, with the strain plotted on a logarithmic scale because much
of the initial variation of stiffness occurs at very small strains. Tangent stiff-
ness varies with strain much more rapidly than secant stiffness (Fig 2.36)—and,
of course, if the stress:strain response reveals strain softening after some peak
then the tangent modulus will actually become negative. This indicates neg-
ative incremental stiffness which sounds, rightly, as though it might be rather
important for the response of a soil element or an entire geotechnical system
but is concealed in the secant stiffness which remains resolutely positive.

Technology for measurement of small deformations of soil samples has devel-
oped tremendously over the past two decades or so and, although, for routine
testing, the resolution of strain measurement remains somewhat coarse (Fig
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Figure 2.38: Range of secant shear stiffness degradation data for Quiou sand
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normalised with shear stiffness at very small strain Gmax (after LoPresti et al.,
1997)

2.37), high quality research has been able to bridge the gap between the ‘low’
stiffnesses typically measured in traditional laboratory tests and the high stiff-
nesses measured using geophysical techniques in the field or the laboratory (Fig
2.38).

2.5.3 Stiffness and history: stress response envelopes

The S-shaped curves of Figs 2.36, 2.37, 2.38 are typically presented for mono-
tonically increasing strain amplitudes and this is evidently a first stage towards
the description of the evolution of the stiffness matrix D in (2.63). However,
soil elements in geotechnical systems will be subjected to nonmonotonic paths
following long term geological and shorter term construction histories and we
will expect to use the laboratory testing possibilities that are available to us to
explore the incremental effects of stress changes in a very general way. We need
to have a coherent strategy for the conduct of this testing—one which is not too
much prejudiced by our existing ideas of the way in which we want our soil to
behave.

One way of illustrating the link between strain increments and stress incre-
ments which can be useful both for planning and interpreting programmes of
testing is through the generation of stress response envelopes. Stress response
envelopes were introduced by Gudehus (1979) as a way of illustrating the na-
ture of the characters of response predicted by different classes of constitutive
model. Inevitably, such envelopes will usually be presented as two-dimensional
curves but these curves are sections through stress response hypersurfaces. If
we restrict ourselves to more limited spaces then this will usually be because
of the limitations of the testing apparatus which are available to us. Thus, for
axially symmetric states of stress attainable in the conventional triaxial appa-
ratus, envelopes can be shown in terms of volumetric (mean effective) stress
and distortional stress changes resulting from the application of increments of
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Figure 2.39: (a) Rosette of strain probes and (b) resulting stress response enve-
lope for axisymmetric state of stress

volumetric and distortional strain. For the true triaxial tests to be shown here
the envelopes will be presented in terms of deviatoric stress and strain com-
ponents, neglecting a third dimension, the volumetric (or isotropic) stress and
strain, which will, however, also be relevant.

If, from a given initial stress state, a series of strain probes of identical
normalised magnitude is imposed, then the resulting envelope of stress responses
provides a visual indication of the generalised stiffness of the soil. An example
is shown in Fig 2.39 for an axisymmetric (triaxial) state of stress. The strain
increments are defined in terms of volumetric strain δεp (2.21) and distortional
strain δεq (2.25). The rosette of strain increments of standard length is shown in
Fig 2.39a. A solid curve joins the resulting stress increments from the common
initial stress, presented in terms of mean effective stress p′ and distortional stress
q, in Fig 2.39b). In this figure, at each point on the stress response envelope a
little line indicates the direction of the corresponding strain probe.

The shape of the stress response envelope is expected to depend on the
stress history of the soil. Simply, near failure we expect the stiffness for con-
tinued loading—increased distortional strain—to be considerably lower than for
unloading—reversal of distortional strain—and the stress response envelope will
be flattened towards the loading direction (A in Fig 2.40). At lower stress ratios
the envelope is likely to be more rounded (B in Fig 2.40) with the generalised
stiffness less dramatically influenced by the direction of the probe though still
indicating lower stiffness for continued loading, higher stiffness for reversal of
loading. There may be some partially unloaded states for which the response is
much more independent of loading direction (C in Fig 2.40). For soil in a state
which tends to lead to strain softening (probably at high stress ratios) the initial
stress state may lie outwith the response envelope (D in Fig 2.40)—this is an
indication that all strain increments imposed on our soil element will lead to re-
duction of stress ratio. We will return to this perplexing response subsequently
(§3.4.1, §3.4.2).

The shape of the response envelope and the location of the initial stress state
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Figure 2.40: Schematic expected history dependence of stress response envelopes
(points + indicate initial stress states)

relative to the response envelope will vary with history. As presented in (2.63)
the stiffness matrix D is independent of the magnitudes of the strain incre-
ment and stress increment that it links—strictly it applies only to infinitesimal
increments. However, we have seen that soil stiffness falls with monotonically
increasing strain. Instrumentation does not permit us to determine response
envelopes for ‘zero’ amplitude of strain increments. However, it is instructive,
in gathering data to inspire our constitutive modelling, to look at response en-
velopes determined for different, finite, magnitudes of strain increment from a
given initial stress state. This then provides a more general presentation of the
stiffness variation with strain shown in Fig 2.38.

Results of triaxial stress probes on natural Pisa clay, interpreted as stress
response envelopes, are shown in Fig 2.412. At small strain magnitudes (0.1-
0.2%) the stress response envelopes are strongly linked in position and shape to
the starting stress state. As the magnitude of strain increases the importance
of the starting point apparently reduces. The envelopes are closely bunched for
increasing distortional stress, much more widely separated for reducing stress.
We can present this series of envelopes as a series of variations of generalised
secant stiffness

S =
√

∆p′2 + ∆q2/
√

∆ε2p + ∆ε2q

with strain ε =
√

∆ε2p + ∆ε2q - showing the effect of stress path direction (Fig

2.42).
Stress response envelopes from true triaxial tests on kaolin are shown in

a π-plane deviatoric view of stress space in Figs 2.43 for two different initial
histories—one (Fig 2.43a) has isotropic compression to O followed by shearing

2Data kindly replotted by Luigi Callisto.
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Figure 2.43: Schematic deviatoric stress response envelopes from true triaxial
probing of kaolin with deviatoric history (a) OA and (b) OAO (inspired by Muir
Wood, 2004)

(at constant mean effective stress) to A; the other (Fig 2.43b) has history OA
followed by unloading back to O. The response envelopes are drawn for different
values of a distortional strain

ε =
1√
3

√[
(εy − εz)

2 + (εz − εx)2 + (εx − εy)2
]

which is proportional to the second invariant of the strain deviator tensor (com-
pare 2.52). Again, the small strain envelopes in each case are closely linked to
the recent stress history, OA or OAO respectively. However, as the strain mag-
nitudes increase, the detail of the starting stress state seems to become largely
irrelevant—by the 10% envelope, memory of what has gone before has been
somewhat swept out.

Stress response envelopes from true triaxial tests on Leighton Buzzard sand
are shown in Fig 2.44 (data from Sture et al., 1988). These tests were per-
formed in a cubical cell true triaxial apparatus in which the stresses were im-
posed through flexible boundary cushions: the magnitudes of strains that can
be imposed while still retaining deformational uniformity are limited. Com-
paring deviatoric histories (imposed at constant mean stress) ABC, ABD the
comments made previously are reinforced. Failure is lurking in the π-plane at
some finite distance from the isotropic stress axis, A, so it is to be expected that
the several stress response envelopes will be closely packed together there.

Finally, to demonstrate that the principle of generation of stress response
envelopes is quite generally useful and applicable, envelopes are shown in Fig
2.45 for two stress histories imposed on Leighton Buzzard sand in a directional
shear cell (Fig 2.15) (original data again from Sture et al., 1988). The data
are somewhat sparse but the pattern is familiar. Principal stress rotation is
occurring but, with appropriate choice of deviatoric stress variables, the required
conduct of the tests and interpretation of results is straightforward.
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Figure 2.46: Schematic stress response envelopes for strain softening soil

In all these examples the picture is similar. There is a strongly kinematic
element to the small strain response envelopes—they are carried around inti-
mately with the most recent stress history. The nonlinearity of stress:strain
response—the way in which incremental stiffness decays with continuing mono-
tonic strain—is encapsulated in the relative positions of the response envelopes
for increasing magnitudes of strain. The larger the strain magnitude the less
the location of the envelope seems to care about the recent stress history and
the more it is aware of other constraints on soil response—such as the limita-
tions that failure criteria might impose. Failure will be discussed subsequently
but, if failure is, simplistically, interpreted as the occurrence of zero incremental
stiffness, then obviously the stress response envelopes for increasing strain mag-
nitudes must pack closely together as they approach the failure boundary. The
strains needed to identify failure may be large but this character of response
is discernible in Figs 2.41 to 2.45. Post peak softening of material response
would reveal itself in intersection of response envelopes at larger strains with
those corresponding to smaller strains (Fig 2.46)—but the results shown have
not extended this far.

2.5.4 Anisotropy of stiffness

Soils are isotropic materials which find themselves in anisotropic circumstances
as a result of their history of deposition and past loading. This anisotropy man-
ifests itself in anisotropic arrangements of particles and in the forces carried by
the contacts between the particles. Since the soil particles are in general neither
spherical nor even sub-spherical, the anisotropy of geometric fabric contains the
layout of the centres of the particles, and the orientations of the particles. In
principle, knowing this geometric fabric together with the information about ori-
entation and activation of contacts between the particles and contact forces—the
kinetic fabric (Chen et al., 1988)—and the characteristics of the interparticle ac-
tions, the mechanical response of the soil system could be anticipated. Progress
is being made on such descriptions of evolving fabric but it is presently more
convenient to work at a larger scale and observe consequences of evolving fab-
ric anisotropy on mechanical response in terms of continuum concepts such as
stress and strain.

Experimental techniques exist by which detailed information about the stiff-
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Figure 2.47: Bender elements used to discover anisotropy of small-strain stiffness
in triaxial test (after Pennington et al., 1997)

ness of soils at very small strain levels can be determined in the laboratory.
Stiffness can be determined from static measurements using sensitive deforma-
tion measuring devices to record strain response to applied stress probes. Stiff-
ness can also be determined from dynamic measurements using laboratory geo-
physics—typically, in element tests, using piezoceramic bender elements which
can be used to generate and detect low amplitude shear waves in soils (see §6.7).

Generally accepted empirical relationships describe the variation of very
small strain stiffness with stress state (kinetic fabric) for (implicitly) unchang-
ing geometric fabric. This implies a particular form of the variation of stiffness
anisotropy with stress state represented, for example, through the ratio of axial
to radial stress or mobilised friction. A combination of static and dynamic data
can be used to deduce all elements of a cross anisotropic stiffness matrix (Lings
et al., 2000) (§3.2.4).

Once the changes in stress (or imposed deformation) from any initial ref-
erence state become sufficient to disturb the geometric fabric then the simple
relationship breaks down—observations of stiffness combine both geometric and
kinetic effects. Experimental observations of soil response in triaxial and other
testing apparatus, as well as numerical analysis of assemblies of regular or irreg-
ular particles, suggest that kinematic hardening constitutive models are likely
to be required in order to simulate observed behaviour. However, theoretical
studies with such models indicate that anisotropy of stiffness influences not only
the pattern of deformation that develops in a geotechnical system but also the
potential for bifurcation of material response and the development of localised
deformation and rupture surfaces.

The techniques for bender testing are well established. The arrangement
used for the tests reported here is shown in Fig 2.47 (Pennington et al., 1997).
Bender elements have been placed both in end platens and through the flex-
ible membrane for cylindrical triaxial specimens so that shear waves can be
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Figure 2.48: Typical anisotropy of stiffness of Gault clay as function of void
ratio (inspired by Pennington et al., 1997)

propagated through the sample either from end to end or from side to side, in
each case with two possible polarisations. While various input waveforms for
the driver elements have been explored, the data here have come from tests in
which a single sine wave pulse has been sent. Appropriate interpretation of the
received signals can then be used to estimate shear wave velocities through the
soil Vvh (for vertically propagated, horizontally polarised waves), and Vhv and
Vhh (for horizontally propagated waves with either vertical or horizontal polar-
isation). If the medium through which the waves are travelling is elastic then
corresponding ‘zero strain’ shear moduli G0vh, G0hv, G0hh can be estimated:

G0ij = ρV 2
ij (2.81)

where ρ is the bulk density of the medium through which the waves are travelling
and subscripts i and j take the values v or h as appropriate. The stiffness of
soils decreases with strain on any monotonic excursion. The strain amplitude
applied to the soil by a bender element is not zero but sufficiently small that
the resulting deformation—for most of the passage through the specimen—can
be treated as elastic and essentially at ‘zero strain’ amplitude. If the medium
through which the waves are passing is elastic, and strains are small, then it is
axiomatic that G0vh = G0hv

3.
It is found empirically that this very small strain shear stiffness of soils is

influenced in a systematic way by the stress state in the soil, by the volumetric
packing of the soil (through void ratio e), and by the current geometric fabric
through an expression of the form (Roesler, 1979)

G0ij

pr
= SijFij(e)

(
σ′iσ

′
j

p2
r

)nij

(2.82)

3Pennington et al. (2001) suggest that reported differences between these deduced moduli
may result from roughness of the end platens in which bender elements are typically mounted
in order to estimate Vvh and hence G0vh. Arroyo (2001) notes that there may be effects linked
to the way in which shear waves are transmitted in cylindrical samples in addition to effects
of the non-point-like nature of the shear wave source which will tend to lead to an apparent
asymmetry of the deduced stiffness matrix in anisotropic elastic soil.
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where Sij are elements of a fabric tensor and Fij(e) are functions of void ratio
e. The first two terms in this expression, Sij and Fij(e), are two facets of the
tensor geometric fabric, with e related to its first invariant. A reasonable fit to
data can be obtained using

Fij(e) = emij (2.83)

where mij is a constant for any pair of values of i and j . The term in (2.82)
involving the principal effective stresses in the directions of propagation and of
polarisation, σ′i and σ′j respectively, encapsulates the kinetic fabric contribution.
The stress pr is a reference stress (taken by Nash et al. (1999) as 1 kPa for sim-
plicity but logically linked with some property of the soil mineral). Typically
the exponent mij ≈ −2 (though in detail the value depends on i and j), and
nij ≈ 0.25. This expression is written for directions of propagation and polar-
isation coincident with principal axes of stress and anisotropy. The analysis of
wave propagation through anisotropic elastic media in which these axes do not
coincide is complex (Crampin, 1981).

Typical data from one-dimensionally compressed and ‘isotropically’ com-
pressed reconstituted Gault clay in Fig 2.48 demonstrate that expression (2.82)
matches the data of shear stiffness G0hh and G0hv satisfactorily. The ‘isotropi-
cally’ compressed material has been consolidated one-dimensionally from slurry
and then subjected to isotropic stresses. Even consolidation stresses five times
higher than those imposed during the initial one-dimensional preparation do not
erase the initial anisotropic geometric fabric of the clay. Consequently the stiff-
ness characterisation in Fig 2.48 does not greatly distinguish between these two
consolidation histories once the effects of void ratio and magnitudes of principal
stresses have been taken into account.

Bender elements mounted in triaxial samples give limited information about
the anisotropic stiffness properties of the soil. In combination with high reso-
lution measurement of strains full characterisation is possible assuming a sym-
metry of anisotropy matching the symmetry of loading of the specimen: cross
anisotropy. The complete anisotropic description of the Gault clay is presented
by Lings et al. (2000) (see §3.2.4). Here we will use the simpler treatment of
cross anisotropy presented by Graham and Houlsby (1983) in which just one
extra parameter α (instead of the theoretical three extra parameters) is intro-
duced. This model implies that the ratio of the two shear stiffnesses under
consideration is

Ghh

Ghv
= α (2.84)

and the ratio of direct horizontal and vertical drained stiffnesses

Eh

Ev
= α2 (2.85)

By subsuming a five parameter material into three parameters some infor-
mation about the material is lost and implicit relationships between elastic
parameters are imposed. However, Lings et al. found the simplified three pa-
rameter representation serendipitously successful for matching the Gault clay
data. Ignoring effects of geometric fabric change, (2.82), with nij = 0.25, and



2.5. Stiffness 79

Gault clay

Hostun sand

η-1 0 1 2
0

1

2

3

4

Eh/Ev

Figure 2.49: Dependence of anisotropy parameter α on stress ratio for recon-
stituted Gault clay (data from Pennington et al., 1997) and dense Hostun sand
(data from Gajo et al., 2001): solid line is equation (2.86)

(2.84) and (2.85) can be used to link α and stress ratio η (2.36).

Eh

Ev
= α2 =

(
Ghh

Ghv

)2

=
(

Shh

Shv

)2 (
3− η

3 + 2η

)0.5

(2.86)

This is shown in Fig 2.49 with data for the Gault clay, taking the value of
Shh/Shv from the data in Fig 2.48. The value of Eh/Ev = α2 falls as the stress
ratio increases: the degree of anisotropy is decreasing.

Elastic anisotropy can also be estimated by performing small cycles of un-
drained unloading and reloading during a drained test. The slope of the ef-
fective stress path depends only on measurements of changes in stress and of
pore pressure (Fig 2.50). The slope of the effective stress path can be deduced
from the observed changes in pore pressure and known changes in applied total
stresses (2.102) and this is independent of resolution of strain measurement. For
the Graham and Houlsby (1983) description of anistropic elasticity (§3.2.4) the
slope of the stress path in an undrained unloading-reloading cycle is

δq

δp′
=

3
2

2− 2ν∗ − 4αν∗ + α2

1− ν∗ + αν∗ − α2
(2.87)

where a value of Poisson’s ratio ν∗ = 0.2 has been assumed in order to convert
stress path slopes to values of α.

Data from a triaxial test on Hostun sand are shown in Fig 2.49 (Gajo et al.,
2001). Samples were prepared by dry pluviation: one test was performed with
constant cell pressure the other with constant axial stress. The implied stiffness
ratio (2.85) changes significantly as stress ratio increases: a typical history of
variation is shown in Fig 2.51. Under initial isotropic stresses the material
has only slight depositional anisotropy, but α and Eh/Ev fall as stress ratio
increases. The stress-strain response for this dense sand shows a peak stress
ratio and Fig 2.49 shows that Eh/Ev is still falling. Stress ratio alone is not
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Figure 2.50: Stiffness anisotropy deduced from slope of effective stress path for
undrained unload/reload cycle within drained test

sufficient to deduce the evolution of anisotropy. The continuing irrecoverable
strain produces particle rearrangement (and also changes in void ratio) and an
associated change in geometric fabric.

Evolving anisotropy of small strain stiffness—which provides the anchor for
data such as those shown in Fig 2.38—is a significant characteristic of soil re-
sponse which has only begun to be understood in the laboratory as experimental
techniques have improved. Anisotropy of small strain stiffness may potentially
have a significant influence on the response of geotechnical systems—especially
systems where it is intended to keep deformations to a minimum (for example,
tunnels in urban areas) so that the nonlinear (irrecoverable, plastic) deformation
of the soil does not so easily swamp the small strain (elastic?) deformation.

We have supposed—reasonably—that the anisotropy that we are investigat-
ing and describing has a symmetry that coincides with the symmetry of the
triaxial test. We are dealing with soil samples which have been deposited in a
gravitational field by consolidation from slurry (clay) or by pluviation (sand)
and then subjected to radial stresses and axial strains in the triaxial apparatus.
This is cross anisotropy or transverse isotropy: horizontal stiffness differs from
vertical stiffness but every horizontal direction is identical. If the soil has only
ever experienced stresses and strains with this symmetry then it is appropriate
that the anisotropy of stiffness should be of this form. The anisotropy reflects
the current fabric of the soil and this has obviously resulted from the history of
that soil. Sedimentary soils that have been deposited over areas of large lateral
extent, and have always known a horizontal ground surface, know only this axial
symmetry.

There are plenty of other histories which depart from this symmetry: any
soil in a slope, any soil which has been pushed around by ice or by man or
by local tectonic action. Every geotechnical construction will start imposing its
own local asymmetry on the fabric of the soil and hence on the evolving stiffness
characteristics. If we place in the triaxial apparatus a sample which possesses
either cross anisotropy—but with axes that do not happen to coincide with the
axes of the testing apparatus—or anisotropy of some more general type, then,
subjected to the only loadings that the triaxial apparatus is able to impose,



2.5. Stiffness 81

axial strain: %

axial strain: %

η

a.

b.

0 2 4 6 8 10

-1

0

1

2

0 2 4 6 8 10
0

1

2

3

Eh/Ev

Figure 2.51: Evolution of anisotropy with strain during cycle of drained triaxial
compression of dense Hostun sand (eo = 0.63 − 0.67) (data from Gajo et al.,
2001)

the soil will have to break out in some way and respond in a non-axisymmetric
manner. Confined between rough ends, the sample will have to flex (Fig 2.52b);
confined between smooth ends it will skew as it is compressed (Fig 2.52c). Either
way the sample will do things that we will not normally discover unless we are
conscious that they may be there. It is tempting to assume that things that we
choose not to observe do not exist.

Various ways have been proposed to characterise the anisotropy of soils.
The terms inherent anisotropy and induced anisotropy (sometimes qualified as
stress-induced anisotropy) have been used implying that there is some difference
in quality between two types of anisotropy: the anisotropy of a soil as it is
discovered in the ground contrasted with the anisotropy that develops as a result
of some subsequent perturbation. Alternatively one might use the terms initial
and subsequent anisotropy to indicate the sequence of events. The process
of formation of a soil (by sedimentation or by glacial transport or by in-situ
weathering) will imply certain stress changes (and other effects) which will leave
the soil in an anisotropic state. At the simplest level, one-dimensional deposition
implies an anisotropy of stress state and of deformation and hence an anisotropy
of particle arrangement (and orientation) and fabric that is expected to lead to
cross-anisotropic deformation properties. Truly isotropic fabrics are likely to
be rare—every soil is aware of a reference direction that is the direction of
gravitational acceleration.
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a. b. c.

Figure 2.52: Effect of nonalignment of axes of material anisotropy with axis of
symmetry of triaxial apparatus: (a) response under uniform state of imposed
stress; (b) loading between rough platens; (b) loading between smooth platens
(after Saada and Bianchini, 1977)

2.6 Dilatancy

The chief characteristic which distinguishes most soils from other engineering
materials (such as metals and plastics) is the high proportion of the volume of
the material which is made up of void filled with single or multi-phase fluid. For
a typical medium dense sand about a third of the volume is void; for a normally
consolidated clay voids might make up towards half of the volume. Naturally,
if anything is done to disturb the arrangement of the soil particles by distorting
the boundary of the soil sample then it is to be expected that rearrangement will
be accompanied by some change in the volumetric packing: this is dilatancy.

A simple illustration of the ‘need’ for, or inevitability of, dilatancy, is pro-
vided by the thought experiment in Fig 2.53a. A loose, two-dimensional packing
of circular particles is sheared. This shearing implies that the particles in each
row move sideways over the particles in the row below—as they do so they fall
into the gaps between those particles and the volume occupied by the soil re-
duces. The relationship between horizontal movement (shear displacement) and
vertical movement (volume change) is shown in Fig 2.53c.

A complementary result is obtained if the two dimensional set of circular
particles is initially in its densest possible packing (Fig 2.53b). Now as the
particles in one layer are displaced sideways they are forced to climb over the
particles in the underlying layer and the volume occupied by the soil increases
(Fig 2.53c). We note that the nature of the volume change that occurs is strongly
influenced by the density of the packing.

Consider a classic shear box in which a soil sample is sheared by the relative
movement of the top and bottom halves of the box (Fig 2.54). Most of the
deformation of the soil occurs in a thin zone around the interface between the
two halves of the box. When sands are sheared in a shear box they change
in volume so that a typical set of data obtained from a shear box test might
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Figure 2.55: Shear load:displacement response and volume changes in direct
shear test on Ottawa sand (data from Taylor (1948))

look like Fig 2.55. The incremental work done in a shear box in shearing a soil
sample which is currently supporting vertical load P and horizontal load Q and
is undergoing horizontal (shearing) displacement δx and vertical (volumetric)
displacement δy is:

δW = Pδy + Qδx (2.88)

Taylor (1948) proposed that this work was entirely dissipated in friction at
all stages of a shear test so that:

Pδy + Qδx = µPδx (2.89)

or
δy

δx
= µ− Q

P
(2.90)

The ratio of vertical to horizontal movements indicates the rate at which
volumetric expansion occurs with continuing shearing

δy

δx
= − tan ψ (2.91)
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Figure 2.56: Inclined shear surfaces causing dilatancy ψ and consequential mo-
bilised friction φm

where ψ is the angle of dilation. The ratio of shear load Q to vertical load P is
an indication of the currently mobilised angle of shearing resistance φm

Q

P
= tan φm (2.92)

So expression (2.90) can be written alternatively as

tan ψ = tan φm − tan φc (2.93)

to indicate that the angle of dilation varies with the mobilised angle of shearing
resistance and has the value zero when the mobilised angle of shearing resistance
has the special value φc = tan−1 µ. This value, corresponding to constant
volume shearing, is called the critical state angle of shearing resistance.

A similar result can be obtained by thinking of the relative deformation of
the two halves of the shear box occurring between soil particles on a sort of
sawtooth interface (Fig 2.56). The available friction on the inclined surfaces
is φc but, because of the inclination of the sliding surfaces, at angle ψ to the
horizontal, the friction that is generated on horizontal surfaces is actually φm

where
φm = φc + ψ (2.94)

Both expressions (2.93) and (2.94) suggest that there should be some link
between dilatancy and mobilised friction. Either expression is able to provide
at least a first approximation to the observed response. When the mobilised
friction Q/P is less than µ the sand is contracting; when the mobilised friction
is greater than µ the sand is expanding. The ratio −δy/δx gives an indication
of the tendency to volume increase for the sand: the dilatancy. Expressions
such as (2.93) and (2.94) which link dilatancy with mobilised friction are called
stress-dilatancy relationships or flow rules and they describe the link between
mobilised friction and mobilised dilatancy.

Data from Taylor’s shear box tests on samples of Ottawa sand prepared
either dense (initial specific volume 1.562) or loose (initial specific volume 1.652)
can be interpreted in this way using the observed vertical movements of the top
half of the shear box to estimate the critical state angle of shearing resistance
φc which, according to these simple flow rules, should be a soil property and
hence constant throughout the test. Results are shown in Fig 2.57. The simple
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Figure 2.57: Ottawa sand: link between dilatancy and mobilised friction in
direct shear tests (data from Taylor, 1948)

model appears to work reasonably well indicating a value of µ ≈ 0.49 in (2.90)
corresponding to a critical state angle of friction φc ≈ 26◦4.

A direct analogy can be drawn between the behaviour observed in the shear
box and the behaviour to be expected in the triaxial apparatus. The shear
and normal displacement increments in the shear box become the distortional
and volumetric strain increments and the shear and normal loads become the
distortional and volumetric effective stresses:

δx → δεq (2.95)
δy → δεp (2.96)
Q → q (2.97)
P → p′ (2.98)

and the stress-dilatancy relationship or flow rule (2.90) becomes

δεp

δεq
= M − q

p′
= M − η (2.99)

where M is the critical state stress ratio at which constant volume shearing can
occur.

2.6.1 Critical states: state variable

The concept of ‘critical states’ has been mentioned (§2.6). These are asymp-
totic states in which shearing of the soil can continue without further change in
effective stress or density. The exact nature of the fabric of the soil at a critical
state is not clear. It is certainly intended that any initial interparticle bonding

4There are reasons why one might expect the experimental data to lie below this line in
the early stages of the test: see section §3.4.1.
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Figure 2.59: Definition of state variable ψv

should have been broken down so that the particles are all individually free to
move and rotate. However, it is not clear whether or not the particle orien-
tations should all be random and the structure isotropic—in fact the evolving
anisotropy shown in Fig 2.51 rather suggests that the soil reaches a limiting
but non-zero degree of anisotropy of stiffness (and hence, by implication, of
fabric) as shearing proceeds. From an experimental point of view, there may
well be good reasons why dense soils with strength dependent on density or
bonded soils (in other words soils which might be expected to show some post-
peak strain softening of strength) will not reach homogeneous critical states in
laboratory tests so that accurate deduction of critical state conditions may be
difficult—especially if internal deformations of the sample can only be deduced
from external measurements.

Experimental evidence suggests that the density of soils which have reached
a critical state is dependent on stress level: the higher the stress level the higher
the density and lower the void ratio or specific volume. The idea of a critical
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state line emerges (Fig 2.58) and, no matter what the detailed shape of the
critical state line, we can define a state variable ψv (Fig 2.59)

ψv = v − vcs (2.100)

as an indication of the distance of the current specific volume v of our soil away
from the critical state specific volume vcs at the current mean stress. The spread
of the data in Fig 2.57 suggests that perhaps the link between mobilised friction
and dilatancy in (2.93) or (2.94) should be somehow moderated by the current
value of state variable which changes continuously throughout each test.

2.6.2 Pore pressure parameter

Let us conduct another thought experiment. We have a sample of soil contained
in a special testing apparatus which allows us complete freedom to change all
the components of stress or strain. There are some stress perturbations that we
can impose which imply purely distortional strain responses. The link between
the stress changes and the imposed strain changes is the subject of constitutive
modelling. However, there are obviously many stress perturbations which imply
a strain response containing a compression component. The volume of the
sample subjected to any of these would have to change in order to accommodate
the new stress state. If the volume is prevented from changing, either because
we have physically closed the drainage lines from the sample, or because the
sample consists of a soil which has such low permeability that it is not possible
for the water to move around and out of the pores and the sample during the
time interval in which the external stresses were changed, then the prevention of
movement of the pore water implies that the pore water is meeting a resistance
and hence that a pore water pressure develops (the pressure may be positive if
the water is trying to escape because the soil wants to compress, or negative
because the sample is trying to expand and draw in water). This pressure acts
to partition the externally imposed stresses: part is carried by the pore pressure
and part by the interparticle forces within the soil (§2.4). The resulting stresses
carried by the soil particles are the effective stresses whereas the externally
applied stresses are the total stresses.

Returning to axisymmetric triaxial conditions, for an increment in external,
total, stresses δp, δq leading to corresponding changes in effective stresses δp′, δq,
in order to maintain the undrained, constant volume condition, we know from
the principle of effective stress (2.19) that the change in pore pressure δu is

δu = δp− δp′ (2.101)

The change in mean effective stress δp′ is a material response to the change in
distortional stress δq5 so we can write

δp′ = −aδq (2.102)

and
δu = δp + aδq (2.103)

5See §3.3.4, §3.4.1, §3.4.2 for exploration of the undrained response of some candidate
constitutive models.
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Figure 2.60: Total and effective stress paths: pore pressure parameter a

linking change of pore pressure with change in applied total stresses through
a pore pressure parameter a (§1.2.2) 6 which indicates the current slope of the
undrained effective stress path (Fig 2.60). We have already seen in the earlier
discussion of anisotropy (§2.5.4) that a = 0 for isotropic elastic soil: the effective
stress path for an undrained test on such a soil is vertical in the p′, q effective
stress plane. Although we do not expect undrained effective stress paths to be
straight, we could use an average value of a to characterise soils: a > 0 implies a
contractive soil which will tend to develop positive pore pressures when sheared;
and a < 0 implies an expanding soil which will tend to develop negative pore
pressures.

However, (2.103) divides the observed pore pressure change into two parts:
one, δp, over which we have full control, choosing the total stress change to which
the soil will be subjected; the other, aδq, over which we have no control—it is
an indication of the way in which the soil chooses to keep its volume constant.
The pore pressure that we actually observe is the sum of these two elements and
it is only if we take away the part that we control (δp—which can arbitrarily be
positive or negative according to our whim) that we can understand what the
soil is trying to tell us about its volume change proclivities.

2.7 Strength

We can define strength as the ability of soils to carry stress. Usually we are
concerned with carrying shear stress, although for cemented (or interlocked)
soils (and rocks) there will also be some actual more or less reliable tensile
strength. In general, the stress:strain response of a soil (Fig 2.61) will show a
rapid climb to a peak shear stress followed by some softening to a large strain
shear stress. (In some soils the softening may be very slight or absent.)

If we try to follow such a softening stress:strain response then it is clear
that, if we control the test by successively adding shear load, then the sample
will ‘run away’, following the dashed line in Fig 2.61, when the peak stress is

6a is actually a variable rather than a parameter since it will not usually be a soil constant.
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Figure 2.61: Typical shear stress:shear strain relationship for soils

reached. Even if the test is controlled by progressively increasing the boundary
shear strain γ (in whatever test device we are using), it is likely that there will
be imperfections in the sample which will start softening ahead of other slightly
stronger regions, leading to concentration of shear deformation into a localised
shear band. (The detailed analysis of the onset of localisation need not concern
us here.)

We have already seen that the term ‘critical state’ is used to describe the
states of soils which are able to continue shearing to large strains without chang-
ing stresses or density, and have seen that the critical state specific volume—or
density of packing—is expected to be a function of stress level. The critical
state is thought of as a state in which the soil is being continuously reworked
at a scale which involves many particles. We could imagine this applying, at
least, to the soil in the shear band even if the entire sample does not remain
homogeneous. Observations show that shear bands in rather uniform sands
have a typical thickness of 10− 15d50 where d50 is the mean particle size (Muir
Wood, 2002). Where it has been possible to estimate the deformations within
the shear band itself it seems that conditions have tended towards a plausible
critical state (Fig 2.62).

However, in a soil which is formed of platey, clay mineral particles, locali-
sation leads to reorientation of the particles parallel to the shear band which
ends up as a sliding surface between slickensided, polished layers of soil, gen-
erating a much lower residual frictional resistance than would be expected for
a shearing process that was continuously churning up the soil particles. It is
thought that the possibility that such residual strength may be important will
depend on whether it is possible to form a sub-planar failure surface through the
soil. If a soil is predominantly formed of rotund particles (a sand or gravel) or
contains many such particles in a clay matrix (a glacial till or residual soil) the
residual strength is not an issue: Lupini et al. (1981) link this to the granular
specific volume of the soil (Fig 2.63)—the volume occupied by unit volume of
granular material, treating the clay mineral present together with the actual
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Figure 2.62: (a) Mobilised friction and (b) dilation to critical state in shear
band within biaxial test on Karlsruhe sand (data from Vardoulakis, 1978)

voids. If the granular specific volume is high (or even infinite for a clay) then
failure planes through the non-granular material are expected and the concept
of residual strength is important.

Peak strength is more dependent on initial conditions in the soil. We expect
that, at a given stress level, the denser the soil the higher will be the strength.
Data from sands suggest that it is useful to link peak strength with a state
variable (2.100) (Fig 2.59) in order to introduce a link with stress level as well
as with density. As the state variable ψv becomes more negative the peak
strength increases (Fig 2.64)—but equally, if we shear the soil to an eventual
critical state, then its strength tends to the critical state strength as the state
variable rises to zero. There is a hint here at a route to constitutive modelling
which will be picked up in section §3.4.1. It should not surprise us, given our
discussion of stress-dilatancy relationships in section §section:dilatancy, that the
peak angle of dilation also correlates well with state variable (Fig 2.65).

Because most of the soils with which we are dealing are—at least eventually—
unbonded, we have presented strength as a purely frictional phenomenon. A
link between peak frictional strength and state variable implies that for soils of
a given density or specific volume the strength will increase as the stress level
falls and the state variable becomes more negative (Fig 2.66). If we assume
a critical state line which is locally straight in a semi-logarithmic compression
plane (v : ln p′) with slope λ (though the principle of the argument is not depen-
dent on the specific form of this relationship), then a linear relationship between
peak friction φ′p and state variable ψv (Fig 2.64, Fig 2.67b: solid line) can be
converted into a failure relationship in the p′ : q effective stress plane (Fig 2.67a:
solid lines). If interpreted without thought about its origin—particularly if the
data do not cover a sufficiently wide range to reveal significant curvature—we
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might be tempted to assume that the soil is telling us that it possesses some
cohesion.

The Hvorslev strength relationship invoked to describe the peak strengths
of clays (Schofield and Wroth, 1968) comes to an essentially similar result. A
locally linear strength relationship for soil of a given density is assumed in the
p′ : q plane—implying a nonlinear dependence of peak strength on state variable
ψv (Fig 2.67b: dotted line), and again giving an apparent cohesion (Fig 2.67a:
dotted lines). Each line in Fig 2.67a is dependent on the density for which it is
determined: peak strength data for soils cannot be properly understood unless
they are corrected for the values of state variable at the moment of failure.

The language of friction in the context of soil strength implies a limiting
ratio of shear stress to normal stress and defines a limiting Mohr circle (Fig
2.68). For a purely frictional soil, we can write the failure criterion as

τ

σ′
≤ tan φ′ (2.104)

or, in terms of major and minor principal effective stresses σ′1 and σ′3 respectively

σ′1
σ′3

≤ 1 + sin φ′

1− sin φ′
or

σ′1 − σ′3
σ′1 + σ′3

≤ sin φ′ (2.105)

The intermediate principal stress σ′2 does not enter this equation.
For conventional axisymmetric triaxial tests the definitions of our stress vari-

ables p′ (2.23) and q (2.24), the former of which does include the intermediate
principal stress, imply that the lines of constant φ′ will have different slopes
(Fig 2.69) for triaxial compression (σ′a = σ′1; σ′r = σ′2 = σ′3) and for triaxial
extension (σ′a = σ′3; σ′r = σ′1 = σ′2). In compression (2.39)

η =
6 sin φ′

3− sin φ′
(2.106)

and in extension (2.42)

η = − 6 sin φ′

3 + sin φ′
(2.107)
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Figure 2.71: Failure criteria in π-plane deviatoric view of principal stress space
(TC: triaxial compression; TE: triaxial extension)

In the stress plane β = (σ′z − σ′x)/2 : τzx, which was introduced (Fig 2.21)
to display stress paths for simple shear, directional shear and torsional hollow
cylinder tests, for a given mean stress a line of constant angle of friction is a
circle of radius s′ sin φ′ (Fig 2.70), where s′ = (σ′1 + σ′3)/2 is the mean effective
stress in the plane of shearing. The radius of this circle, the length of the stress
vector from the origin of this plot, is (σ′1 − σ′3)/2.

In the π-plane view of stress space, used for display of deviatoric stress paths
for true triaxial tests, the Mohr-Coulomb failure criterion plots as an irregular
hexagon for a constant mean stress section (one 60◦ segment is shown in Fig
2.71). This shows us immediately why a model generalisation based on the
second stress invariant J2 (2.54) will not be particularly satisfactory for soils.
In fact, failure data for sand tend to lie somewhere between the Mohr-Coulomb
hexagon and the J2 circle. Two alternative failure criteria have been quite
widely used to better describe the deviatoric failure conditions.
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The Matsuoka-Nakai criterion (Matsuoka and Nakai, 1982) states that

I1I2

I3
= constant (2.108)

where I1, I2 and I3 are the three invariants of the stress tensor defined in (2.45),
(2.46), (2.47). This gives a curved failure locus which circumscribes the Mohr-
Coulomb hexagon, passing through the vertices of that hexagon.

On the other hand, some experimental data suggest that the frictional
strength of sands in triaxial extension is slightly higher than that in triaxial
compression. Lade’s (Lade and Duncan, 1975) failure criterion is expressed as

I3
1

I3
= constant (2.109)

This is also plotted in Fig 2.71. Evidently the common characteristic of both
these failure criteria is that, unlike the Mohr-Coulomb criterion, they include
the intermediate principal stress. Different sands, tested in different labora-
tory devices, show strength data which favour one or other of these criteria.
Both are in agreement in proposing that, for states of stress lying between
triaxial compression and triaxial extension, the available friction is somewhat
higher—perhaps at its maximum as much as 10% higher—than that in triaxial
compression. Plane strain conditions tend to fall in this intermediate region:
plane strain frictional strengths will usually be underestimated if the angle of
shearing resistance is determined using triaxial compression tests.
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Constitutive modelling

3.1 Introduction

It will be seen in discussing numerical modelling in Chapter 4 that analysis of any
problem requires noncontroversial statements of equilibrium and of kinematics
or compatibility (the definition of strain) but that the link between these is
provided by some statement of the much more uncertain link between stress
change and strain change: the constitutive response.

Geotechnical journals and conferences abound with constitutive models. The
choice of model is to some extent a matter of mathematical aesthetics and sub-
jective judgement. We cannot hope to describe all possible constitutive mod-
elling proposals here. However, there are some models which have been so widely
used that they are rather generally available in all numerical analysis programs
that are intended for application to geotechnical problems: isotropic elasticity;
elastic-perfectly plastic Mohr-Coulomb; and Cam clay. We will present not only
these models but also modest developments from these models. Our thesis is
that engineers are more likely to make use of models which can be clearly seen
as incrementally different from models with which they have some familiarity
than to make use of models which adopt a completely different language. Thus
a hardening plasticity model will be presented which is an obvious and logical
extension of the perfectly plastic Mohr-Coulomb model.

The choice of model to be used for analysis is in the hands of the modeller.
The second, rational proposal is that the modeller should develop some aware-
ness of the particular features of soil history and soil response that are likely to
be important in a particular application and ensure that the constitutive model
that is adopted is indeed able to reproduce these features. As in all modelling,
adequate complexity should be sought. It is too easy to discover that key ele-
ments of response are obscured by unnecessary and detachable elements of the
constitutive model.

Much of the presentation and description of constitutive models in this chap-
ter will concentrate on conditions that are accessible in the conventional triaxial
apparatus. This is, and is likely to remain, the most commonly used soil test-
ing apparatus and hence the source of data against which constitutive models

97
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Figure 3.1: Linear relationship between stress and strain for (a) compression
and (b) shearing of elastic element

have to be tuned. Geotechnical engineers have a familiarity with the triaxial
apparatus and with triaxial test results so perhaps by presenting the models
in this way there is a chance that some confidence in the concepts of constitu-
tive modelling can be created. Once again we choose compressive stresses and
compressive strains to be positive.

3.2 Elastic models

A linear relationship between stress and strain (Fig 3.1) is the simplest link that
can be proposed, implying a constant proportionality between general stress
increments and strain increments. For an isotropic, linear elastic material the
full link between general stress increments and strain increments can be written
as a compliance relationship




δεxx

δεyy

δεzz

δγyz

δγzx

δγxy




=
1
E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)







δσ′xx

δσ′yy

δσ′zz

δτyz

δτzx

δτxy




(3.1)
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indicating a dependency of strain increments on stress increments. Alterna-
tively, this can be written as a stiffness relationship, showing stress increments
as a function of strain increments1.




δσ′xx

δσ′yy

δσ′zz

δτyz

δτzx

δτxy




=
E

(1 + ν)(1− 2ν)
×




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2







δεxx

δεyy

δεzz

δγyz

δγzx

δγxy




(3.2)

If we compress an element of isotropic elastic material without providing any
lateral constraints (Fig 3.1a) there will in general be some lateral strain. At the
same time that we can determine a direct stiffness, Young’s modulus E, we can
also discover a strain ratio, Poisson’s ratio ν. It turns out that for the isotropic
elastic material there are only two constitutive degrees of freedom which, as
shown in (3.1) and (3.2), could be Young’s modulus and Poisson’s ratio.

These expressions describe Hooke’s law of elasticity for general states of
stress. We can specialise these expressions for principal stresses and strains,
referred to orthogonal axes x, y and z, in compliance form:




δεx

δεy

δεz


 =

1
E




1 −ν −ν
−ν 1 −ν
−ν −ν 1







δσ′x
δσ′y
δσ′z


 (3.3)

and in stiffness form:



δσ′x
δσ′y
δσ′z


 =

E

(1 + ν)(1− 2ν)




1− ν ν ν
ν 1− ν ν
ν ν 1− ν







δεx

δεy

δεz


 (3.4)

It may be remarked that, when expressed in terms of all 6 general stress
and strain components, (3.1) or (3.2), or in terms of the principal stress and
strain components, (3.3) or (3.4), the elastic compliance and stiffness matrices
are symmetric: this is an inevitable property of the elastic material. In fact we
can attach thermodynamic requirements to an elastic (strictly, a hyperelastic)
system. The system is conservative or path independent, which implies that
the strains obtained are independent of the sequence in which the stresses are
applied or removed and that we can superpose independent systems of stresses
in order to deduce the result of applying combinations of stresses. There exists

1Recall that it was seen in §2.5.1 that it appeared to be more secure to move from strain
to stress than from stress to strain—and this will be seen to be a feature of several of the
models that are described in this chapter.
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a strain energy density function U(ε) which describes the strain energy per unit
volume as a function of a general strain state, referred to some origin of strain
(Fig 3.2). There is no generation or loss of energy in any closed stress path.

By definition, an increment of strain energy U is the sum of all products of
stress components and corresponding work-conjugate strain increment compo-
nents. Restricting ourselves to principal stress conditions for simplicity, we can
write:

δU =
∑

(σiδεi) (3.5)

and thus

σi =
∂U

∂εi
(3.6)

where the index i takes the values x, y and z in turn. Differentiating this one
more time, we recover the components Dij of the stiffness matrix:

Dij =
∂2U

∂εi∂εj
(3.7)

and the symmetry of the stiffness matrix is anticipated.
For the isotropic linear elastic material, and working in terms of principal

stresses and strains, the strain energy density function is:

U =
E

2(1− 2ν)(1 + ν)
[
(1− ν)

(
ε2x + ε2y + ε2z

)
+ 2ν (εyεz + εzεx + εxεy)

]
(3.8)

There is a parallel between compliance and stiffness formulations, inter-
changing stresses and strains. We can similarly define a complementary energy
density function V (Fig 3.2) such that

δV =
∑

(εiδσi) (3.9)

and thus

εi =
∂V

∂σi
(3.10)
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Differentiating this one more time, we recover the components Cij of the sym-
metric compliance matrix:

Cij =
∂2V

∂σi∂σj
(3.11)

For the isotropic linear elastic material

V =
1

2E

[(
σ2

x + σ2
y + σ2

z

)− 2ν (σyσz + σzσx + σxσy)
]

(3.12)

We can specialise (3.3) and (3.4) further for the axisymmetric conditions
of the triaxial test, so that the x and y axes are interchangeable horizontal or
radial axes and z is the vertical, axial direction:

(
δεa

δεr

)
=

1
E

(
1 −2ν
−ν 1− ν

)(
δσ′a
δσ′r

)
(3.13)

(
δσ′a
δσ′r

)
=

E

(1 + ν)(1− 2ν)

(
1− ν 2ν

ν 1

)(
δεa

δεr

)
(3.14)

and, paradoxically, we have lost the symmetry that we had come to expect from
elastic compliance and stiffness matrices. However, in writing these expressions
in terms of axial and radial components of stress and strain we are no longer
using work conjugate quantities.

In introducing appropriate quantities with which to describe conditions of
stress and strain in soils in section §2.4 we suggested that there was some
advantage in separating soil response into compression—change of size—and
distortion—change of shape—and then choosing stress and strain variables ac-
cordingly. For the axisymmetric conditions of the triaxial test, we introduced
mean effective stress (volumetric stress) p′ = (σ′a+2σ′r)/3 and distortional stress
q = (σ′a − σ′r) and corresponding work-conjugate strain increments: volumet-
ric strain δεp and distortional strain δεq. Transforming (3.13), from equations
(2.28) to (2.31)

(
δεp

δεq

)
=

1
E

(
1 2
2
3 − 2

3

)(
1 −2ν
−ν 1− ν

)(
1 2

3
1 − 1

3

)(
δp′

δq

)
(3.15)

(
δεp

δεq

)
=

1
E

(
3(1− 2ν) 0

0 2
3 (1 + ν)

)(
δp′

δq

)
(3.16)

or (
δεp

δεq

)
=

(
1
K 0
0 1

3G

)(
δp′

δq

)
(3.17)

and in stiffness form
(

δp′

δq

)
=

(
K 0
0 3G

)(
δεp

δεq

)
(3.18)

and we have now discovered an alternative (but not independent) pair of elastic
degrees of freedom: bulk modulus K

K =
E

3(1− 2ν)
(3.19)
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and shear modulus G

G =
E

2(1 + ν)
(3.20)

These are evidently functions of Young’s modulus and Poisson’s ratio and know-
ing any two elastic quantities we can recover any other elastic parameter.

E =
9KG

G + 3K
(3.21)

ν =
3K − 2G

2(G + 3K)
=

3− 2 G
K

2
(

G
K + 3

) (3.22)

and
G

K
=

3(1− 2ν)
2(1 + ν)

(3.23)

so that Poisson’s ratio is a direct indication of the ratio of shear and bulk moduli
(Fig 3.3).

Working in terms of these properly work-conjugate volumetric and distor-
tional quantities the symmetry of the compliance (3.17) and stiffness matrices
(3.18) has been regained. The strain energy density function is:

U =
1
2
Kε2p +

3
2
Gε2q (3.24)

and the complementary energy density function

V =
1
2

p′2

K
+

1
6

q2

G
(3.25)

and it can be confirmed that the elements of the compliance and stiffness ma-
trices can be obtained by appropriate differentiation.
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Figure 3.4: Total stress path for conventional triaxial compression test

Writing the elastic relationships in terms of p′, q and δεp, δεq makes clear
the absence of any coupling between volumetric and distortional effects for the
isotropic elastic model. Thus, if the mean effective stress p′ is changed without
change in distortional stress, the shape of the soil element remains unchanged.
Conversely, if the soil element is subjected to a distortional strain (change in
shape) without change in size or volume (undrained deformation) then there
will be no tendency for the effective mean stress p′ to change.

3.2.1 Conventional drained triaxial compression test

In a conventional triaxial compression test, the cell pressure (radial total stress)
is kept constant and the axial strain (and hence for much of the time the axial
stress) is increased. From the definitions of our stress variables we deduce that
the imposed total stress path has gradient δq/δp = 3 (Fig 3.4). In a conventional
drained triaxial compression test this will also be the effective stress path. If
δq = 3δp′ then, from (3.17),

δεp

δεq
=

G

K
(3.26)

More generally, if δq/δp′ = λ then δεp/δεq = 3G/λK.
If we plot the results of a drained triaxial compression test in terms of dis-

tortional stress q and volumetric strain εp as functions of distortional strain εq

(Fig 3.5a) then we can rapidly recover the values of the two elastic soil proper-
ties. However, it might be more common to plot q and εp as functions of axial
strain, εa (Fig 3.5b). Then the slope δq/δεa = E and δεp/δεa = 1 − 2ν and
again we have sufficient information to discover any of the elastic properties. By
implication, in drawing Fig 3.5 we are assuming that we might adopt an elastic
treatment for the incremental response of the soil even if the overall stress:strain
response is far from linearly elastic.

3.2.2 Conventional undrained triaxial compression test

We have already observed that there is complete uncoupling of volumetric and
distortional effects for an isotropic elastic soil. Consequently, in an undrained
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Figure 3.5: Elastic properties deduced from initial stages of conventional drained
triaxial compression test: (a) plotted in terms of distortional strain εq; (b)
plotted in terms of axial strain εa

test, since the volumetric strain is always zero δεp = 0, the effective mean stress
remains constant δp′ = 0. The change in pore pressure δu is given by the
principle of effective stress (§2.4):

δu = δp− δp′ = δp (3.27)

and thus the pore pressure change merely reflects the (arbitrary) imposed change
in total mean stress—and may be positive or negative depending on the chosen
total stress path (Fig 3.6a). For the isotropic elastic material the soil has no
intrinsic desire to change in volume as it is sheared and hence the pore pressure
parameter a = 0 (§2.6.2). In a conventional triaxial compression test, following
a total stress path δq/δp = 3 there will be a pore pressure ∆u = ∆q/3 at all
stages of the test.

Under undrained conditions, distortional strain and axial strain are identical
δεq = δεa so it matters not whether we think of plotting distortional stress q
against εq or εa. The slope of the stress:strain response for the elastic material
is δq/δεq = δq/δεa = 3G. We are not able to determine K from an undrained
test—because there is by definition no volume change.

We have noted that the stress:strain response of soils is controlled by changes
in effective stress. That δp′ = 0 in an undrained test is the response of the soil
to certain imposed constraints: the drainage valve is closed. Evidently the
constitutive response must be unaffected by the setting of the drainage valve.
However, we could choose to take an external, total stress view of our sample
and seek a total stress elastic response introducing ‘undrained’ elastic properties
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Figure 3.6: Undrained triaxial compression test on elastic soil: (a) effective
(ESP) and total (TSP) stress paths; (b) elastic stiffness from initial stress:strain
response

Eu, νu, Gu and Ku such that
(

δεp

δεq

)
=

(
1/Ku 0

0 1/3Gu

)(
δp
δq

)
(3.28)

Now, if we imagine (reasonably) that we are free to control δp and δq as we
will, the fact that drainage is prevented so that δεp = 0 can only mean that
Ku = ∞ as expected for an incompressible material. From the definition of bulk
modulus (3.19) this implies that the undrained Poisson’s ratio νu = 0.5: again,
as expected from our prior knowledge of properties of incompressible materials.

The shear stiffness must be the same whether we are thinking in terms of
total stresses or effective stresses: the distortion of the sample is the same, and
distortional stress q, as a shear stress, or difference between two normal stresses,
is the same whether thought of as a total stress or an effective stress quantity.
Thus Gu = G and we can deduce from (3.20) that

Gu =
Eu

2 (1 + νu)
= G =

E

2 (1 + ν)
(3.29)

or
Eu = 3G =

3E

2(1 + ν)
(3.30)

We conclude that the ‘undrained’ elastic properties of the soil are in no
way independent but are directly related to the real effective stress stiffness
characteristics of the soil.

3.2.3 Measurement of elastic parameters with different
devices

We have already noted that drained triaxial tests can be interpreted to give both
of the elastic parameters needed to describe the isotropic elastic soil model—
provided that the imposed effective stress path involves changes in both p′ and q
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Figure 3.7: Oedometer

as indeed occurs in conventional triaxial compression with constant cell pressure.
Other devices can be interpreted to give elastic properties but often these are not
individual properties (E, ν or G, K) but rather some composite quantity which
can only be interpreted in terms of one of these quantities if an assumption is
made about, for example, ν or G/K.

For example, the oedometer (Fig 3.7) imposes one-dimensional deformation
on the soil. We can manipulate (3.3) or (3.4) to discover that for this situation
of zero strain in the x and y directions:

δσ′x
δσ′z

=
ν

1− ν
=

3K − 2G

3K + 4G
(3.31)

and that the one-dimensional, oedometric stiffness Eoed is

Eoed =
δσ′z
δεz

= E
(1− ν)

(1 + ν)(1− 2ν)
= K +

4
3
G (3.32)

We cannot deconstruct this any further to discover any of the usual individual
elastic properties.

In-situ geophysics (or laboratory geophysics using bender elements §2.5.4,
§6.7) can be used to determine shear modulus G directly from the shear wave
velocity Vs

Vs =

√
G

ρ
(3.33)

where ρ is the density of the soil. However, the compression wave velocity Vp

is concerned with the speed of propagation of a one-dimensional deformation
through the soil and the corresponding link with stiffness is

Vp =

√
K + 4

3G

ρ
=

√
Eoed

ρ
(3.34)

In soils saturated with water the compression wave transmission is dominated
by the effect of the pore water (which has more or less zero shear stiffness so the
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compression wave transmission is governed by the bulk modulus of the water)
and it may be difficult to detect the arrival of a compression wave which has
travelled through the soil skeleton. Anyway, if we wished to deduce individual
values of shear or bulk modulus from the compression wave velocity alone we
would—as for the oedometer—have to assume a value of G/K or Poisson’s ratio.

The pressuremeter (§1.2.4) generates pure shear in the surrounding ground
as its cylindrical cavity is expanded (§8.8). Elastic properties, from interpre-
tation of unload-reload cycles, give a direct indication of shear modulus G.
However, it is common practice (Baguelin et al., 1978) to quote a pressuremeter
modulus Ep = G/2.6 calculated assuming a value of Poisson’s ratio ν = 0.3.
There is no particular reason why Poisson’s ratio should have this value and
it is evidently rather vital that, if values of shear modulus and bulk modulus
are subsequently required, given only a value of Ep, then the same value of
Poissons’s ratio should be used for their calculation.

A loading test on a rigid circular plate on the surface of an elastic soil (Fig
3.8) gives a stiffness

ζ

ρ/R
=

4G

π(1− ν)
(3.35)

where ζ is the average pressure on the plate of radius R and ρ is the settle-
ment. Again this is a composite stiffness and interpretation of any one of the
conventional elastic properties requires some assumption about another one.

3.2.4 Anisotropy

An isotropic material has the same properties in all directions—we cannot dis-
tinguish any one direction from any other. Samples taken out of the ground
with any orientation would behave identically. However, we know that soils
have been deposited in some way—for example, sedimentary soils will know
about the vertical direction of gravitational deposition. There may in addition
be seasonal variations in the rate of deposition so that the soil contains more
or less marked layers of slightly different grain size and/or plasticity. The scale
of layering may be sufficiently small that we do not wish to try to distinguish
separate materials, but the layering together with the directional deposition
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may nevertheless be sufficient to modify the properies of the soil in different
directions—in other words to cause it to be anisotropic.

We can write the stiffness relationship between elastic strain increment δεe

and stress increment δσ compactly as

δσ = Dδεe (3.36)

where D is the stiffness matrix and hence D−1 is the compliance matrix. For
a completely general anisotropic elastic material

D−1 =




a b c d e f
b g h i j k
c h l m n o
d i m p q r
e j n q s t
f k o r t u




(3.37)

where each letter a, b, . . . is, in principle, an independent elastic property and the
necessary symmetry of the stiffness matrix for the elastic material has reduced
the maximum number of independent properties to 21. As soon as there are
material symmetries then the number of independent elastic properties falls
(Crampin, 1981).

For example, for monoclinic symmetry (z symmetry plane) the compliance
matrix has the form:

D−1 =




a b c 0 0 d
b e f 0 0 g
c f h 0 0 i
0 0 0 j k 0
0 0 0 k l 0
d g i 0 0 m




(3.38)

and has thirteen elastic constants. Orthorhombic symmetry (distinct x, y and
z symmetry planes) gives nine constants:

D−1 =




a b c 0 0 0
b d e 0 0 0
c e f 0 0 0
0 0 0 g 0 0
0 0 0 0 h 0
0 0 0 0 0 i




(3.39)

whereas cubic symmetry (identical x, y and z symmetry planes, together with
planes joining opposite sides of a cube) gives only three constants:

D−1 =




a b b 0 0 0
b a b 0 0 0
b b a 0 0 0
0 0 0 c 0 0
0 0 0 0 c 0
0 0 0 0 0 c




(3.40)
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Figure 3.9: Independent modes of shearing for cross-anisotropic material

If we add the further requirement that c = 2(a − b) and set a = 1/E and
b = −ν/E then we recover the isotropic elastic compliance matrix of (3.1).

Though it is obviously convenient if geotechnical materials have certain fab-
ric symmetries which confer a reduction in the number of independent elastic
properties, it has to be expected that in general materials which have been
pushed around by tectonic forces, by ice, or by man will not possess any of
these symmetries and, insofar as they have a domain of elastic response, we
should expect to require the full 21 independent elastic properties. If we choose
to model such materials as isotropic elastic or anisotropic elastic with certain
restricting symmetries then we have to recognise that these are modelling deci-
sions of which the soil or rock may be unaware.

However, many soils are deposited over areas of large lateral extent and
symmetry of deposition is essentially vertical. All horizontal directions look the
same but horizontal stiffness is expected to be different from vertical stiffness.
The form of the compliance matrix is now:

D−1 =




a b c 0 0 0
b a c 0 0 0
c c d 0 0 0
0 0 0 e 0 0
0 0 0 0 e 0
0 0 0 0 0 f




(3.41)

and we can write a = 1/Eh, b = −νhh/Eh, c = −νvh/Ev, d = 1/Ev, e = 1/Gvh

and f = 2(a− b) = 2(1 + νhh)/Eh:

D−1 =


1/Eh −νhh/Eh −νvh/Ev 0 0 0
−νhh/Eh 1/Eh −νvh/Ev 0 0 0
−νvh/Ev −νvh/Ev 1/Ev 0 0 0

0 0 0 1/Gvh 0 0
0 0 0 0 1/Gvh 0
0 0 0 0 0 2(1 + νhh)/Eh




(3.42)
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This is described as transverse isotropy or cross anisotropy with hexagonal sym-
metry. There are 5 independent elastic properties: Ev and Eh are Young’s
moduli for unconfined compression in the vertical and horizontal directions re-
spectively; Gvh is the shear modulus for shearing in a vertical plane (Fig 3.9a).
Poisson’s ratios νhh and νvh relate to the lateral strains that occur in the horizon-
tal direction orthogonal to a horizontal direction of compression and a vertical
direction of compression respectively (Fig 3.9c, b).

Testing of cross anisotropic soils in a triaxial apparatus with their axes of
anisotropy aligned with the axes of the apparatus does not give us any possi-
bility to discover Gvh(= 1/e) since this would require controlled application of
shear stresses to vertical and horizontal surfaces of the sample—and attendant
rotation of principal axes. In fact we are able only to determine 3 of the 5
elastic properties. If we write (3.42) for radial and axial stresses and strains for
a sample with its vertical axis of symmetry of anisotropy aligned with the axis
of the triaxial apparatus, we find that

(
δεa

δεr

)
=

(
1/Ev −2νvh/Ev

−νvh/Ev (1− νhh) /Eh

)(
δσ′a
δσ′r

)
(3.43)

The compliance matrix is not symmetric because, in the context of the triaxial
test, the strain increment and stress quantities are not properly work conjugate.
We deduce that while we can separately determine Ev and νvh the only other
elastic property that we can discover is the composite stiffness Eh/(1 − νhh).
We are not able to separate Eh and νhh (Lings et al., 2000).

On the other hand, Graham and Houlsby (1983) have proposed a special
form of (3.41) or (3.42) which uses only 3 elastic properties but forces certain
interdependencies among the 5 elastic properties for this cross anisotropic ma-
terial.

D−1 =
1

E∗×


1/α2 −ν∗/α2 −ν∗/α 0 0 0
−ν∗/α2 1/α2 −ν∗/α 0 0 0
−ν∗/α −ν∗/α 1 0 0 0

0 0 0 2(1 + ν∗)/α 0 0
0 0 0 0 2(1 + ν∗)/α 0
0 0 0 0 0 2(1 + ν∗)/α2




(3.44)

This is written in terms of a Young’s modulus E∗ = Ev, the Young’s modulus
for loading in the vertical direction, a Poisson’s ratio ν∗ = νhh, together with
a third parameter α. The ratio of stiffness in horizontal and vertical directions
is Eh/Ev = α2 and other linkages are forced: νvh = νhh/α; Ghv = Ghh/α =
αE∗/2(1 + ν∗).

For our triaxial stress and strain quantities, the compliance matrix becomes
(

δεp

δεq

)
=

1
det

(
3G∗ −J
−J K∗

) (
δp′

δq

)
(3.45)
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Figure 3.10: Effect of cross-anisotropy on direction of undrained effective stress
path

where
det = 3K∗G∗ − J2 (3.46)

and the stiffness matrix is
(

δp′

δq

)
=

(
K∗ J
J 3G∗

) (
δεp

δεq

)
(3.47)

where

K∗ = E∗ 1− ν∗ + 4αν∗ + 2α2

9(1 + ν∗)(1− 2ν∗)
(3.48)

G∗ = E∗ 2− 2ν∗ − 4αν∗ + α2

6(1 + ν∗)(1− 2ν∗)
(3.49)

J = E∗ 1− ν∗ + αν∗ − α2

3(1 + ν∗)(1− 2ν∗)
(3.50)

The stiffness and compliance matrices (written in terms of correctly chosen
work conjugate strain increment and stress quantities) are still symmetric—
the material is still elastic—but the non-zero off-diagonal terms tell us that
there is now coupling between volumetric and distortional effects. There will be
volumetric strain when we apply purely distortional stress, δp′ = 0, distortional
strain during purely isotropic compression, δq = 0, and there will be change in
mean effective stress in undrained tests, δεp = 0.

In fact the slope of the effective stress path in an undrained test is, from
(3.45),

δp′

δq
=

J

3G∗
=

2(1− ν∗ + αν∗ − α2)
3(2− 2ν∗ − 4αν∗ + α2)

(3.51)

From our definition of pore pressure parameter a (§2.6.2) we find

a = −δp′

δq
= − J

3G∗
(3.52)
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Figure 3.11: Relationship between anisotropy parameter α and pore pressure
parameter a for different values of Poisson’s ratio ν∗.

which will, in the presence of anisotropy, not be zero.
A first inspection of (3.51) merely suggests that there are limits on the pore

pressure parameter of a = 2/3 and a = −1/3 for α very large (Eh À Ev) and
α very small (Ev À Eh) repectively (Fig 3.10), which in turn imply effective
stress paths with constant axial effective stress and constant radial effective
stress respectively. The link between a and α is actually slightly more subtle.
In fact, for ν∗ 6= 0 the relationship is not actually monotonic and the effective
stress path direction overshoots the apparent limits (Fig 3.11). The deduction
of a value of α (and hence Eh/Ev = α2) from a is not very reliable when a is
around −1/3 or 2/3 (recall the data presented in Figs 2.51 and 2.49, §2.5.4). For
ν∗ = 0.5, a = −(1+2α)/ [3(1− α)] or α = (1+3a)/(3a−2). These relationships
satisfy the expected limits for α = 0 and α = ∞ but there are singularities in
the inversion of (3.51) for α = 1 and ν∗ = 0.5.

3.2.5 Nonlinearity

We will probably expect that the dominant source of nonlinearity of stress:strain
response will come from material plasticity—and we will go on to develop elastic-
plastic constitutive models in the next section. However, we also have an expec-
tation that some of the truly elastic properties of soils will vary with stress level
and this can be seen as a source of elastic nonlinearity. Our thoughts about
elastic materials as conservative materials—the term ‘hyperelasticity’ is used to
describe such materials—might make us a little cautious about plucking from
the air arbitrary empirical functions for variation of moduli with stresses. For
example, if we were to suppose that the bulk modulus of the soil varied with
mean effective stress but that Poisson’s ratio (and hence the ratio of shear mod-
ulus to bulk modulus) were constant then we would find that in a closed stress
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Figure 3.12: Cycle of stress changes which should give zero energy generated or
dissipated for conservative material

cycle such as that shown in Fig 3.12 energy would be created (or lost) creating a
perpetual motion machine in violation of the first law of thermodynamics—this
would not be a conservative system. We need to find a strain energy (3.7) or
complementary energy density (3.11) function which can be differentiated to
give acceptable variation of moduli with stresses.

Such a complementary energy function can be deduced from the nonlinear
elastic model described by Boyce (1980):

V = p′n+1

(
1

(n + 1)K1
+

1
6G1

[
q

p′

]2
)

(3.53)

where K1 and G1 are reference values of bulk modulus and shear modulus and
n is a nonlinearity parameter. The compliance matrix can then be deduced by
differentiation

(
δεp

δεq

)
= p′n−1

(
n

K1
+ (1−n)(2−n)

6G1
η2 − 1−n

3G1
η

− 1−n
3G1

η 1
3G1

)(
δp′

δq

)
(3.54)

where η = q/p′. There is again (as for the anisotropic model) coupling between
volumetric and distortional effects. The stiffnesses are broadly proportional to
p′1−n.

Because the compliances are now varying with stress ratio η the effective
stress path implied for an undrained (purely distortional) loading is no longer
straight. In fact, for a reference state p′ = p′o, η = q = 0, the effective stress
path is

p′o
p′

=
(
1− βη2

)n
(3.55)

where β = (1−n)K1/6G1. Contours of constant volumetric strain (δεp = 0) are
shown in Fig 3.13 for n = 0.2 and Poisson’s ratio ν = 0.3 implying K1/G1 =
2.17—values typical for the road sub-base materials being tested by Boyce for
their small strain, resilient elastic properties.

Similarly the path followed in a purely volumetric deformation (δεq = 0) will
develop some change in distortional stress. For an initial state p′ = p′o, q = qo
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Figure 3.13: Contours of constant volumetric strain (solid lines) and constant
distortional strain (dotted lines) for nonlinear elastic model of Boyce (1980)

the effective stress path for such a test is

q

qo
=

(
p′o
p′

)n−1

(3.56)

Contours of constant distortional strain are also shown in Fig 3.13 for n = 0.2.
It is often proposed that the elastic volumetric stiffness—bulk modulus—

of clays should be directly proportional to mean effective stress: K = p′/κ.
Integration of this relationship shows that elastic unloading of clays produces
a straight line response when plotted in a logarithmic compression plane (εp =
− ln v : ln p′) (Fig 3.14) where v is specific volume. But what assumption
should we make about shear modulus? If we simply assume that Poisson’s ratio
is constant, so that the ratio of shear modulus to bulk modulus is constant, then
we will emerge with a non-conservative material (Zytynski et al., 1978). If we
assume a constant value of shear modulus, independent of stress level, we will
obtain a conservative material but may find that we have physically surprising
values of implied Poisson’s ratio for certain high or low stress levels. Again we
need to find a strain or complementary energy function that will give us the
basic modulus variation that we desire.

Houlsby (1985) suggests that an acceptable strain energy function could be

U = p′re
εp/κ

(
κ +

3
2
αε2q

)
(3.57)

Incrementally this implies a stiffness matrix which, once again, contains off-
diagonal terms indicating coupling between volumetric and distortional elements
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Figure 3.14: Linear logarithmic relationship between v and p′ for elastic material
with bulk modulus proportional to p′

of deformation: (
δp′

δq

)
= p′

(
1/κ η/κ
η/κ η/εq

)(
δεp

δεq

)
(3.58)

It can be deduced that
η =

q

p′
=

3αεq

1 + 3α
2κ ε2q

(3.59)

so that contours of constant distortional strain are lines of constant stress ratio η
(Fig 3.15). Constant volume (undrained) stress paths are found to be parabolae
(Fig 3.15):

q2 = 6ακp′i (p′ − p′i) (3.60)

All parabolae in this family touch the line η =
√

3ακ/2.
The nonlinearity that has been introduced in these two models is still asso-

ciated with an isotropic elasticity. The elastic properties vary with deformation
but not with direction.

Although it tends to be assumed that nonlinearity in soils comes exclusively
from soil plasticity—as will be discussed in the subsequent sections—we have
seen that with care it may be possible to describe some elastic nonlinearity
in a way which is thermodynamically acceptable. Equally, most elastic-plastic
models will contain some element of elasticity—which may often be swamped
by plastic deformations. It must be expected that the fabric variations which
accompany any plastic shearing will themselves lead to changes in the elastic
properties of the soil. The formulation of such variations of stiffness should
in principle be based on the differentiation of some serendipitously discovered
elastic strain energy density function in order that the elasticity should not
violate the laws of thermodynamics. Evidently the development of strain energy
functions which permit evolution of anisotropy of elastic stiffness is tricky. Many
constitutive models adopt a pragmatic, hypoelastic approach and simply define
the evolution of the moduli with stress state or with strain state without concern
for the thermodynamic consequences. This may not provoke particular problems
provided the stress paths or strain paths to which soil elements are subjected
are not very repeatedly cyclic.
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Figure 3.15: Contours of constant volumetric strain (solid lines) and constant
distortional strain (dotted lines) for nonlinear elastic model of Houlsby (1985)

3.2.6 Heterogeneity

Anisotropy and nonlinearity are both possible departures from the simple as-
sumptions of isotropic linear elasticity. A rather different departure is associated
with heterogeneity. We have already noted that small scale heterogeneity—
seasonal layering—may lead to anisotropy of stiffness (and other) properties
at the scale of a typical sample. Many natural and man-made soils contain
large ranges of particle sizes (§1.8)—glacial tills and residual soils often contain
boulder-sized particles within an otherwise soil-like matrix. If the scale of our
geotechnical system is large by comparison with the size and spacing of these
boulders then it will be reasonable to treat the material as essentially homoge-
neous. However, we will still wish to determine its mechanical properties.

If we attempt to measure shear wave velocities in situ, using geophysical
techniques, then we can expect that the fastest wave from source to receiver
will take advantage of the presence of the large hard rock-like particles—which
will have a much higher stiffness and hence higher shear wave velocity than the
surrounding soil (Fig 3.16). The receiver will show the travel time for the fastest
wave which has taken this heterogeneous route. If the hard material occupies a
proportion λ of the spacing between source and receiver, and the ratio of shear
wave velocities is k (and hence, neglecting density differences, the ratio of shear
moduli is of the order of k2), then the ratio of apparent shear wave velocity V̄s

to the shear wave velocity of the soil matrix Vs is

V̄s

Vs
=

k

λ + k − kλ
(3.61)
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Figure 3.16: (a) Soil containing boulders between boreholes used for measure-
ment of shear wave velocity; (b) average stiffnesses deduced from interpretation
of shear wave velocity and from matrix stiffness

The deduced average shear modulus Ḡ is then greater than the shear stiffness
of the soil matrix G by the ratio

Ḡ

G
=

(
k

λ + k − kλ

)2

→ 1
(1− λ)2

as k →∞ (3.62)

Laboratory testing of such heterogeneous materials is not easy because the
test apparatus needs itself to be much larger than the typical maximum particle
size and spacing in order that a true average property should be measured. At
a small scale, Muir Wood and Kumar (2000) report tests to explore mechanical
characteristics of mixtures of kaolin clay and a fine gravel (d50 = 2 mm). They
found that all the properties of the clay/gravel system were controlled by the
soil matrix until the volume fraction of the gravel was about 0.45-0.5. At that
stage, but not before, interaction between the ‘rigid’ particles started rapidly to
dominate. For λ < 0.5 then, this implies a ratio of equivalent shear stiffness Ḡ
to soil matrix stiffness G:

Ḡ

G
=

1
1− λ

(3.63)

These two expressions, (3.62) and (3.63), are compared in Fig 3.16 for a modulus
ratio k2 = 10000.

3.3 Elastic-perfectly plastic models

Elastic descriptions of soil behaviour are useful for the wide range of quick
analytical solutions to which they give access. If we need some idea about the
stress distribution around a footing or wall or pile then at least a first estimate
can be obtained using an elastic analysis (§7.2). Many of these analyses are
either available as closed form results or have been previously published in
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Figure 3.17: (a) Typical irreversible stress:strain response and (b) typical mod-
ulus variation for soil

the literature (for example, Poulos and Davis, 1974). Elastic analyses are also
useful to give a first estimate of the deformations that may be expected for a
geotechnical structure under working loads—structures which are therefore not
loaded to anything approaching the failure conditions.

However, a quick comparison of the stress:strain response implied by a lin-
ear elastic description of soil behaviour with the actual stress:strain response
of a typical soil shows that there are many features of soil response that the
simple model is unable to capture (Fig 3.17). In particular, it is clear that most
soils show nonlinear stress:strain relationships with the stiffness falling from a
high initial value. If a soil is unloaded from some intermediate, prefailure con-
dition then it will not recover its initial state but will be left with permanent,
irrecoverable deformation—which we will call plastic deformation to distinguish
it from the recoverable, elastic elements of deformation. During this unloading
process the tangent stiffness increases initially, typically to a value higher than
the initial stiffness and then falls—a similar pattern is seen on reloading (Fig
3.17).

Most soils develop significant volume changes even when they are subjected
only to changes in shear stress. Most soils, if sheared to sufficiently large strains,
reach a state of continuing shearing with no further change in stresses—zero in-
cremental or tangent stiffness—at large strains. This type of behaviour, in which
the tangential stiffness has fallen to zero, is described as perfect plasticity and
the next stage in development of simple models is to use an elastic-perfectly plas-
tic description of soil response (Fig 3.18). This elastic-perfectly plastic model
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Figure 3.18: Elastic-perfectly plastic model: (a) stress:strain response and (b)
modulus variation

is the first of a series of models which we will describe which gradually im-
prove the degree with which the richness of behaviour shown in Fig 3.17 can be
reproduced.

3.3.1 General elastic-perfectly plastic model

The underlying assumption of the soil models that are being developed is that
the strain increments that accompany any change in stress can be divided into
elastic (e) (recoverable) and plastic (p) (irrecoverable) parts

δε = δεe + δεp (3.64)

The strain tensor is thought of here as a six element vector of cartesian strain
components since in this form the presentation and programming of stiffness
relationships involves nothing more than straightforward matrix multiplication
and manipulation. In many applications it will be a subset of this vector that
will be of interest. This division of strain clearly reflects the observation that
removal of loads from a sheared soil sample in general leaves the sample with
some permanent changes in shape and size.

The elastic strain increment δεe occurs whenever there is any change in stress
δσ (where the stress is also thought of as a six dimensional vector of cartesian
components).

δσ = Dδεe (3.65)

where D is the elastic stiffness matrix. The first ingredient of the model is there-
fore a description of the elastic behaviour which may be isotropic or anisotropic
as appropriate.
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Figure 3.19: Elastic-perfectly plastic model: yield surface separating elastic and
inaccessible regions of stress space

In the elastic-perfectly plastic model there is a region of stress space which
can be reached elastically, without incurring any irrecoverable deformations (Fig
3.19). However, as soon as the boundary of this elastic region is reached then
the material yields (or fails) at constant stress. The boundary of the elastic
region is called a yield surface (Fig 3.19) and is mathematically described by a
yield function: this is the second ingredient of the model.

f(σ) = 0 (3.66)

The plastic strain increment δεp (in (3.64)) occurs only when the stress state
lies on—and remains on—the yield surface during the load increment so that

f(σ) = 0; δf =
∂f

∂σ

T

δσ = 0 (3.67)

where T indicates the transpose of the vector. This relation is known as the
consistency condition.

The perfectly plastic soil model has been discussed so far only in terms
of a limiting set of stress states which can be reached—defined by the yield
function f(σ). For the model to be useful in more extensive numerical analysis
it is necessary to be able to make some statements about the nature of the
deformations that occur when this limiting stress state is reached. Before we do
this it may be helpful to digress in order to discuss the behaviour of a perfectly
plastic structural system where the nature of the plastic deformations is rather
clear.

3.3.2 A digression: collapse of portal frame

At this point a digression may be helpful in order to explore the deformations
that occur in a simple perfectly plastic structural system: the collapse of a steel
portal frame under combinations of vertical and horizontal loading (Fig 3.20a).
The collapse of this frame is governed by three mechanisms (Fig 3.20b, c, d):
beam collapse, which occurs when the vertical load is the dominant loading (Fig
3.20b); sway collapse, which occurs when the horizontal load is the dominant
loading (Fig 3.20c); and a combined mechanism (Fig 3.20d).
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Figure 3.20: (a) Steel portal frame; (b) beam collapse; (c) sway collapse; (d)
combined collapse mechanism (o indicate locations of plastic hinges)

The standard methods of plastic structural analysis can be used to demon-
strate that for the beam mechanism (Fig 3.20b) the limiting load is given by

V `

Mp
= 8 (3.68)

For the sway mechanism (Fig 3.20c) the limiting load is given by

Hh

Mp
= 4 (3.69)

and for the combined mechanism (Fig 3.20d) the limiting loads are given by

Hh

Mp
+

V `

2Mp
= 6 (3.70)

These three expressions define a collapse locus—or interaction diagram—in
the plot of vertical and horizontal loads (Fig 3.21). The collapse locus defines
the boundary of the region of safe combinations of loads2.

If a change in the loads applied to the structure brings the load combination
to the collapse locus then collapse of the frame will occur according to one of
the three mechanisms. The particular choice of mechanism will depend on the
load combination at which the collapse locus is reached, according to equations
(3.68)-(3.70), and not on the route by which that boundary is reached. This is
obviously a difference from the response of an elastic material or elastic system
for which the incremental deformation depends on the changes in loads and not
on the values of the loads themselves3.

2The collapse locus cannot be strictly described as a yield locus because, by extension
from the analysis of the plastically collapsing cantilever (§2.5.1), the frame will start to yield
and generate irrecoverable plastic rotations as soon as the yield moment is reached at any
section. The extent of this plastic region inside the collapse locus will depend on the ratio
of yield moment to full plastic moment of the structural sections from which the frame is
constructed. For rectangular sections the ratio is 2/3; for more practical I sections the ratio
is more typically of the order of 0.87.

3For a conservative nonlinear elastic material (§2.5.1) the incremental stiffness will depend
on the current state of stress but consideration of (3.54) and (3.58) shows that the mechanism
of elastic deformation is always dependent on the accompanying increments of stress.
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Figure 3.21: Collapse locus for steel portal frame

By appropriate choice of variables it is possible to indicate the mechanism
of plastic collapse on the same diagram as the collapse locus. For the perfectly
plastic system brought to collapse by changes in the applied loads, there is
at collapse no possibility of determining the magnitudes of the deformations—
failure, according to the simple model, just continues indefinitely. (The collapse
could be contained if the structure were loaded using some sort of deformation
control.) The three mechanisms do, however, indicate the relative magnitudes of
the vertical movement δv at the centre of the beam and the horizontal movement
δh at the top of the columns.

The work done in any deformation of the structure (δv, δh) while it carries
loads V and H is

δW = V δv + Hδh (3.71)

The work conjugacy of (V, H) and (δv, δh) is obvious. However, for convenience
the collapse locus has been plotted in terms of normalised loads V `/Mp and
Hh/Mp. A work conjugacy can be deduced between (V `, Hh) and (δv/`, δh/h).

The three mechanisms of collapse can be described in terms of the ratios of
these two displacement variables. The beam mechanism gives:

δv/`

δh/h
= ∞ (3.72)

The sway mechanism gives:

δv/`

δh/h
= 0 (3.73)
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and the combined mechanism gives:

δv/`

δh/h
=

1
2

(3.74)

These three expressions define the directions of three vectors which can be plot-
ted on the corresponding segments of the collapse locus to indicate the resulting
collapse mechanisms (Fig 3.21). It is found in this case that these collapse
vectors are normal to the corresponding segments of the collapse locus.

The important result is that the mechanism of collapse (by which is meant
the ratio of the several components of plastic deformation) is in some way linked
with the shape of the collapse locus (which indicates whether or not collapse is
taking place) and is independent of the route by which the collapse locus was
reached. Thus the quite different paths AX and BX in Fig 3.21 both end up at
the same point on the collapse locus and will both lead to the same mechanism
of collapse—by the combination of sway and beam modes—even though one is
reaching collapse by applying only increments of horizontal load and the other
by applying increments of vertical load.

3.3.3 General elastic-perfectly plastic model (continued)

In order to be able to calculate the plastic deformations we make the assumption
that there exists a plastic potential function g(σ) which can be evaluated at the
current stress state such that the plastic strain increment is given by

δεp = µ
∂g

∂σ
(3.75)

where µ is a scalar multiplier whose magnitude is essentially arbitrary since this
expression merely defines the mechanism of plastic deformation—the ratio of
the several components of plastic deformation. It is thus only the gradient of the
plastic potential function g(σ) that is required, the actual value of the function
is not relevant.

Combination of (3.64), (3.65) and (3.75) gives

δσ = Dδε− µD
∂g

∂σ
(3.76)

and combination of (3.76) with (3.67) allows us to determine µ

µ =
∂f
∂σ

T
Dδε

∂f
∂σ

T
D ∂g

∂σ

(3.77)

and hence generate an expression for the elastic-plastic stiffness matrix Dep

giving δσ as a function of δε:

δσ =

[
D − D ∂g

∂σ
∂f
∂σ

T
D

∂f
∂σ

T
D ∂g

∂σ

]
δε = Depδε (3.78)
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Figure 3.22: Elastic-perfectly plastic Mohr-Coulomb model (a) yield/failure lo-
cus; (b) plastic potentials

from which the stress increment can be calculated from any total strain incre-
ment that is causing yield.

Note that, as before(§2.5.1), we will expect that we can always deduce incre-
ments in stress from imposed increments in strain (the operation indicated in
(3.78)) but that the reverse operation will not always be possible if our current
state of stress is already on the yield/failure boundary of the elastic region (Fig
3.19). This will become clear when we consider a particular example.

3.3.4 Elastic-perfectly plastic Mohr-Coulomb model

To demonstrate how this final expression can be used we can look at the special
case of the elastic-perfectly plastic Mohr-Coulomb soil model. We will apply
the model to axisymmetric conditions. We introduce this model first because
Mohr-Coulomb failure is something which is familiar to all undergraduate civil
engineers and because elastic-perfectly plastic Mohr-Coulomb models are gener-
ally available in most finite element programs that might be used by practising
civil engineers. There is a familiarity in some of the ingredients of the model.

First we define the elastic properties as usual using an isotropic elastic model:
(

δp′

δq

)
=

(
K 0
0 3G

)(
δεe

p

δεe
q

)
(3.79)

Next we define the yield function as (Fig 3.22a)

f(σ) = f(p′, q) = q −Mp′ (3.80)

If f(p′, q) < 0 the soil is behaving elastically; if f(p′, q) = 0 the soil is yielding
(failing) and generating plastic deformations. To have f(p′, q) > 0 is impossible:
this defines an inaccessible region of the (p′, q) stress plane (Fig 3.22a). The
value of the soil property M can be related to the angle of shearing resistance
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φ of the soil in triaxial compression:

M =
6 sin φ

3− sin φ
(3.81)

Finally we require some constraint on the plastic deformations in the form
of a flow rule which defines the plastic deformation mechanism at the current
stress state. We define a plastic potential function (Fig 3.22b)

g(σ) = g(p′, q) = q −M∗p′ + k = 0 (3.82)

where k is an arbitrary variable to allow the plastic potential function to be
defined at the current state of stress and M∗ is another soil property. This
implies that the plastic strain increments are given by normality to the plastic
potential function at the current state of stress (Fig 3.22b)

(
δεp

p

δεp
q

)
= µ

(
∂g/∂p′

∂g/∂q

)
= µ

( −M∗

1

)
(3.83)

where µ is a scalar multiplier which merely indicates the magnitude of the plastic
strain increments. The ratio of the two components of plastic strain is:

δεp
p

δεp
q

= −M∗ (3.84)

The link between M∗ and angle of dilation is not so simple as the link
between M and angle of shearing resistance φ (3.81) because, while the inter-
mediate principal stress plays no role in the latter (Mohr-Coulomb failure is
concerned only with the ratio of major and minor principal stresses), the in-
termediate principal strain certainly influences the former. Angle of dilation is
essentially a plane strain concept (§2.6) and is thus directly relevant to many
geotechnical applications—but the intermediate strain is then conveniently zero.
In plane strain the angle of dilation ψ has a geometrical meaning as the tangent
to Mohr’s circle of strain increment (Fig 3.23a). Under conditions of triaxial
compression (δεa > 0) we can define a similar tangent angle ψc (Fig 3.23b). We
find that the link with the triaxial strain increment ratio is:

δεp
p

δεp
q

=
3
4

(3 sin ψc − 1) (3.85)

and sin ψc < 1/3 implies dilation. Then, while we can define an angle of dilation
ψ as a material property for use in analysis from:

M∗ =
6 sin ψ

3− sin ψ
(3.86)

for triaxial compression to be exactly similar to (3.81), the direct geometrical
interpretation has been lost. Angles ψ and ψc are linked through:

sin ψc =
1− 3 sin ψ

3− sin ψ
(3.87)
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Figure 3.23: Mohr circles of strain increment and angles of dilation in (a) plane
strain; (b) triaxial compression. (c) Link between ψ and ψc

This relationship is plotted in Fig 3.23c.
However, with this loose definition of ψ, for M∗ = 0 plastic deformation

occurs at constant volume (zero dilatancy, ψ = 0). Soils that contract when
they are sheared plastically have negative angles of dilation: ψ < 0 and M∗ < 0
(Fig 3.24c); soils that expand have positive angles of dilation: ψ > 0 and M∗ > 0
(Fig 3.24c). It is generally found that for most real soils ψ < φ and M∗ < M .
A special (though physically unrealistic) case is obtained when M∗ = M and
ψ = φ.

The energy that is dissipated during an increment of plastic deformation is

δW p = σT δεp = p′δεp
p + qδεp

q (3.88)

Since the soil is yielding the stresses are related by

q = Mp′ (3.89)

and the plastic strain increments are related by (3.84). The plastic energy thus
becomes

δW p = (M −M∗)p′δεp
q (3.90)

It is evident that if M∗ = M there is no plastic energy dissipation which seems
likely to provide an unsatisfactory description of soil behaviour.

The complete elastic-plastic stiffness matrix (3.78) for this perfectly plastic
model can now be generated:

Dep =
[(

K 0
0 3G

)
− 1

KMM∗ + 3G

(
MM∗K2 −3M∗GK
−3MGK 9G2

)]
(3.91)

The second term in (3.91) is only included if the soil is yielding. In stiffness
form the link between stress increments and strain increments, when the soil is
yielding, is

(
δp′

δq

)
=

3GK

KMM∗ + 3G

(
1 M∗

M MM∗

)(
δεp

δεq

)
(3.92)

The elastic-plastic stiffness matrix is in general asymmetric unless M∗ =
M which, as has been shown, is physically unreasonable. However, certain



3.3. Elastic-perfectly plastic models 127

q

p'

q

εp

εq

εq

M* > 0

M* < 0

a. b.

c.

Figure 3.24: Elastic-perfectly plastic Mohr-Coulomb model: (a) stress:strain
response; (b) constant p′ effective stress path; (c) volumetric strain, dependence
on M∗

numerical analysis programs require the stiffness matrix to be symmetric for
solution purposes and it is for these programs that the assumption M∗ = M
is often forced upon the user—or else some numerical subterfuge is needed to
overcome the limitation of the program.

Although it is often easier to think of stress changes producing changes in
strain—and physical considerations of the behaviour of soils often encourage us
to move in this direction—if we look at the diagram of the (p′, q) stress plane (Fig
3.22a) we can see that this will not provide a secure route for analysis because
a large part of the stress plane is in fact forbidden territory. On the other hand,
working from strain increments to stress increments carries no such problem:
all strain increments are permitted even when the current stress state sits on
the yield (failure) locus. Some of these strain increments will produce purely
elastic changes in stress which take the stress state away from yield; others will
force the stress state to move up or down along the yield (failure) locus in such
a way that the elastic component of the strain caused by the change in stress
uses up that part of the total strain increment which cannot be ascribed to the
plastic strain mechanism given by (3.84) or (3.75).

We saw in section §2.5.3 that one way of illustrating the link between strain
increments and stress increments is through the generation of stress response
envelopes. For each of the strain increments of a rosette of increments of similar
magnitude but different direction we can use the elastic-plastic stiffness form
of the model ((3.79) or (3.91) depending on whether the soil is responding
elastically or elastoplastically) to calculate the stress increment response (Fig
3.25). This stress response envelope consists of two parts.
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Figure 3.25: Elastic-perfectly plastic Mohr-Coulomb model: stress response
envelope (calculated with M = 1.2, M∗ = 0.2 and initial stresses p′ = 100,
q = Mp′ = 120)

If the strain increment can be supported by elastic unloading then the stress
increment is directed away from the yield locus. For these increments the re-
sponse envelope takes the form of half of an ellipse (Fig 3.26). If the strain
increment requires the soil to yield then the stress state has to lie on the yield
locus—all plastic stress states are, in this perfectly plastic model, confined to
this one line. For these increments the stress response envelope consists of a
straight line tangent to (in this case coincident with) the yield locus at the given
initial stress (Fig 3.26).

Two limits may be noted. If the ratio of strain components is given by (3.84)
then the stresses remain unchanged as the soil yields:

(
δεp

δεq

)
= λ

( −M∗

1

)
→

(
δp′

δq

)
=

(
0
0

)
(3.93)

It is of course possible for the stress state to move along the yield locus
purely elastically without incurring plastic deformation. In this case

(
δεp

δεq

)
= λ

(
1/K

M/3G

)
(3.94)

and this ratio defines the boundary of elastically attainable strain states in the
corresponding strain increment plane. It should be clear from the stress response
envelope in Fig 3.25 that, not only is there a part of the stress plane that is
inaccessible (anywhere implying a value of q/p′ > M), even for stress changes
which lie along the boundary of the elastic region (δq/δp′ = M) there is an
infinite number of possible causative strain increments and we cannot even tell
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Figure 3.26: Elastic-perfectly plastic Mohr-Coulomb model: elastic and plastic
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whether the soil is behaving elastoplastically or purely elastically. The ambiguity
in trying to work from stress increments to strain increments is emphasised.

A particular case is given by undrained constant volume shearing for which
(

δεp

δεq

)
= λ

(
0
1

)
→

(
δp′

δq

)
=

3GKM∗λ
KMM∗ + 3G

(
1
M

)
(3.95)

and the stress path ascends or descends the line q = Mp′ for M∗ > 0 (Fig 3.25)
or M∗ < 0 respectively (assuming that 3G + KMM∗ > 0 always).

The principal application of elastic-perfectly plastic models is to the calcu-
lation of collapse loads for geotechnical structures: such as the ultimate bearing
capacity of a foundation, or the limiting stresses on a retaining structure. A
discussion of the ultimate limit state analysis of such problems is given in sec-
tion §7.3. In such analyses it is assumed that the soil has been sheared so
much that all elements that combine to form a failure mechanism around the
structure have reached the perfectly plastic failure condition. In this state the
pre-failure response is of no further concern and there is a sound theoretical
basis for judging the reliability of the collapse loads that are thus calculated.

The response of a geotechnical structure—for example, a footing—to in-
creasing load or increasing deformation, calculated using an elastic-perfectly
plastic soil model (§4.10.4), shows a steady transition from the initial linear
elastic response to the ultimate zero stiffness perfectly plastic collapse condition
(Fig 3.27). This may appear to be an entirely reasonable description of the
behaviour of the system and arises because the failure of the soil propagates
steadily from the stress concentrations at the edge of the footing until an over-
all failure mechanism can form. Once failure has started anywhere in the soil
the stresses that are generated by the continuing loading must be redistributed
through the remaining unfailed soil: the stiffness for continuing loading thus
falls.

For each individual element of soil, however, the elastic-perfectly plastic de-
scription looks less convincing (Fig 3.28). The model can only at best describe
the final failure condition together with either the initial stiffness or some aver-
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Figure 3.28: Elastic-perfectly plastic Mohr-Coulomb model compared with typ-
ical soil response in conventional drained triaxial compression test

age stiffness corresponding to a stress state intermediate between the beginning
and end of the test. Evidently such an average stiffness will not give an accurate
description of the behaviour at any soil element—no soil element will actually
experience combinations of stress and strain which fall along this assumed no-
tional linear elastic prefailure relationship. The volumetric response is also only
crudely represented (Fig 3.28b).

This deficiency of the elastic-perfectly plastic model is slightly obscured when
soil behaviour is described in terms of secant stiffness. It is standard practice
to show variation of shear stiffness with shear strain both for monotonic testing
(Fig 3.29a)—where the stiffness falls as failure is approached—and for cyclic,
or more generally non-monotonic testing—where the average stiffness in any
cycle reflects the strain level at which the direction of loading was reversed (Fig
3.29a). Typical experimental data show a reduction in average cyclic (secant)
stiffness with increasing strain amplitude. An elastic-perfectly plastic model
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will also show a reduction in average stiffness with increasing strain amplitude
(Fig 3.30) but when the response is considered in terms of tangent stiffness it is
very clear that the secant response is the combination of a constant prefailure
stiffness with varying amounts of strain imposed while the soil is at failure and
hence has zero tangent stiffness (Fig 3.31).

If the shear strain to failure of an elastic-perfectly plastic soil with shear
modulus G is γf then at a strain of γm the shear stress is Gγf and the secant
stiffness Gs is

Gs = G
γf

γm
(3.96)

This is plotted in Fig 3.30.
The damping ratio ξ can be calculated similarly. This is defined as

ξ =
W

4π∆W
(3.97)

where W is the energy dissipated in each cycle (shown stippled in Fig 3.32),
and ∆W is the maximum elastic energy stored in each cycle (shown shaded in
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Fig 3.32). For the elastic-perfectly plastic material

W = 4Gγ2
f

(
γm

γf
− 1

)
(3.98)

and

∆W =
1
2
Gγ2

f

γm

γf
(3.99)

so that

ξ =
2
π

(
1− γf

γm

)
(3.100)

and this is also plotted in Fig 3.30.
Elastic-perfectly plastic models are widely used because of their simplicity.

They are available in every computer program that is seriously intended for
numerical analysis of geotechnical problems. They require definition of elastic
properties—of which there will be two for an isotropic model as in any linear
elastic model; and of some failure property—for example, a limiting angle of
shearing resistance for a frictional model to be used for description of drained
soil conditions or a limiting shear stress for a cohesive model to be used for
description of undrained soil conditions; together with some statement about
the volume changes that accompany failure—for example, an angle of dilation.
There is obviously need for care in the selection of the elastic properties. Not all
programs give the freedom to select angles of dilation which are different from
the angle of shearing resistance.

3.4 Elastic-hardening plastic models

Constitutive models form an essential link in the numerical or theoretical pre-
diction of deformation of geotechnical structures. Perfect plasticity provides
some possibilities for matching certain aspects of observed mechanical response
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δσ

elastic

Figure 3.33: Elastic-hardening plastic model: yield surface separating elastic
from plastic regions of stress space, and plastic potential for definition of plastic
strain increments

of soils but in a rather limited way. Hardening plasticity opens up further mod-
elling possibilities. Perfect plasticity enables us to reproduce the inelasticity of
soil behaviour—the accumulation of irrecoverable strains. Hardening plasticity
enables us in addition to describe prefailure nonlinearity.

Hardening models are natural extensions of the perfectly plastic models that
have been described in section §3.3. The additional feature is that the yield
function is no longer merely a function of the stresses but also introduces a
hardening parameter which characterises the current size of the yield surface.
An extra hardening equation is then required to define the way in which this
hardening parameter changes as plastic strains occur—or in other words the
penalty in permanent deformation of the material which is necessary in order
to increase the size of the elastic region and harden the material. The general
form of the ingredients of the hardening plastic model will be introduced first
and then specific hardening plastic models will be developed.

There are four ingredients of the hardening plastic models—three of these
are common to the perfectly plastic models.

1. Elastic properties: Whenever the stresses change elastic strains will oc-
cur. We may assume isotropic elastic behaviour for convenience but this is not
essential.

δσ = Dδεe (3.101)

2. Yield criterion: We need to define the current boundary in stress space to
the region of elastic behaviour (Fig 3.33). Within this region all stress changes
can be applied without incurring irrecoverable deformations. The definition
of the yield function allows us to answer the question: are yield and plastic
deformation occurring? For a hardening model the boundary is not fixed but
will depend on the history of loading of the soil.

We write the yield criterion as a function of a hardening parameter χ4:

f(σ, χ) = 0 (3.102)

4There could in general be more than one hardening parameter.
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Figure 3.34: Combined tension and torsion of annealed copper tubes: yield locus
and plastic strain increment vectors (σo is yield stress) (inspired by original data
from Taylor and Quinney, 1931)

There is the usual constraint that the current stress state cannot lie outside the
current yield surface but the yield surface is no longer of fixed size (as it was
in the perfectly plastic model) but is able to expand in order to accommodate
the imposed stress changes. The consistency condition (3.67), which states that
the stress state must remain on the yield surface when plastic strains are being
generated, now becomes:

f(σ, χ) = 0; δf =
∂f

∂σ

T

δσ +
∂f

∂χ
δχ = 0 (3.103)

3. Flow rule: We require some way of describing the mechanism of plastic
deformation. We can conveniently do this in just the same way as for the
perfectly plastic model using a plastic potential to indicate the ratio of the
several strain components (Fig 3.33) and to show that the plastic strains are
controlled by the current stresses at yield and not by the stress increment which
brought the soil to yield:

δεp = µ
∂g

∂σ
(3.104)

where µ is again a scalar multiplier which we have to find. It may sometimes
be convenient to assume that the functions f and g are the same: the material
then obeys the hypothesis of associated flow (the flow is associated with the
yield criterion) or normality (the strain increment vectors are normal to the
yield surface at the current stress state) but this is certainly not a necessary
assumption and certainly not an assumption of which soils are aware (although
the analysis of the collapse of the steel portal frame demonstrated normality
and normality can also be observed in the combined tension and torsion of
thin-walled annealed metal tubes: Fig 3.34).

4. Hardening rule: The hardening rule links the change in size of the yield
surface with the magnitude of the plastic strain and hence provides a link be-
tween χ and µ.
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Figure 3.35: Repeated tension of annealed copper wire (inspired by original data
from Taylor and Quinney, 1931)

For a perfectly plastic material, once the stress state reaches the yield surface,
plastic straining can continue indefinitely: the incremental (tangent) plastic
stiffness is zero. The uniaxial tension of annealed copper wire provides a simple
example of a hardening plastic material (Fig 3.35). Each time the axial load is
increased beyond the previous maximum load there is some further irrecoverable
extension of the wire but linked with this is an increase in the yield strength
of the material: the elastic region has been increased at the expense of some
further irrecoverable rearrangement of the metal crystals. The elastic stiffness
of the copper can be deduced from the slope of the elastic loading and unloading
relationship, for changes of load and length δP and δ`:

E =
δP/A

δ`/`
(3.105)

where A and ` are cross-sectional area and length of the wire respectively.
The plastic hardening stiffness can be defined in just the same way:

Ep =
(Py2 − Py1) /A

(∆`2 −∆`1) /`
(3.106)

where ∆`1 and ∆`2 are the irrecoverable changes in length of the wire that are
left when the successive maximum (yield) loads Py1 and Py2 are removed (Fig
3.35c). It is evident from Fig 3.35b that the plastic stiffness of the copper wire
is not a constant but falls steadily with increasing plastic extension of the wire
(Fig 3.36).

For our more general hardening plasticity model we must suppose that the
hardening parameter is some general function χ(εp) of the plastic strains. The
combination of the consistency condition (3.103) and the flow rule (3.104) then
gives:

∂f

∂σ

T

δσ + µ
∂f

∂χ

∂χ

∂εp

T ∂g

∂σ
= 0 (3.107)

and if we write

H = −∂f

∂χ

∂χ

∂εp

T ∂g

∂σ
(3.108)
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Figure 3.36: Tension of annealed copper wire: schematic variation of plastic
hardening stiffness with extension

a procedure exactly similar to that used for the perfectly plastic model can be
used to generate the stiffness relationship between stress increments and total
strain increments:

δσ =

[
D − D ∂g

∂σ
∂f
∂σ

T
D

∂f
∂σ

T
D ∂g

∂σ + H

]
δε = Depδε (3.109)

3.4.1 Extended Mohr-Coulomb model

The elastic-perfectly plastic Mohr-Coulomb model (§3.3.4) is widely used for
geotechnical analysis. It provides a very crude match to actual shearing be-
haviour of soils (Fig 3.28). A natural extension is to create a hardening version
of the Mohr-Coulomb model in which the size of the yield surface varies in
some nonlinear way with the development of plastic strain. In the model to be
described here the hardening will be linked only with distortional strain: such
a distortional hardening model is found to be quite useful for the modelling
of sands where it is rearrangement of the rather hard particles that dominates
the response at typical engineering stress levels and irrecoverable volumetric
changes are essentially linked with this rearrangement. We will present the four
ingredients of the model in turn and restrict ourselves in this presentation to
the stress and strain conditions that can be attained in the conventional triaxial
apparatus.

1. Elastic properties: The elastic properties are assumed to be described by
a linear isotropic elastic model which requires two stiffness properties such as
shear modulus G and bulk modulus K

(
δp′

δq

)
=

(
K 0
0 3G

)(
δεe

p

δεe
q

)
(3.110)

In fact for many granular materials it might be reasonable to assume that the
shear stiffness is not in fact constant but varies in some way with stress level—for
example:

G ∝ p′
1
2 (3.111)
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Figure 3.37: Elastic-hardening plastic Mohr-Coulomb model: (a) yield locus
and failure locus separating elastic, plastic and inaccessible regions of stress
plane; (b) normality of plastic strain increment vectors to yield loci

However, we have seen that cavalier introduction of nonlinear elasticity risks
thermodynamic unacceptability and that if we want the shear stiffness to vary
with stress level then we should really invoke an elastic strain energy function
to achieve this.

2. Yield criterion: The yield criterion is now taken to be a generalisation of
the yield criterion assumed for the perfectly plastic model

f(σ, χ) = f(p′, q, ηy) = q − ηyp′ (3.112)

where ηy is a hardening parameter which indicates the current size of the yield
locus (Fig 3.37a). It will be seen when the hardening rule is introduced that
the yield locus is allowed progressively to expand until it reaches some limiting
failure size.

3. Flow rule: As for the perfectly plastic model it is not particularly satis-
factory to assume normality of plastic strain increment vectors to the current
yield locus. Normality would imply

δεp
p

δεp
q

= −ηy (3.113)

with the directions of plastic strain increment vectors shown in Fig 3.37b. These
imply that volumetric expansion accompanies shearing at all non-zero stress
ratios and that the rate of volumetric expansion—possibly characterised by an
angle of dilation—increases steadily as the yield stress ratio increases. A more
suitable description of the plastic volume changes can be developed from the
interpretation of the results of conventional direct shear tests on sand that was
presented in section §2.6.

Following Taylor’s (1948) proposal of a link between dilatancy and mobilised
friction in a shear box test, we emerged with a stress-dilatancy equation (2.99)
expressed in terms of total strain increments. Since we are now engaged in the
development of elastic-plastic models we need to think of this rather as a flow
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Figure 3.38: Elastic-hardening plastic Mohr-Coulomb model: plastic potential
curves (solid lines) and yield loci (dashed lines)

rule which controls the ratio of plastic strain increments:

δεp
p

δεp
q

= M − q

p′
= M − ηy (3.114)

where M is the critical state stress ratio at which constant volume shearing can
occur. Evidently this flow rule is only invoked when the soil is yielding so that
the stress ratio q/p′ is then of necessity equal to ηy

5.
It will be recalled that for the perfectly plastic model we introduced the

concept of a plastic potential function g(σ) passing through the current stress
state to which the plastic strain increments are normal. It can be deduced that
the flow rule (3.114) corresponds to the plastic potential function

g(σ) = q −Mp′ ln
p′r
p′

= 0 (3.115)

where p′r is an arbitrary variable introduced in order to allow us to create a
member of this general class of plastic potential curves passing through the
current stress state. Then

(
δεp

p

δεp
q

)
= µ

(
∂g
∂p′
∂g
∂q

)
= µ

(
M − η

1

)
(3.116)

which is consistent with (3.114).
These plastic potential curves are plotted in Fig 3.38 together with a set of

yield loci. The directions of the plastic strain increment vectors are also shown:
the difference from the directions implied from normality (Fig 3.37b) is dramatic.
Now yielding at low stress ratio implies volumetric compression but the rate of

5At low stress ratios, far from failure, we can expect elastic strains to be important and
hence a stress-dilatancy interpretation using total strain increments (§2.6) will be different
from that calculated using plastic strain increments (3.114). So the discrepancy in Fig 2.57
could be anticipated if the soil does indeed know about the flow rule of (3.114). As failure
is approached, plastic strains will dominate and the neglect of the difference between elastic
and total strain increments becomes less important.
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volumetric compression steadily decreases as the stress ratio increases. For stress
ratio q/p′ = M plastic deformation occurs at constant volume; for stress ratio
q/p′ > M plastic deformation is accompanied by volumetric expansion.

4. Hardening rule: We will assume that the soil is a distortional hardening
material so that the current size of the yield locus ηy depends only on the plastic
distortional strain εp

q . We are trying to describe using our model a mechanical
behaviour in which the stiffness falls steadily as the soil is sheared towards
failure. One of the simplest ways in which such a stiffness degradation can be
described is using a hyperbolic relationship between stress ratio and distortional
strain

ηy

ηp
=

εp
q

a + εp
q

(3.117)

or incrementally

δηy =
(ηp − ηy)2

aηp
δεp

q (3.118)

or (
∂ηy/∂εp

p

∂ηy/∂εp
q

)
=

(
0

(ηp − ηy)2 /aηp

)
(3.119)

where ηp is a limiting value of stress ratio and a is a soil constant—which
essentially just scales the plastic strain since (3.117) and (3.118) are actually
functions of εp

q/a.
We now have all the information that we need to produce the complete

elastic-plastic stiffness relationship (3.109):

(
δp′

δq

)
=




(
K 0
0 3G

)
−

( −K2ηy(M − ηy) 3GK (M − ηy)
−3GKηy 9G2

)

3G−Kηy (M − ηy) + p′ (ηp − ηy)2 / (aηp)




(
δεp

δεq

)

(3.120)

Writing the stiffness relation in this way (compare also (3.78), (3.91), (3.109))
is convenient because it divides the stiffness into an elastic part and a plastic
part. In application of the model, the elastic stiffness can be used to predict
the stress change resulting from a given strain change. If this computed stress
change lies outwith the current yield surface then the plastic stiffness can be
applied as a corrector to bring the calculated stress state back onto the (possibly
hardened) yield surface.

It can be checked that, when the yield stress ratio reaches the asymptotic
value ηy = ηp, this stiffness relationship becomes identical with that generated
for the perfectly plastic Mohr-Coulomb model(3.91) if we write ηy = ηp = M
and (M − ηy) = (M − ηp) = −M∗. As then, the stiffness matrix is not sym-
metric because we have assumed a nonassociated flow rule: the plastic potential
function (3.115) is quite different from the yield function (3.112).
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Figure 3.39: Elastic-hardening plastic Mohr-Coulomb model: triaxial compres-
sion tests with constant mean effective stress: (a) stress:strain response and (b)
volumetric response for different values of M and ηp (K = 5000 kPa, ν = 0.25,
a = 0.005, p′ = 100 kPa)

The information about yielding and hardening for this model can also be used
to generate the plastic compliance relationship linking plastic strain increments
with stress increments.

(
δεp

p

δεp
q

)
=

aηp

p′ (ηp − ηy)2

( − (M − ηy) ηy (M − ηy)
−ηy 1

)(
δp′

δq

)
(3.121)

As before, however, this relationship is not always useful because, as the
stress state nears the asymptotic stress ratio q/p′ = ηp, there is once again a
region of the (p′, q) effective stress plane into which it is impossible for the stress
increments to stray. However, as expected, we can see that as the yielding stress
ratio tends to ηp so the plastic stiffness tends to zero and the compliance tends
to infinity.

The volumetric response depends on the relative values of ηp and M . If
ηp > M then the model predicts compression followed by expansion (Fig 3.39b).
If ηp = M then the model predicts compression reducing until a critical state of
constant volume shearing is reached (Fig 3.39b). (If ηp < M the model predicts
continuing volumetric compression as failure is approached: Fig 3.39b.) In this
simple form we cannot describe strain softening with this model. In practice,
pre-peak response may be adequate since working loads are not intended to pro-
duce significant amounts of failure and we are interested in pre-failure response
of our geotechnical structures. If much of the soil around a structure has been
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Figure 3.40: Elastic-hardening plastic Mohr-Coulomb model: variation of secant
and tangent shear stiffness and damping ratio with strain

brought to failure then the overall deformations of the structure are likely to be
unacceptably large.

The variation of stiffness with strain in monotonic straining and the variation
of damping ratio in cyclic shearing are shown in Fig 3.40. Obviously the tangent
stiffness now falls more gradually than for the elastic-perfectly plastic model (Fig
3.30).

The elastic-plastic stiffness relationship (3.120) can be used to generate the
envelope of stress responses to a rosette of applied total strain increments. These
are shown in Fig 3.41 for two different values of stress ratio. As the stress
state approaches the peak stress ratio so the stress response envelope (which
is composed of two separate elliptical sections for the elastic and elastic-plastic
strain increments) becomes more and more distorted. It is evident that the
stress response envelope for the elastic-perfectly plastic model (Fig 3.25, 3.26)
is a degenerate version of the response envelope for the hardening model: the
elastic-plastic ellipse has collapsed to a line segment.

Extended Mohr-Coulomb model: undrained effective stress path

An example of the application of this extended Mohr-Coulomb model is pro-
vided by the calculation of the effective stress path that will be followed in an
undrained test. An undrained test provides a direct deformation constraint:

δεp = δεe
p + δεp

p = 0 (3.122)

The sum of the elastic and plastic volumetric strain increments is zero: any
tendency of the particle structure to undergo permanent rearrangement and
change in volume—for example, collapse—has to be countered by a change in
mean effective stress which leads to a balancing elastic volumetric expansion. (A
tendency of the volume to undergo irrecoverable expansion will correspondingly
be accompanied by an elastic compression.) The shape of the effective stress
path can be most easily found by requiring the elastic and plastic volumetric
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Figure 3.41: Elastic-hardening plastic Mohr-Coulomb model: stress response
envelopes for (a) ηy = η = 0.8 and (b) ηy = η = 1.3 (K = 1500 kPa, ν = 0.3,
a = 0.01, M = 1.2, ηp = 1.5, p′i = 100 kPa)

strain increments to be equal and opposite at all stages which from (3.110) and
(3.121) implies

δp′

K
+

aηp

p′ (ηp − η)2
[− (M − η) ηδp′ + (M − η) δq] = 0 (3.123)

(writing η for ηy since we are assuming that the soil is yielding throughout).
Noting that from the definition of stress ratio η

δq = p′δη + ηδp′ (3.124)

equation (3.123) can be rewritten

δp′

K
+

aηp (M − η) p′δη

p′ (ηp − η)2
= 0 (3.125)

and integrated to give

p′i − p′

K
= aηp

[
(M − ηp) (η − ηi)
(ηp − η) (ηp − ηi)

− ln
(

ηp − η

ηp − ηi

)]
(3.126)

where p′i and ηi are the initial values of mean effective stress and stress ratio.
For a soil which is initially isotropically compressed with ηi = 0 this can be
written

p′ − p′i
aKηp

= − (M/ηp)− 1
(ηp/η)− 1

+ ln
(

1− η

ηp

)
(3.127)

and this is plotted in Fig 3.42 for different values of M and ηp. As η → ηp

the change in mean effective stress tends to infinity but the sign of the change
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Figure 3.42: Elastic-hardening plastic Mohr-Coulomb model: undrained effec-
tive stress paths (K = 2000 kPa, a = 0.02, p′i = 200 kPa)

in mean effective stress (and hence broadly the sign of the pore pressure that
develops) depends on the sign of the difference between M and ηp. If M ≥ ηp

then the mean stress falls steadily (and pore pressure is expected to build up). If
M < ηp then the mean stress first decreases (pore pressure build up) and then
increases (pore pressure decrease). The model suggests that this increase in
mean stress continues indefinitely but on the one hand the model is defective in
suggesting that shearing accompanied by dilation can continue to large strains
and on the other hand an undrained test would reach a physical conclusion when
the pore pressure reaches a negative value of about -100 kPa and cavitation of
the pore water occurs. (There is similarly a physical limit for low values of
ηp in that an effective stress of zero is reached as the pore pressure continues
to increase.) These limitations simply indicate some of the deficiencies of this
simple model which would need to be rectified if it were to be used for analyses
in which accurate representation of such response were reckoned to be essential.

Extended Mohr-Coulomb model: worked example

A sample of Mohr-Coulomb soil with hyperbolic hardening rule and with prop-
erties:

φp = 40◦, a = 0.01, G = 3 MPa

has not been presheared. As a result the initial yield stress ratio ηy = 0.
It is subjected to an initial isotropic stress state qi = 0, p′i = 100 kPa and
then tested in triaxial compression with the mean effective stress maintained
constant: δp′ = 0.

1. Calculate the shear strain required to bring the soil to a stress ratio 50%
of the peak value.

2. Calculate the secant shear stiffness at this stress ratio (q/3εq).



3.4. Elastic-hardening plastic models 145

3. Calculate the tangent shear stiffness at this stress ratio (δq/3δεq).
4. Compare these stiffnesses with the initial tangent stiffness of the soil and

with the unloading elastic stiffness G.
The given angle of friction must be converted to an equivalent peak stress

ratio:
ηp =

6 sinφp

3− sin φp
= 1.636

1. From the hyperbolic hardening relationship, for ηy = ηp/2, the plastic
shear strain is given by:

1
2

=
εp
q

a + εp
q

→ εp
q = a = 1%

With p′ = p′i, q = ηpp
′
i/2 and elastic strain is:

εe
q =

q

3G
=

ηpp
′
i

6G
= 0.91%

2. The secant stiffness is:

Gs50 =
q

3εq
=

ηpp
′
i

6
(
a + ηpp′i

6G

) = 1428 kPa

.
3. The plastic tangent stiffness can be deduced from the differentiation of

the hyperbolic hardening rule with ηy = ηp/2:

δη

δεp
q

=
(ηp − ηy)2

aηp
=

ηp

4a
→ δq

3δεp
q

=
p′iηp

12a

The elastic tangent stiffness is G. The total combined stiffness is therefore:

Gt50 =
δq

3
(
δεp

q + δεe
q

) =
δq

3
(

4aδq
p′iηp

+ δq
3G

) =
ηpp

′
i(

12a + ηpp′i
G

) = 937 kPa

4. The initial tangent stiffness can be calculated in exactly the same way.
The plastic stiffness is:

δη

δεp
q

=
(ηp − ηy)2

aηp
=

ηp

a
→ δq

3δεp
q

=
p′iηp

3a

and the combined stiffness:

Gti =
δq

3
(
δεp

q + δεe
q

) =
δq

3
(

aδq
p′iηp

+ δq
3G

) =
ηpp

′
i(

3a + ηpp′i
G

) = 1935 kPa

The collected values are:
initial tangent (and secant) stiffness Gti 1935 kPa
secant stiffness at 50% peak stress ratio Gs50 1428 kPa
tangent stiffness at 50% peak stress ratio Gt50 937 kPa
elastic unloading stiffness G 3000 kPa
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Figure 3.43: Conventional drained triaxial compression tests on Hostun sand:
loose (initial void ratio = 1.0), dense (initial void ratio = 0.69), confining stress
σ′r = 200 kPa (data from Benahmed, 2001)

Note that, even at the start of the test, the occurrence of plastic strains leads
to a significant decrease in stiffness from the elastic value. This elastic value
is only encountered for stress changes which head back below the current yield
locus on unloading.

Note also that, in the hyperbolic hardening rule, ηp is the peak stress ratio
(which can only be attained at infinite strain) and a is the shear strain required
to reach a stress ratio 50% of the peak. This hardening rule is evidently most
useful where the soil is not expected to be loaded close to failure since real sands
are expected to soften post peak towards a critical state.

Mohr-Coulomb model with post-peak softening

The Mohr-Coulomb model that has been described is able to reproduce some
nonlinearity of initial response but is unable to describe the strain softening that
is a familiar feature of the behaviour of dense sands (Fig 3.43). An adaptation
of this model can be devised introducing a trilinear ‘hardening’ rule linking ηy

and εp
q .

For low strains, up to the peak strength ηp, the soil is assumed to behave
elastically and the size of the frictional yield locus is kept fixed:

η < ηp ⇒ ηy = ηp; δεp
q = 0 (3.128)
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Figure 3.44: Elastic-plastic Mohr-Coulomb model with post-peak plastic soft-
ening

Once the peak strength is reached the soil starts to soften and the size of the
yield locus reduces (Fig 3.44). A linear relation between the yield stress ratio
and the distortional shear strain is assumed:

ηp − ηy

ηp −M
=

εp
q

b
for 0 < εp

q < b (3.129)

where b is a soil constant which describes the distortional strain required to
bring the soil to the critical state stress ratio M . For plastic distortional strains
beyond this value the soil behaves as a perfectly plastic material, and plastic
distortional strains continue to occur without change in volume:

ηy = M for εp
q > b (3.130)

It is assumed that the flow rule is identical to that introduced in the previous
section ((3.114) or (3.116)) so that, as the soil is sheared from the peak strength
to a critical state, volumetric expansion occurs at a rate which decreases as the
critical state is approached. Typical response described using this version of the
Mohr-Coulomb model is shown in Fig 3.45.

Since all that has changed by comparison with the previous hyperbolic hard-
ening model is the ‘hardening’ rule, the complete elastic-plastic stiffness rela-
tionship changes only through the form of the term H in (3.108).

H = − ∂f

∂ηy

dηy

dεp
q

∂g

∂q
= −(−p)

(
−ηp −M

b

)
(1) (3.131)

(
δp′

δq

)
=




(
K 0
0 3G

)
−

( −K2ηy(M − ηy) 3GK (M − ηy)
−3GKηy 9G2

)

3G−Kηy (M − ηy)− p (ηp −M) /b




(
δεp

δεq

)
(3.132)



0.0 0.2 0.4
0.0

0.5

1.0

1.5

0.2 0.4

-0.01

0.00

0.01

0.02

0.03

η

εq

εp

εq

a.

b.

Figure 3.45: Elastic-hardening plastic Mohr-Coulomb model with post-peak
softening: (a) stress:strain and (b) volumetric strain response for conventional
drained triaxial compression test (δσr = 0, p′i = 100 kPa) (K = 3000 kPa,
G = 1500 kPa, ηp = 1.2, M = 1, b = 0.2)
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Figure 3.46: Elastic-hardening plastic Mohr-Coulomb model with post-peak
softening: stress response envelopes for (a) pre-peak elastic response and (b)
post-peak softening response
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Figure 3.47: Elastic-hardening plastic Mohr-Coulomb model with post-peak
softening: undrained effective stress path (K = 3000 kPa, ηp = 1.2, M = 1,
b = 0.2, p′i = 100 kPa)

The stress response envelopes for a rosette of strain increments applied be-
fore and after the peak strength are shown in Fig 3.46. Before the peak stress
ratio is reached the response is purely elastic for all strain increments and the
stress response envelope is a single complete ellipse (Fig 3.46a). In the softening
regime (Fig 3.46b) it is evident that the same stress increment can be generated
by either purely elastic unloading or by elastic plus plastic softening response
and it is not just that there is a region of the stress plane which is inaccessible
but there is even an ambiguity about the ‘unloading’ response. Such behaviour
is a reality for geotechnical materials and leads to bifurcation of response and lo-
calisation of deformations in shear zones or failure surfaces. It becomes difficult
to maintain uniformity of deformation of samples of such materials as they are
sheared. This is a further indication of the advantage of working from strain in-
crements to stress increments—the response is unambiguous—rather than from
stress increments to strain increments—there are two choices of response, elastic
unloading or plastic softening.

The undrained effective stress path followed after the peak in this model
is found in the same way as for the previous hardening model by setting the
plastic and elastic volumetric strain increments equal and opposite:

p′ − p′i
bKηp

=

(
1− η

ηp

)(
1 + η

ηp
− 2M

ηp

)

2
(
1− M

ηp

) (3.133)

with the limit, when the soil has softened to the critical state:

p′f − p′i
bKηp

=
1
2

(
1− M

ηp

)
(3.134)

The path is plotted in Fig 3.47. Because the soil behaves elastically until
the peak stress ratio is reached the mean effective stress does not change during
this initial elastic phase of the test.
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Figure 3.48: Definition of state variable ψ

Mohr Coulomb model with strength dependent on state variable

This softening model is still defective in not allowing nonlinear stress:strain re-
sponse before the peak stress ratio is reached; the previous model was defective
in not allowing softening. Evidently the two models could be combined, intro-
ducing a switch to softening when some designated peak stress ratio had been
attained. This is rather the strategy adopted by Nova and Wood (1979). How-
ever, failure switches seem somewhat unsatisfactory from a physical point of
view. A slightly more subtle way of achieving a similar result is described here.

We have described two models which can be seen as simple additions of
hardening plasticity to the perfectly plastic Mohr-Coulomb model. These mod-
els can be seen as examples of some of the possibilities which the framework
of hardening plasticity opens up. We can develop models which are able to
reproduce those features of mechanical response that we feel are important in
a particular application. This is not as arbitrary a process as it may seem: the
features that we are including are certainly inspired by experimental observa-
tion. Each of the models so far described has its merits: the second model
certainly introduces features of strain softening and reducing dilatancy which
will be relevant at large deformations of sands but does so by incorporating
a switch to turn off the softening process once the critical state stress ratio
has been reached. A way in which both hardening and softening can be rather
simply—and elegantly—combined in a single model, which is again clearly a de-
velopment from the Mohr-Coulomb family, has been described by Muir Wood,
Belkheir and Liu (1994) and by Gajo and Muir Wood (1999). A slightly simpler
version of this model will be briefly presented here.

Strength of soils is linked with density (§2.7). If the density of a soil changes
as it is sheared then we expect the strength to change as well. Let us make the
current peak strength ηp in the hardening model a variable which is a function
of the current density—or more appropriately a function of state variable ψ
combining information of density (through specific volume v) and mean stress
(Fig 3.48) (§2.6.1, §2.7). Formally we should write

ηp = M − kψ = M − k (v − Γ + λ ln p′) (3.135)

where k is a soil constant linking state variable and strength. It is assumed that
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the critical state line can locally be described as a straight line of slope λ in
a semilogarithmic compression plane (Fig 3.48); and v and p′ are the current
values of specific volume and mean effective stress which will in general vary
during a test from their initial values vo and p′o. This can be written in terms
of the initial specific volume (related to the initial density of the sand) and the
volumetric strain εp which has occurred from the start of the test which can be
divided into elastic and plastic components, εe

p and εp
p :

ηp = M − k [vo (1− εp)− Γ + λ ln p′]

= M − k

[
(vo − Γ + λ ln p′o) +

(
λ ln

p′

p′o
− voε

e
p

)
− voε

p
p

]
(3.136)

We will neglect the second term in parentheses and thus assume for simplicity
that the elastic volumetric strain roughly balances the effect of the change in
mean effective stress. (But the model developed by Gajo and Muir Wood (1999)
does not make this simplification.) Then

∂ηy

∂εp
=

(
∂ηy

∂εp
p

∂ηy

∂εp
q

)
=

(
∂ηy

∂ηp

∂ηp

∂εp
p

∂ηy

∂εp
q

)
=

( ηy

ηp
kvo

(ηp−ηy)2

aηp

)
(3.137)

and the hardening expression H (3.108) becomes

H = −∂f

∂χ

∂χ

∂εp

T ∂g

∂σ
= p′

[
(M − ηy)

ηy

ηp
kvo +

(ηp − ηy)2

aηp

]
(3.138)

The yield function, flow rule and hardening rule are chosen as before ((3.112),
(3.114) and (3.117)) and consequently the other elements of the elastic-plastic
stiffness matrix (3.120) remain unchanged.

This model now homes in on a critical state condition, heading always to-
wards the current peak strength following the hyperbolic hardening law but this
peak strength is itself changing as the soil compresses or dilates with shearing.
Thus, even though the hardening law appears to be a simple hyperbolic mono-
tonically increasing function of strain, nevertheless the stress:strain response
is able to introduce strain softening and the accompanying smooth transition
between compression and dilation. The peak strength is thus a moving target
which can only be attained at infinite distortional strain (it remains the asymp-
tote of the hardening law) by which time it is identical with the critical state
strength.

Typical stress-strain and volumetric strain responses calculated using this
model are shown in Fig 3.49. The behaviour depends strongly on the initial
value of state variable: a positive initial state variable indicates an initially
loose material which tends to compress as it is sheared and shows little in the
way of a peak strength; a negative initial state variable indicates an initially
dense material which dilates as soon as the critical state stress ratio is exceeded
on the initial loading and then shows a peak with subsequent strain softening.
Evidently the stress response envelopes that are calculated (Fig 3.50) depend
on whether the current state is pre-peak—in which case the response is similar
to that shown for the hardening model (Fig 3.41)—or post-peak—in which case
the response is similar to that shown for the softening model (Fig 3.46).
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Figure 3.49: Response of elastic-hardening plastic Mohr-Coulomb model with
current strength dependent on state variable in conventional drained triaxial
compression tests (δσr = 0): (a) stress:strain response (dotted curves indicate
variation in current peak strength; solid curves indicate mobilised strength)
and (b) volumetric strain response dependent on initial density (initial value of
state variable in range −0.5 < ψi < 0.5, p′i = 100 kPa) (K = 1500 kPa, ν = 0.3,
M = 1.2, a = 0.01, k = 2)
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Figure 3.50: Elastic-hardening plastic Mohr-Coulomb model with strength de-
pendent on state variable: stress response envelopes (a) pre-peak (hardening
εq = 0.04); (b) post-peak (softening εq = 0.2) (all constitutive parameters as in
Fig 3.49, ψi = −0.5)

3.4.2 Cam clay

Historically it is probably reasonable to describe Cam clay as the first hardening
plastic model that has become generally adopted for soils. It has formed a basis
for much subsequent development of soil models. Originally developed in the
early 1960s, models of the Cam clay form have been widely and successfully
used for analysis of problems involving the loading of soft clays. It has been less
successful in describing the behaviour of sands for which models which make
use of distortional hardening and nonassociated flow (§3.4.1) have generally
been reckoned to be more satisfactory. A detailed description of the Cam clay
model and of the behaviour of soils—especially clays—seen against the patterns
of behaviour that the Cam clay model reveals is given by Muir Wood (1990);
here we will present the model within the general framework of elastic-hardening
plastic models that has been developed in section §3.4.

We can quickly identify a defect of the various extended Mohr-Coulomb
models. For clays, an important aspect of the observed mechanical behaviour
is the large change in volume that occurs during compression (Fig 3.51) when
the stresses acting on a sample of soil are all increased in proportion—isotropic
compression and one-dimensional compression are obvious examples. Clearly if
the model is to be used to reproduce the loading of soft clays then this volumetric
response must be included. However, applying such proportional stress paths
to any of the Mohr-Coulomb models, as presently described, will produce solely
elastic response as shown in Fig 3.51c. The irrecoverability of the volumetric
response suggests that a different mechanism of plastic deformation will be
required. This could be achieved by adding extra yield mechanisms to the Mohr-
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Figure 3.51: (a) Large irrecoverable volume changes in oedometer test on clay
subjected to (b) typical compression stress path giving rise to (c) elastic volume
changes in Mohr-Coulomb model

Coulomb models; the Cam clay model that will be described here provides an
elegant alternative route.

As before, for simplicity we will develop the model in terms of the triaxial
strain increment and stress variables and work through the several ingredients
of the model in turn.

1. Elastic properties: We will assume that the elastic behaviour of the soil
is isotropic and defined by two elastic parameters, bulk modulus K and shear
modulus G.

Results of oedometer tests are typically presented in semilogarithmic plots
because it is found that the relationships between stress and volume change
then become somewhat more linear—both during loading and during unloading.
Looking at the typical loading and unloading response in an oedometer (Fig
3.51a) we can easily see the division of the volume changes into elastic and
plastic parts just as for the uniaxial loading of the copper wire in Fig 3.35. It is
logical then to use the average slope κ of an unload-reload line to characterise
the elastic volumetric response (Fig 3.52) and to assume that κ is a soil constant:

v = vκ − κ ln p′ (3.139)

where vκ is a reference value of specific volume on a particular unloading-
reloading relationship. We can convert this to an incremental relationship

δεe
p = −δv

v
=

κ

v

δp′

p′
(3.140)

which implies that the bulk modulus K is not constant but is dependent on
stress level (and on current packing)

K =
δp′

δεe
p

=
vp′

κ
(3.141)

In this form the value of κ is directly related to swelling index Cs:

κ =
Cs

ln 10
(3.142)
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Figure 3.52: Cam clay: linear normal compression and unloading-reloading lines
in semilogarithmic compression plane

An alternative possibility is to propose a linear link between volumetric strain
(rather than change in volume) and log of mean stress so that then the bulk
modulus depends only on p′ (for example, (3.58)) which leads to slightly more
elegant expressions. However, the important result is that the elastic stiffness
is nonlinear and depends on the current stress level.

Having chosen one elastic property we require one more (the elastic prop-
erties of our material may be nonlinear but the material is still assumed to be
isotropic). We may often find it convenient to choose a constant shear modulus
G because we will see this directly from the initial behaviour in any compression
test.

δεe
q =

δq

3G
(3.143)

An alternative will be to choose a constant value of Poisson’s ratio ν, thus
forcing a constant ratio of shear modulus and bulk modulus.

G = K
3(1− 2ν)
2(1 + ν)

(3.144)

Clearly if G is constant then the variation of bulk modulus K with stress will
lead to a varying ν (and as the effective mean stress and hence the bulk modulus
fall towards zero the value of Poisson’s ratio will tend towards −1). However,
if Poisson’s ratio ν is assumed to be constant then G changes together with
bulk modulus and we have seen that there are thermodynamic problems if we
make both G and K functions of p′—it becomes possible to generate or dissipate
energy on supposedly elastic cycles of stress change (Zytynski et al., 1978). It
is not possible to define an elastic potential which implies a constant Poisson’s
ratio if the bulk modulus is a function of mean stress alone (§3.2.5).
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With certain reservations then, we have the elastic stiffness and compliance
relationships: (

δp′

δq

)
=

(
vp′/κ 0

0 3G

)(
δεe

p

δεe
q

)
(3.145)

(
δεe

p

δεe
q

)
=

(
κ/vp′ 0

0 1/3G

)(
δp′

δq

)
(3.146)

2. Yield criterion: In the triaxial stress plane (p′, q) it is assumed that the
yield locus has an elliptical shape passing through the origin of the stress plane
(Fig 3.53). This introduces two variables: the aspect ratio of the ellipse M which
controls the shape of the ellipse, the ratio of the vertical (q) axis to the horizontal
(p′) axis; and the size of the ellipse p′o which is the hardening parameter χ for
the Cam clay model. The equation of the ellipse can be presented in various
different ways. To fit in with the general presentation of hardening plastic
models we can write:

f (σ, p′o) =
q2

M2
− p′ (p′o − p′) (3.147)

so that, as usual, f < 0 indicates elastic behaviour, f = 0 indicates that yielding
is occurring and f > 0 is not permitted.

However, the equation of the ellipse can also be written

p′

p′o
=

M2

M2 + η2
(3.148)

or
q2

M2
= p′ (p′o − p′) (3.149)

Different forms of the equation are useful in different circumstances.
For stress changes (δp′, δq) causing yield, the change in size of the yield locus

can be written:

δp′o = (2p′ − p′o)
δp′

p′
+

2q

M2

δq

p′
(3.150)
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or

δp′o =
(

M2 − η2

M2
δp′ +

2η

M2
δq

)
(3.151)

or
δp′o
p′o

=
δp′

p′
+

2η

M2 + η2
δη (3.152)

and from these expressions the change in size of the yield locus required to
accommodate any change in effective stress which causes yielding can be calcu-
lated.

It is often convenient to work in terms of mean stress p′ and stress ratio
η and expressions (3.148) and (3.152) are then obviously appropriate. As the
size of the yield locus changes the shape remains the same and the locus grows
from the origin. Along any line at constant stress ratio η = q/p′ the angle of
intersection with any yield locus is always the same.

3. Flow rule: It is assumed that Cam clay obeys the hypothesis of associated
flow (normality) so that the plastic strain increment vector is assumed to be
normal to the yield surface at the current stress state (Fig 3.53). The plastic
potential function then has the same form as the yield criterion:

g (σ) = f (σ, p′o) =
q2

M2
− p′ (p′o − p′) = 0 (3.153)

The plastic strain increments are given by

(
δεp

p

δεp
q

)
= µ

(
∂g
∂p′
∂g
∂q

)
= µ

(
2p′ − p′o

2q
M2

)
(3.154)

Alternatively, using form (3.148) of the equation of the elliptical yield lo-
cus, the ratio of plastic volumetric strain to plastic distortional strain, which
characterises the plastic deformation mechanism, can be written:

δεp
p

δεp
q

=
M2 − η2

2η
(3.155)

The mechanism of plastic deformation depends only on the stress ratio at
which yielding is occurring and changes continuously as the stress ratio changes.
Several particular cases are of interest:

• for η = 0, δεp
p/δεp

q = ∞ which implies compression without distortion
and this is appropriate for isotropic consolidation without application of
distortional stresses;

• for η = M , δεp
p/δεp

q = 0 which implies distortion without compression—
this is the critical state condition;

• yielding with low values of stress ratio η < M gives δεp
p/δεp

q > 0 which
implies compression plus distortion; and

• yielding with high values of stress ratio η > M gives δεp
p/δεp

q < 0 which
implies expansion plus distortion.
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The implications of these different cases for the overall response of the model
will be explored subsequently.

4. Hardening rule: The hardening rule describes the dependence of the size
of the yield locus p′o on the plastic strain. Cam clay is a volumetric hardening
model in which it is assumed that the size of the yield locus depends only on
the plastic volumetric strain through an expression

(
∂p′o/∂εp

p

∂p′o/∂εp
q

)
=

(
vp′o/(λ− κ)

0

)
(3.156)

This hardening rule introduces one additional soil parameter λ. During isotropic
normal compression we have change in mean stress p′ with distortional stress q
kept constant at zero. There will be elastic volumetric strains given by (3.140)
and, because the mean stress is always at the tip of the yield surface p′ = p′o,
there will be plastic volumetric strains given by a rearrangement of (3.156):

δεp
p =

λ− κ

v

δp′o
p′o

=
λ− κ

v

δp′

p′
(3.157)

The total volumetric strain is then

δεp = δεe
p + δεp

p =
κδp′

vp′
+

(λ− κ) δp′

vp′
=

λ

v

δp′

p′
(3.158)

Noting that the definition of the volumetric strain is

δεp =
δv

v
(3.159)

expression (3.158) can be integrated to give the form of the normal compression
relationship linking specific volume v and mean effective stress p′:

v = N − λ ln p′ (3.160)

where N is a reference value of specific volume for unit value of mean effective
stress. This is a linear normal compression relationship with slope λ in the
semi-logarithmic plot (Fig 3.52). It may be noted that

λ =
Cc

ln 10
(3.161)

and the plastic compressibility λ can be directly related to the compression
index Cc.

Now that all the ingredients of the model are in place the overall plastic
compliance relationship can be deduced:

(
δεp

p

δεp
q

)
=

λ− κ

vp′ (M2 + η2)

(
M2 − η2 2η

2η 4η2

M2−η2

) (
δp′

δq

)
(3.162)

and the full stiffness matrix linking the stress increments with the total strain in-
crements can be obtained by substitution in (3.108) and (3.109). The hardening
quantity H is given by

H = − ∂f

∂p′o

∂p′o
∂εp

p

∂g

∂p′
= − (−p′)

(
vp′o

λ− κ

)
(2p′ − p′o) (3.163)
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and the full elastic-plastic stiffness relationship is given by

(
δp′

δq

)
=




(
K 0
0 3G

)
−


 K2 (2p′ − p′o)

2 6GKq(2p′−p′o)
M2

6GKq(2p′−p′o)
M2

36G2q2

M4




[
K (2p′ − p′o)

2 + 12Gq2

M4 + vp′p′o(2p′−p′o)
λ−κ

]




(
δεp

δεq

)
(3.164)

where K = vp′/κ.
Whether the compliance form (3.162) or the stiffness form (3.164) is used

it is evident that the controlling matrix is symmetric: this results from the
assumption of associated flow in which the vectors of plastic strain increment
are assumed to be normal to the yield locus at the current effective stress causing
yield.

Study of (3.162) shows that the magnitude of the plastic strains is controlled
largely by λ − κ. It will be the difference between these two soil parameters
(rather than the absolute value of either of them) that will have to be varied in
order to match available experimental data. Some qualitative statements about
the nature of the stress:strain response can be made.

What happens as η → M? The top line of the compliance matrix (3.164)
shows that as the stress ratio approaches the value M so the plastic volumetric
strains become smaller and smaller. Since the plastic hardening depends only on
the plastic volumetric strain it can be deduced correspondingly that the change
in p′o in any stress increment has to tend to zero as the stress ratio approaches
M . The bottom line of the compliance matrix shows that the shear compliance
tends to infinity, or in other words the shear stiffness tends to zero. In fact, an
asymptotic perfectly plastic condition is predicted in which distortional strains
continue but with no further changes in size of yield locus, stresses or volumetric
strains. Such an ultimate state has been termed a critical state (§2.6.1).

η → M : δεp
p → 0; δp′o → 0;

δεp
q

δq
→∞ (3.165)

The value of the soil parameter M can therefore be related to the ultimate
value of the angle of shearing resistance for the soil φc in triaxial compression:

M =
6 sin φc

3− sinφc
(3.166)

The Cam clay model responds stably to yielding with stress ratio η < M
and under such conditions it does not matter whether the problem is driven by
stress changes or by strain changes: it is often conceptually easier to think of
the response to stress changes because the model has been described in terms
of a yield locus in a stress plane. In a typical compression test the deviator
stress rises steadily towards the ultimate value (low overconsolidation ratio in
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Figure 3.54: Cam clay: (a) stress:strain and (b) volumetric strain response in
drained triaxial compression tests with constant mean stress (δp′ = 0) (κ = 0.05,
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Figure 3.55: Cam clay: stress response envelopes (a) η < M , p′i/p′o = 0.75;
(b) η > M , p′i/p′o = 0.25 (κ = 0.1, ν = 0.3, λ = 0.25, M = 1.2) (vi = 2.5,
p′o = 200 kPa)

Fig 3.54). A typical stress response envelope for this regime is shown in Fig
3.55a. The two elliptical segments are now tangential to each other for stress
increments which imply neutral loading with the stress increment tangential to
the yield locus. This is a consequence of the assumption of associated flow.

However, if the soil is yielding with stress ratio η > M then study of (3.162)
shows that the distortional compliance is negative and continuing shearing with
δεp

q > 0 implies δεp
p < 0, δp′o < 0 and δq < 0 which implies strain softening (high

overconsolidation ratio in Fig 3.54). The stress ratio η = M is still an ultimate
asymptote but the soil now approaches this stress ratio from above rather than
from below. Consideration of the equation for the yield locus (3.148) shows
that yielding with stress ratios greater than M is only possible for values of
p′/p′o less than 1/2—overconsolidation ratios greater than 2. Such behaviour
is characteristic of dense or heavily preloaded materials which are so tightly
packed that they have to expand in order that the particles should be able to
move relative to each other and allow the material to distort (§2.6).

This is a real phenomenon, but as noted in §3.4.1, it can lead to numerical
problems because of the uncertainty: does a reduction in shear stress imply an
elastic unloading or a continuing plastic strain softening? The stress response
envelope (Fig 3.55b) illustrates this ambiguity—as for the Mohr-Coulomb mod-
els with strain softening (Figs 3.46b and 3.50b) the response envelope is folded
over on itself. All strain increments are possible and each strain increment
implies an unambiguous stress increment. However, certain stress increments—
those which attempt to escape from the current yield locus—are not possible
and the section of the stress plane lying outside the yield locus in the region for
which η > M is inaccessible (Fig 3.56). Stress changes which move inside the
current yield locus can be associated with either purely elastic or with elastic
plus plastic strains. In analysis of such situations the soil response has to be
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Figure 3.56: Cam clay: hardening of yield locus with η < M , softening of yield
locus with η > M

driven by strain increments—which will make it quite clear whether unloading
or plastic softening is implied—rather than stress increments precisely because
many stress increments will in fact be physically either impossible or ambiguous.
Numerically and physically such behaviour leads to the occurrence of localisa-
tion: as the material softens it becomes weaker and natural inhomogeneities
lead to strain concentrations and formation of ruptures or shear bands through
the material.

The Cam clay model has five material properties. There are two elastic
properties κ and G or ν. The volumetric parameter κ is linked with swelling
index Cs (3.142). There are two plastic properties M and λ which can be
linked with angle of shearing resistance in triaxial compression φc (3.166) and
compression index Cc (3.161) respectively.

The final soil parameter is a reference for volume in order that volumetric
strains can be calculated. We have defined the equation of the isotropic normal
compression line using a reference parameter N to indicate the specific volume
for unit mean stress (Fig 3.52). However, results of predictions made using Cam
clay are not usually very sensitive to plausible variations of N—so the reference
volume can just as well be taken from one-dimensional compression data.

The isotropic normal compression line defines the values of specific volume
when the stress state is always at the tip of the yield locus, p′ = p′o and the soil
is always yielding. More generally, for stress states inside the yield locus there
is some implied elastic expansion from the normal compression line (Fig 3.52)
and the specific volume is given by

v = N − λ ln p′o + κ ln
(

p′o
p′

)
(3.167)

or, if the soil is yielding with stress ratio η

v = N − λ ln p′o + κ ln
(

M2 + η2

M2

)
(3.168)

The value of N depends on the units used for measurement of stress. Users
of Cam clay need to be vigilant. Here we will always take the value of N to
correspond to a mean stress p′ = 1 kPa.
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Cam clay: effective stress path in undrained test

The effective stress path followed in an undrained test can be calculated in
exactly the same way as for the Mohr-Coulomb models by requiring the elastic
and plastic volumetric strain increments to be always equal and opposite. From
(3.140) and (3.157) and the definitions of p′o ((3.148) and (3.152)) and of stress
ratio η = q/p′:

κδp′ +
λ− κ

M2 + η2

[(
M2 + η2

)
δp′ + 2ηp′δη

]
= 0 (3.169)

Integrating this expression, from an initial yielding stress state p′i and ηi, and
substituting

Λ =
λ− κ

λ
(3.170)

the effective stress path is found to be

p′i
p′

=
(

M2 + η2

M2 + η2
i

)Λ

(3.171)

ending at a failure state with mean effective stress p′f and stress ratio equal to
M :

p′i
p′f

=
(

2M2

M2 + η2
i

)Λ

(3.172)

For elastic stress changes the constant volume condition requires, for an isotropic
elastic material, that there should be no change in mean effective stress. Effec-
tive stress paths for initially normally consolidated, lightly overconsolidated and
heavily overconsolidated Cam clay are shown in Fig 3.57. For the isotropically
normally consolidated soil (ηi = 0) the ratio of mean effective stresses at the
start of the test (p′i) and at failure (p′f is 2Λ. The undrained strength of the soil
cu is given by:

cu =
qf

2
= M

p′f
2

=
M

2
p′i
2Λ

(3.173)

and hence for isotropically normally consolidated soil the ratio of undrained
strength to initial effective stress is a function only of soil constants M and Λ:

cu

p′i
=

M

21+Λ
(3.174)

Cam clay: worked example

For the purposes of hand calculation using the Cam clay model it is usually
easiest to consider problems as stress driven processes—though obviously this
will break down unless special precautions are taken if yielding is occurring
with η > M . The relevant equations are then the elastic and plastic compliance
relationships: (3.146) and (3.162).

To use any elastic-plastic model we need to know about:
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Figure 3.57: Cam clay: undrained triaxial compression tests conducted with
constant total mean stress (δp = 0): (a) effective stress paths; (b) stress:strain
response; (c) development of pore pressure (κ = 0.05, G = 1500 kPa, λ = 0.25,
M = 1.2) (overconsolidation ratios p′o/p′i in range 1-5, p′o = 100 kPa)
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the past—because we must know how big is the current yield surface
p′o;

the present—because we need to know what are the current stresses
(which must lie inside or on the yield surface) p′i, qi; and

the future—because we are trying to calculate the response of the
model to some imposed perturbation.

A sample of Cam clay with properties M = 1.2, λ = 0.3, κ = 0.06, N = 3.5
(at p′ = 1 kPa), G = 2000 kPa has been subjected to past stresses leaving it
with a yield locus of size given by p′o = 100 kPa. The sample is in pore pressure
equilibrium under initial stresses qi = 0, p′i = 75 kPa and is then subjected to a
conventional drained triaxial compression test.

1. What stress changes can be imposed before plastic strains start to occur?
2. What are the elastic strains at this stage?
3. What is the ratio of plastic strain increments (the mechanism of plastic

deformation) immediately after yielding occurs?
4. What are the magnitudes of the strains for a further change of stresses

δq = 3 kPa, δp′ = 1 kPa?
1. The past is controlled by the size of the yield locus which is indicated

by the initial value of p′o. The present is indicated by the given initial effective
stresses p′i and qi. The future is indicated by the specified test: in this case we
are told that it is a conventional drained triaxial compression test. We need to
use all three of these pieces of information in order to answer the first question.

From the specified drained stress path, the yield point is at:

p′ = p′i + x; q = 3x

but also lies on the initial yield locus (3.149) with size p′o = 100 kPa.
This equation can be solved either directly or by iteration to give a value of

x—noting that only one of the two roots is plausible (the other root corresponds
to a drained triaxial extension test at constant radial effective stress in which
q < 0). This gives x = 13 kPa and hence p′y = 88 kPa; qy = 39 kPa; and the
stress ratio at yield is ηy = 0.443.

2. The initial specific volume of the clay is given by (3.167):

vi = N − λ ln p′o + κ ln
(

p′o
p′i

)
= 2.136

The elastic strains can be calculated in a single increment using (3.146) and
perhaps taking the average value of the initial and yield values of mean effective
stress:

δεe
p =

κδp′

vp′
=

0.06× 13
2.136× 1

2 (75 + 88)
= 0.0045 (0.45%)

δεe
q =

δq

3G
=

39
6000

= 0.0065 (0.65%)

From the definition of the volumetric and distortional strain increments, we
can then deduce the corresponding axial and radial strain increments, δεe

a =
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0.8%; δεe
r = −0.175%. The new value of specific volume is 2.126, calculated

from the definition of volumetric strain.
3. The ratio of plastic strain increments after yield is given by the flow rule

(3.155):
δεp

p

δεp
q

=
M2 − η2

2η
=

1.22 − 0.4432

2× 0.443
= 1.404

and the volumetric strains have become more dominant. Note that the ratio of
total strain increments depends on the direction of the stress increment because
this will affect the elastic strains that are generated.

4. Once the actual details of a further stress change have been specified the
strain increments can be calculated. The stress increments are: δq = 3 kPa,
δp′ = 1 kPa. The elastic strain increments are calculated as before:

δεe
p =

0.06× 1
2.126× 88

= 0.0003; δεe
q =

3
6000

= 0.0005

The plastic strain increments are calculated using the plastic compliance
matrix (3.162) using appropriate values of soil parameters, stresses and stress
ratio:

δεp
p =

λ− κ

vp′ (M2 + η2)
[(

M2 − η2
)
δp′ + 2ηδq

]

=
0.24

2.126× 88× (1.22 + 0.4432)
[(

1.22 − 0.4432
)× 1 + 2× 0.443× 3

]

= 0.0031

δεp
q =

0.0031
1.404

= 0.0022

The total strain increments are then: δεp = 0.34%; δεq = 0.27%. These can
be converted to axial and radial increments: δεa = 0.38%; δεr = −0.02%. The
resulting deformation is now very nearly one dimensional with almost no radial
strain.

3.5 Modelling non-monotonic loading

In section §2.5.3 we described some of the kinematic aspects of stiffness of soils
and we showed a schematic variation of stiffness with non-monotonic loading
in Fig 3.17. How far have we progressed towards being able to reproduce this
character of response?

Although our elastic-hardening plastic models are an evident improvement
on the elastic-perfectly plastic models in that they provide for a steady decrease
of tangent stiffness after yield occurs, rather than an immediate drop to zero (Fig
3.18), there is still the dramatic fall in stiffness as the stress path crosses the yield
surface (Fig 3.58a) whereas real soils tend to show much more gradual stiffness
changes. There is also a significant difference on unloading (Fig 3.58b). The
elastic-plastic models described here predict that the yield surface will expand
as the stress state pushes it outwards—and the more it expands the larger the
elastic region that remains. In fact, our kinematic observation suggests that,
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Figure 3.58: Comparison of typical capability of elastic-hardening plastic model
with actual soil behaviour (a) variation of tangent stiffness with monotonic
shearing; (b) unload-reload response

though the elastic region may indeed change in size as the stresses push it
around, it is the change in position that is possibly more significant. Unloading
paths develop plasticity in a way that the Cam clay model cannot describe.

Such response can be described using a kinematic hardening extension of
the hardening plasticity models. Our models are essentially isotropic hardening
models: the Cam clay yield locus retains its shape and orientation, and always
passes through the origin of stress space whatever the stress path that interacts
with it6; the yield locus of the Mohr-Coulomb model becomes a progressively
more open cone.

A kinematic hardening extension of a Cam clay-like model is illustrated in
Fig 3.59 (Al-Tabbaa and Muir Wood, 1989). The elastic region is now confined
to an elastic ‘bubble’ which floats around in stress space with the current stress
state. Plastic strains occur whenever the ‘bubble’ moves but the plastic stiffness
is controlled by the separation, b, of the ‘bubble’ and some outer ‘bounding’ sur-
face and falls as the ‘bubble’ approaches this ‘bounding’ surface. A translation
rule is introduced to describe the way in which the ‘bubble’ decides how much
to change in size and how much to change in position as the stress engages with
it. With appropriate formulation this model can be made to behave identically
to Cam clay when the soil is being loaded with the ‘bubble’ in contact with the
bounding surface (which then looks rather like the Cam clay yield surface—but
is not actually a yield surface because it does not control the onset of develop-
ment of plastic strains) (Fig 3.59). There is thus a hierarchical development of
the model, adding desirable features (smooth variation of stiffness, plasticity on
stress reversal) to an already somewhat familiar model, Cam clay.

6Strictly, because the centre of the Cam clay yield locus moves as the soil hardens (or
softens), Cam clay already contains a kinematic hardening element. However, the constraints
imposed by the insistence that the yield locus should always pass through the origin of stress
space and should have its centre on the mean effective stress p′ axis make this model unable
to reproduce the full kinematic character of response seen in experiments.
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Figure 3.60: Effect of cementation or bonding as feature added to elastic-
hardening plastic model

3.6 Modelling cementation and structure

We can add further effects in a similarly hierarchical way. Weak rocks have
particles which are bonded together. However, we expect that with mechanical
(or chemical) action these bonds can be damaged and the rock turned eventually
into a soil. Natural soils often contain a certain amount of structure which may
also manifest itself as a bonding between particles which can be destroyed with
mechanical or chemical damage. Quick clay slides occur because a change of
pore water chemistry upsets the particle bonds leaving a metastable structure
which can easily be destroyed. When these quick clays collapse they flow like
liquid—their structure has been entirely lost.

We can postulate that the bonded material might be described by an ex-
tended Cam clay type of model in which the yield surface has an increased size
as a result of the bonding (given a rather general shape in Fig 3.60). With
plastic straining (or chemical weathering) the yield surface gradually shrinks to
the Cam clay-like surface, appropriate to the remoulded, structureless material.
Such an approach is adopted by Nova et al. (2003) as an extension of a Cam
clay-like model to describe effects of chemical weathering of rocks. A similar
approach is adopted as an extension of the ‘bubble’ kinematic extension of Cam
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clay by Rouainia and Muir Wood (1999) and Callisto, et al. (2002) to simulate
the behaviour of natural clays damaged only by plastic straining.

3.7 Modelling rate effects

If we perform a very slow triaxial test on a sample of clay with the drainage
connections open then we can be reasonably confident that no pore pressure
will build up in the soil and we will observe a fully drained response of the
soil. If we repeat this test extremely fast then, even if the drainage connections
are open, there will be no possibility for pore water to move into or out of
the sample and we will observe a more or less fully undrained response of the
soil. Although we seem to have discovered a rate effect—in that the response
that we see depends on the rate at which we apply the load—this is in fact a
system effect and not a material effect. If we were to test an infinitesimally
small element of soil then the drainage path length would be essentially zero
and drainage, even in the very rapid test, would occur instantly. We can explain
this apparent rate effect entirely in terms of restricted pore water flow—which
will obviously be more significant in an impermeable soil such as clay than in a
relatively permeable soil such as a sand. However, what constitutes ‘extremely’
fast can only be determined in relation to the permeability and dimensions of
the material system being tested.

There are other effects which can be ascribed to truly rate dependent ele-
ments of the constitutive response of soils. Clays left at constant effective stress
creep and develop secondary consolidation strains. A helpful picture of the char-
acter of this response can be given using ‘isotaches’ (Fig 3.61) (Šuklje, 1957).
For a one-dimensional configuration (such as the oedometer) these form a fam-
ily of curves (in general) linking strain and effective stress with each isotache
corresponding to a specific strain rate but with a somewhat logarithmic spac-
ing. At constant stress, strain develops at a decreasing rate as the clay moves
down across the family of isotaches, AB, and this creep can be assumed to have
occurred over geological time for samples presently in the ground. If the sample
is now placed in an oedometer and the total stress increased, the initial pore
pressure will dissipate allowing the effective stress to increase and, as it does
so, the strain rate to increase (BC). However, the strain rate will subsequently
decrease again as the creep strains dominate over the effects of the deformation
linked with the dissipation of residual pore pressures (CD). Description of an
isotache model and examples of its application to the estimation of creep under
an embankment on soft clay and long term secondary settlement of reclamation
on soft clay can be found in Nash (2001) and Nash and Ryde (2001).

If we perform a compression test at a constant rate of strain then we will track
down one of the isotaches (AB in Fig 3.62). If we suddenly increase or reduce
the strain rate we will jump rapidly across to the isotache corresponding to this
new rate (CDEF). The slope of the path followed in the stress:strain diagrams
of Figs 3.61 and 3.62 is directly related to the stiffness. We might deduce from
the changes in stiffness that are being seen that the clay is yielding—switching
from high stiffness elastic to low stiffness plastic response—but actually this
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Figure 3.61: Family of isotaches for one-dimensional compression of clay

stiffness change is just the result of the interaction of the history of the soil with
the viscoplastic isotache model.

If we collect data of stiffness change for a wider range of probing stress paths
applied to a series of identical samples in a triaxial apparatus (for example) then
we can discern a ‘yield’ locus for the clay with that particular initial history (Fig
3.63). Exploring this ‘yielding’ process with different strain rates will lead to a
family of ‘yield’ loci, each corresponding to a different strain rate (Fig 3.63)—
again we expect a somewhat logarithmic spacing. This implies a viscoplastic
underpinning model for the soil response: there is a rate dependence of the
irrecoverable deformation of the soil (the plasticity) that occurs when the stress
state tries to go beyond the boundary of some region of stiff elastic response
(the yield surface).

The effect of this viscoplastic interpretation of rate effects in clay on the
stress response envelopes that were used to illustrate the history dependence of
stiffness is probably something like that shown in Fig 3.64. With time, the small-
strain stress response envelopes drift away a bit from the current stress state.
Thus if creep equilibrium (the attainment of a tolerably low strain rate) is sought
before probing to determine the response envelope begins, rather similar initial,
very small strain, stiffness will be seen for all directions of stress probes. This
is supported by the careful experimental observations of Clayton and Heymann
(2001).

Sands have classically been regarded as completely free from viscous or rate
effects. However, with increasingly accurate laboratory measurements—and in-
strumentation that is stable over long time periods—it has become evident that
there are small but possibly significant rate effects in such materials too. There
is evidence of the sort of effect shown in Fig 3.64—with sand stiffening when
loads are left for a while so that the sand ages, even over the timescales of
laboratory testing—but this effect is also familiar from set-up of driven piles
in sand. Matsushita et al. (1999) show results from triaxial and plane strain
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tests on two sands which appear to show that: for testing at constant rate of
strain the stress:strain response is rather independent of strain rate; if the strain
rate is suddenly changed then the response overshoots the constant strain rate
response but reverts to it with time (Fig 3.65); under constant stress creep oc-
curs. The models that are being devised to reproduce these results are complex
(DiBenedetto et al., 2002) and introduce a viscosity which decays with time.

Clearly this is an area of active current research where data need to be gath-
ered for many different soil types and under different test conditions. Physical
explanation might well refer back to the force chains observed in particulate
systems (Fig 2.6). These chains are immediately fragile when first formed and
any small amount of particle movement—encouraged by ambient vibrations or
by local crushing of particle contacts even at a microscopic scale—will allow
adjustment of the chains leaving a more stable arrangement of particles. The
challenge is evidently to build such physical thoughts into applicable constitutive
models.

3.8 Design of programmes of laboratory tests

Parameters for soil models need to be obtained by calibration against laboratory
tests—and perhaps in-situ tests and observations of performance of geotechnical
systems. It should be clear that soils are nonlinear, history-dependent materials
and that it is quite likely that any given soil model will only be able to give
an approximate description of the actual mechanical behaviour of a particular
soil. We may expect that the more complex the model that is adopted the
more extensive will be the range of soil behaviour that it is able satisfactorily to
reproduce. However, the models generally available for application in accessible
numerical analysis programs will usually be at the simpler end of the modelling
spectrum. Typically these would include the elastic-perfectly plastic Mohr-
Coulomb model and the elastic-hardening plastic Cam clay model.

The subtlety of soil response should lead us to try to commission programmes
of laboratory testing that follow stress paths which bear some resemblance to
those that will be experienced by significant elements of soil around a geotech-
nical structure (Wood, 1984)—but, as we have seen in §2.3, the testing possi-



3.8. Design of programmes of laboratory tests 173

bilities are in fact somewhat limited. In practice, most of the laboratory data
with which we will be expected to calibrate our models will come from axisym-
metric triaxial tests—very often (conventionally) conducted with constant cell
pressure. However, if we can estimate the stress paths for typical elements in
a prototype geotechnical system then we may have some idea of the sorts of
initial stresses and stress changes that are likely to be relevant, even given the
limited range of laboratory testing configurations that are available.

Just as for application of constitutive models to estimate response of soil
elements—and also for performance of numerical analysis of the response of
geotechnical systems—we have to think about the past, the present and the
future. So far as the present is concerned we will usually be able to make a
reasonably good estimate of the vertical total stress at any point in the ground,
simply from the weight of overburden. To estimate the vertical effective stress
we will then need some additional information about the pore water regime.
Then, in order to estimate the horizontal stress—and hence estimate the in-situ
shear stresses—we need to have some idea about the past history of the soil: how
has it got to its present position? For soils which have had at least a somewhat
one-dimensional history we can use empirical expressions for the earth pressure
coefficient at rest, Ko, to estimate the horizontal stress provided we have some
idea about the history of overconsolidation (see Muir Wood, 1990 for a more
detailed discussion). For normally consolidated soils the value of Konc is linked
with angle of shearing resistance φ′:

Konc ≈ 1− sin φ′ (3.175)

For overconsolidated soils, with overconsolidation ratio n = σ′vmax/σ′v, we can
obtain an initial estimate using the expression

Ko ≈ Konc

√
n (3.176)

The value of Ko builds up with increasing overconsolidation: for heavily over-
consolidated soils the value of Ko can approach the passive pressure coefficient.

So far as the future is concerned we will consider four examples. In each of
them we are concerned to make order-of-magnitude estimates of many quantities
which we will need to confirm through more detailed testing—but of course we
are concerned to ensure that that detailed testing is as relevant as possible.
There are no precise answers to these examples: the important thing is to think
through the stress changes that are likely and make choices for testing that can
be logically defended.

Example 1: A strip footing of width 2 m is to be founded at a depth of
0.5 m in a sandy soil. The water table is at a depth which will not influence the
response of the footing.

Let us consider typical elements A and B beneath the footing and to the side
of the footing, at a depth equal to half the width of the footing, and hence 1.5 m
below the original ground level, as shown in Fig 3.66a. Of course the influence
of the footing will extend to greater depths but much of the significant action
will occur near the surface and any failure mechanism would be expected to
extend to a depth no more than 1.5-2 times the width of the footing. We have
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Figure 3.66: (a) Shallow footing on sand; (b) stress paths for elements A (abc)
and B (ade)

to estimate a typical unit weight for the sand: we guess about 20 kN/m3 so that
the vertical stress at A and B is about σ′v ≈ 30 kPa. For a dense sand the angle
of shearing resistance might be about 40◦ so that, from (3.175), Ko ≈ 0.35 and
σ′h ≈ 10.5 kPa. For this plane strain problem we can convert these stresses to
a plane strain mean stress s′ = (σ′v + σ′h)/2 ≈ 20 kPa and plane strain shear
stress t = (σ′v − σ′h)/2 ≈ 10 kPa. We notice directly that the initial stresses at
this typical element are quite low—much lower than the stresses which might
routinely be used for laboratory testing.

Excavation removes a vertical stress of about 10 kPa. At A the horizontal
stress will also reduce very slightly—we could estimate a new value from (3.176).
The horizontal stress at B will reduce by roughly the same amount while the
vertical stress remains unchanged. The initial stage of the stress paths at A and
B is shown, exaggerratedly, in Fig 3.66b: paths ab and ad respectively.

Loading of the footing increases the vertical stress at A, and also increases
the horizontal stress by some unknown amount. Evidently there will be less
lateral restraint than there would be for one-dimensional oedometric loading so
the stress path (bc in Fig 3.66b) will be somewhat steeper than the Ko path.
Element B will experience similar changes in horizontal stress with no change
in vertical stress (de in Fig 3.66b).

In designing our laboratory testing programme we accept that we probably
cannot demand plane strain tests. We should choose triaxial tests with initial
stresses corresponding to those estimated—perhaps p′ = 20 kPa, q = 20 kPa.
To model element A we might impose a compression stress path with slope
δq/δp′ ≈ 1.5 − 2 (somewhat steeper than Ko) and for element B an extension
stress path with constant cell pressure δq/δp′ = −1.5. We might expect to make
some allowance for the larger strengths expected in plane strain than in triaxial
conditions in interpreting the results of these tests for design. If we wish to model
the kinematic evolution of the incremental stiffness of the soil (§2.5.3), then we
should probably include little excursions in the opposite direction before we set
off on these stress paths because the stiffness always increases after significant
changes in strain path direction.
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Figure 3.67: (a) Flexible retaining wall; (b) stress paths for elements A, B, C

Example 2: A numerical analysis is to be performed in order to estimate the
deformations that might develop in the ground around a flexible retaining wall
propped near the ground surface (Fig 3.67a) which is required to stabilise an
excavation of depth 8 m in a free draining dense sand. The water table is at
great depth. Typical elements A, B and C are shown.

Element A is at mid-height of the wall. Assume a unit weight γ = 18 kN/m3,
and angle of shearing resistance φ′ = 35◦. Then vertical stress σ′v = 72 kPa,
Ko = 1− sin φ′ = 0.43, horizontal stress σ′h = 30 kPa, s′ = 51 kPa, t = 21 kPa.
There will be little change in vertical stress, but reduction in horizontal stress
as excavation proceeds: ∆t/∆s′ ≈ −1, ∆t > 0.

Element C is below the excavated soil, at a depth of 12 m, say. The initial
vertical stress is σ′v = 216 kPa, horizontal stress σ′h = 92 kPa, s′ = 154 kPa,
t = 62 kPa. If the wall does not move then the major effect of the excavation
is to reduce the vertical stress: ∆t/∆s′ ≈ +1, ∆t < 0. However, in fact the
horizontal stress will fall somewhat so that ∆t/∆s′ < 1.

Element B behind the toe of the wall has an initial stress similar to element
C. The vertical stress does not change much with excavation but horizontal
stress falls more or less in step with the horizontal stress for element C: ∆t/∆s′ ≈
−1, ∆t > 0. Hence the stress paths shown in Fig 3.67b.

Triaxial tests with cell pressures between 30 kPa and 90 kPa might be rea-
sonable. It would be a good idea to start with initial stress states matching the
in-situ stress ratio. Conventional compression and extension with constant cell
pressure might be acceptable but really it would be better to perform special
tests in which the vertical stress is held constant while the horizontal stress is
reduced to mimic elements A and B. Elements nearer the surface will of course
have lower stress levels.

Example 3: An excavation is to be made in a clay slope to provide a building
platform as shown in Fig 3.68a. It is anticipated that the retaining structure
may form part of the eventual building. The interaction of soil and structure
will influence the support forces and other structural resultants. Construction
may be rapid and essentially undrained but eventually drainage will occur for
long term effects. Numerical modelling is proposed and a programme of labo-
ratory tests is required in order to obtain data which can be used to calibrate
appropriate constitutive models. Estimate total and effective stress paths for
typical elements A, B and C located approximately as shown.
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Figure 3.68: (a) Schematic diagram of excavation in clay slope; (b) stress paths
for elements A, B, C (full lines: total stress paths; dotted lines: effective stress
paths)

Soil-structure interaction is the central topic of Chapter 8: it is driven by
stiffness or deformation properties rather than by strength and the testing needs
to concentrate on these. We have seen in section §2.5.3 how sensitive stiffness
can be to the detail of recent stress paths.

First ignore the slope. Element A is 5 m deep (say), γ = 20 kN/m3; σv =
100 kPa, u ≈ 40 kPa(?), σ′v ≈ 60 kPa, Ko = 1 − 1.5(?). Obviously we need
to have a bit more knowledge of how the slope was formed, and of the current
hydrological regime, in order to obtain a better indication of the in-situ stresses.
We expect initial undrained plane strain response, with subsequent drainage as
pore pressure equilibrium is established, probably with a modified flow regime.
Excavation implies reduction in horizontal stress, with more or less constant
vertical stress so that t increases and s decreases and ∆t/∆s ≈ −1. For such a
path we expect the drained strength to be lower than the undrained strength.

Element B is 15 m deep (say), σv = 300 kPa, u ≈ 150 kPa?, σ′v ≈ 150 kPa,
Ko = 1 − 1.5? There will be some reduction in horizontal stress, with more or
less constant vertical stress: t increases, s decreases and ∆t/∆s ≈ −1.

Element C has similar initial stresses to B. There will be reduction in vertical
stress, some reduction in horizontal stress and a resulting passive/extension
path.

So, we might propose a programme of at least consolidated undrained tests
with pore pressure measurement. We should include compression and extension
tests over an initial stress range 60-150 kPa. We should perform tests with
a total stress path with reducing mean stress—this is a key deduction from
consideration of the stress paths for elements A, B, C. Perform tests in which
consolidation (drainage) is allowed at various stages towards the appropriate
total stress path—these will provide data which can be used to calibrate a
constitutive model which can be used to describe the long term response. (We
can assume rough equivalence of s and p, t and q/2 in the first instance.)

One of the main problems will be the directions of principal stresses. Even in
the slope before excavation they will not be vertical and horizontal. There will
be the problem of initial anisotropy of samples if they are taken vertically (§2.5.4,
Fig 2.52). There will be the usual problem of interpreting plane strain response
from axially symmetric tests. We will need to think about the significance of
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Figure 3.69: (a) Embankment constructed in stages; (b) stress paths for ele-
ments A, B, C, D, E

divergence of laboratory and field stress paths in the deviatoric π-plane (Figs
2.20b, 2.71).

Example 4: A long embankment with eventual height of 10 m and crest
width 10 m is to be constructed at a site where the soil consists of 10 m of soft
alluvial silty clays underlain by sands and gravels. It is intended to build this
embankment in stages, allowing time for consolidation and strengthening of the
soft soils between each stage of embankment loading.

• Identify typical soil elements within the soft soils which will influence the
performance and design of the embankment and discuss, with appropriate
sketches of stress paths, the changes in effective stress that are likely to
occur at these elements.

• To what extent will tests in a conventional triaxial apparatus be useful for
calibration of constitutive models for this application?

• Design a programme of laboratory tests that could be used to establish
soil properties for this application.

• What other properties of the soil would you wish to explore in some detail
before completing the design of the staged construction of this embank-
ment?

The embankment is sketched in Fig 3.69a and typical elements A, B, C, D,
E are shown. Stress paths are indicated in Fig 3.69b. For all elements there will
be episodes of undrained or partially drained loading followed by consolidation.
Support for the suggested paths can be found in numerical analysis of similar
geotechnical systems (Almeida et al., 1986; Muir Wood, 1990).

At element A the dominant effect is continuing confined compression—which
may be quite close to one-dimensional compression as noted for the footing in
Example 1. The eventual vertical stress increase is 10×18 = 180 kPa, estimating
the unit weight of the fill γfill = 18 kN/m3. The change in horizontal effective
stress ∆σ′h ≈ Ko∆σ′v ≈ 0.7× 180 = 126 kPa.
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At elements D and E the dominant effect will be increase of horizontal stress
by something less than 126 kPa with no change in vertical stress. This results
in an extension or passive type of stress path.

Elements B and C are more difficult. At these locations, under the sides
of the embankment, rotation of principal axes will certainly be important but
we cannot easily study this in the standard laboratory except, to some ex-
tent, using simple shear testing which may not be available. Numerical studies
(Almeida et al., 1986) have shown that the undrained shearing stages for these
elements under the sides of the embankment are much more damaging than
those at A—they come closer to failure. The effect of consolidation after these
undrained loadings will affect the subsequent undrained strength and this will
control how high the next stage of the embankment can be constructed. The
effective stresses reached at these elements after reconsolidation will certainly
see less lateral constraint than one-dimensional compression—perhaps draining
back to an effective stress path with zero horizontal stress change.

So far as our programme of triaxial tests is concerned, we should take samples
from various depths—for example, 3, 6, 9 m—and reestablish in-situ stresses
with an estimate of the in-situ value of Ko. Then subject these samples to one-
dimensional compression for element A; constant axial stress extension with
undrained episodes for elements D, E; multistage undrained tests almost to
failure followed by reconsolidation to a constant total horizontal stress path for
elements B and C.

We will certainly need information about in-situ permeability since this will
control the rate at which consolidation occurs and hence the rate at which
additional embankment layers can be added.

3.9 Selection of soil parameters: calibration of
models

As a simple exercise in parameter selection, we will show how soil parameters
might be selected to match the response observed in a single drained triaxial
compression test on normally consolidated Weald clay (Fig 3.70).

The most commonly required parameter selection is certainly the most sub-
jective: the choice of parameters for an elastic-perfectly plastic Mohr-Coulomb
model. We have seen that this model can only decribe a constant linear elastic
response up to yield/failure—and then the tangent stiffness falls to zero. Dur-
ing the (isotropic) elastic phase volume changes only occur if the imposed stress
path includes change in mean effective stress; once plastic failure occurs volume
change occurs at a continuing steady rate—either compressive or expansive—
indefinitely. We have to decide in choosing the soil parameters whether we are
attempting to match the overall response moderately or certain aspects of the
response in detail. One possible fitting is shown in Fig 3.70 (EPP). The elastic
properties are chosen to give a good match on average: the initial stiffness is un-
derestimated. The plastic properties give a slight underestimate of the strength,
and evidently indicate volumetric compression continuing much longer than is
actually observed. There are obviously many perfectly defensible alternative
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Figure 3.70: Conventional drained triaxial compression test on Weald clay (data
from Bishop and Henkel, 1962) and fitting of constitutive models (initial specific
volume vi = 1.64, confining pressure σ′r = 207 kPa (EPP: elastic-perfectly plas-
tic Mohr-Coulomb model; MCH: extended (hardening) Mohr-Coulomb model;
CC: Cam clay)

sets of parameters for this model. For the simulation shown: G = 1500 kPa,
K = 2800 kPa, M = 0.8 and M∗ = −0.15. The value of Poisson’s ratio is
ν = 0.273.

It turns out that with a hardening plastic model—whether the extended
Mohr-Coulomb model or Cam clay—it is quite possible, by trial and error, to
obtain really quite a good match to both the stress:strain and the volumet-
ric response of the soil in this test. In this particular case the Mohr-Coulomb
model with its hyperbolic distortional hardening law is perhaps slightly better
than Cam clay with its logarithmic volumetric hardening law—but with fur-
ther perseverance in trial and error selection of parameters better fits might be
obtained.

The values of soil parameters used for the Mohr-Coulomb model (MCH in Fig
3.70) are: G = 3800 kPa, K = 6000 kPa, M = 0.91, a = 0.015 and ηp = 0.95.
The value of Poisson’s ratio implied by the elastic properties is ν = 0.238. The
elastic stiffnesses are higher because—as seen in the worked example using the
extended Mohr-Coulomb model (§3.4.1)—plastic strains occur right from the
start of the test. Deformations that are being entirely described by the elastic
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properties in the elastic-perfectly plastic model are now being described as a
combination of elastic and plastic effects.

For the Cam clay model (CC in Fig 3.70) the parameters giving a similar
quality of fit are: elastic properties G = 3500 kPa and κ = 0.015—implying an
initial bulk modulus K = vp′/κ = 22632 kPa and Poisson’s ratio ν = 0.426; and
plastic properties λ = 0.055 and M = 0.9. The value of the intercept N on the
normal compression line is N = 1.933. Whereas the values of shear modulus G
are similar for these two hardening plastic models, Cam clay predicts a lot of
plastic volumetric strain at the start of the test—the plastic strain increment,
normal to the elliptical yield locus, indicates only plastic volumetric strain to
start with—and the elastic properties indicate near incompressibility (ν → 0.5)
in order to ensure that there is negligible additional elastic volumetric strain.
The values of M are similar.

We conclude that we cannot determine the optimum selection of model by
fitting data for a single test. We have seen that in the simple form presented
here, the Mohr-Coulomb models will not predict significant volumetric strain
for stress paths which load the soil at more or less constant stress ratio. If
we believe that such paths are going to be important in the behaviour of our
geotechnical system then we need to ensure that we have data from special
triaxial tests with which to calibrate our model. The more sets of data that we
attempt to fit simultaneously the less likely it is that we will be able to achieve
a fit as close as that shown in Fig 3.70. Often, faced with data from tests of
varying reliability we may wish to weight differently the several sets of data and
perhaps attempt some algorithmic best overall fit to give greater objectivity
to our parameter selection (see, for example, Muir Wood et al., 1993)—visual
fitting may introduce some unconscious bias.

We deduce the importance of trying to ensure that the paths followed in our
laboratory tests bear some resemblance to the range of significant paths that
will be followed in our geotechnical system (§3.8). The stiffness characteristics
of soils are so sensitive to the detail of history and stress path (§2.5.3) that
using a constitutive model to extrapolate from inappropriate limited laboratory
testing may not lead to reliable estimates of response of geotechnical systems—
especially under working loads, far from failure, where the detail of rather small
strains will be crucial.
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Numerical modelling

4.1 Introduction

There are many books which deal in great detail with the application of nu-
merical methods—usually finite element methods—to engineering problems in
general or to geotechnical problems in particular (eg Zienkiewicz and Taylor,
2000; Cook, Malkus and Plesha, 1989; Cook, 1995; Livesley, 1983; Smith and
Griffiths, 1988; Britto and Gunn, 1987; Potts and Zdravković, 1999). It is
intended here to provide merely a brief introduction to numerical modelling:
enough for the reader to be able to understand some of the language of numeri-
cal modelling, some of the issues that need to be confronted when setting about
numerical modelling of a geotechnical problem, and some of the pitfalls that
may confront the numerical modeller.

Chapter 3 has presented in some detail some of the constitutive models
that might be used to describe the mechanical response of soils. It is clear
from the discussion of key aspects of soil behaviour in section §2.5 that elastic
models are unlikely to be especially satisfactory except in limited applications.
If the material can be deemed to be linearly elastic then many of the details
of numerical analysis become rather straightforward—and, in particular, there
are many existing solutions for distributions of stresses and displacements in
elastic systems that can be readily adapted (see, for example, Poulos and Davis,
1974). For more nonlinear and history dependent (elastic-plastic) materials
numerical analysis is almost certain to be required except for the most trivial
of applications.

We start by deriving the governing equations for mechanical and flow prob-
lems in one dimension. This apparently trivial beginning allows us to illustrate
the development of a number of aspects of the finite element approximation
which can be readily extended to two and three dimensions. The governing
equations are also presented for the two-dimensional problem: parallels with
the one-dimensional equations will be drawn. The finite difference approxima-
tion to differential equations will be described briefly—this will often be needed
for solution of problems involving time, such as dynamic loading or transient
flow.

181
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4.2 Field problems

Our concern is with the solution of field problems for which we are able to
write down governing partial differential equations which describe the way in
which quantities of interest (field variables) must vary within a particular re-
gion and must satisfy boundary conditions at the edges of that region. We
will concentrate particularly on problems of stress analysis where the quantities
of interest are stresses and displacements but we might also be concerned with
other geotechnical field problems such as analysis of seepage and flow (where the
field variable is the pressure head) and the coupled flow and mechanical response
that governs the consolidation process (where the field variables now combine
pore pressures with stresses and displacements). More generally we might be
concerned with flow of heat or migration of pollutants, so that field variables
would include temperature or pollutant concentration respectively. And it can
be expected in the end that all of these effects might interact and require ana-
lytical coupling: there will be obvious mechanical consequences of the changes
in dimension that accompany temperature changes; changes in the chemical
constitution of the fluid in the pores of a soil may well influence its mechanical
characteristics. However, provided we can assemble a set of physically reason-
able equations which describe the various interactions and flows then we are
well on the way towards setting up a numerical analysis of the problem.

4.2.1 One-dimensional problem

We start by developing the equations which govern the behaviour of a one-
dimensional problem and can then generalise these equations to a fully three-
dimensional problem. Consider the element shown in Fig 4.1a. Equilibrium
tells us that the gradient of total stress must satisfy the equation:

∂σz

∂z
− γz = 0 (4.1)

where γz is the body force acting in the negative z direction—in this case the
unit weight of the soil. Throughout this chapter we will regard tensile stresses
and strains as positive. This is not the usual soil mechanics convention but
makes the development of the mathematics more straightforward.1

In general the stresses in the soil will be associated with displacements and
the definition of strain allows us to write down a compatibility equation (Fig
4.1b):

∂uz

∂z
= εz (4.2)

where uz is the displacement in the z direction and tensile strains are regarded
as positive.

1When preparing a chapter on the present topic one becomes all too aware of the distress-
ingly finite nature of the Greek and Roman alphabets. In an attempt to reduce confusion
somewhat (but at the expense of inconsistency with other chapters) the symbol % will be used
for pore pressure so that u always represents displacement.
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Figure 4.1: (a) Equilibrium of one-dimensional element; (b) displacements of
one-dimensional element; (c) flow through one-dimensional element

We understand that changes in strains in soils arise because of changes in
effective stresses so we cannot progress without introducing the principle of
effective stress:

σz = σ′z − % (4.3)

linking total stress σz, effective stress σ′z and pore pressure %. Tensile stresses
are regarded as positive but pore pressure is, as usual, positive for pressures
above ambient pressure.

Then we have a constitutive equation which links changes in effective stress
and development of strain which, for this simple one-dimensional problem, in-
troduces a one-dimensional constrained stiffness Eoed (which will, in general,
not be a soil constant but will vary with volumetric compression of the soil):

∂σ′z
∂εz

= Eoed (4.4)

Now in general we may have some flow of pore fluid occurring through our
soil element. We can write down one equation describing the conservation of
volume changes of the element linked with this flow (Fig 4.1c):

−∂vz

∂z
+ Q =

∂εz

∂t
+

n

Kf

∂%

∂t
(4.5)

where vz is the velocity of flow in the positive z direction, Q is the flow per
unit volume into the element (the source), n is porosity and Kf is the bulk
modulus of the fluid. The porosity n indicates the proportion of the volume of
the element that is taken up with the fluid. (Note again that tensile strains are
regarded as positive.) This equation recognises that changes in pore pressure
will lead to changes in the volume of the fluid stored in a soil element. For steady
flow the right hand side of (4.5) is zero. For undrained conditions the left hand
side is zero (no flow into or out of the soil element) and a small volume change
is associated with the small but non-zero compressibility of the pore fluid.
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We assume that the flow of water through the element is governed by the
permeability of the soil k and by the gradient of some potential, the total head
H, through Darcy’s law:

vz = −k
∂H

∂z
= − k

γf

∂%w

∂z
(4.6)

where Bernoulli’s equation distinguishes the total head H (and corresponding
fluid pressure %w) that drives flow from the pressure head %/γf and the elevation
head z:

H =
%w

γf
=

%

γf
+ z (4.7)

where γf is the unit weight of the pore fluid.
Combination of these equations produces two simultaneous partial differen-

tial equations in the two field variables, displacement uz (or, in fact, strain εz

since the displacement only enters through its spatial gradient) and pore pres-
sure %, which we would need to solve satisfying imposed boundary conditions:

−Eoed
∂2uz

∂z2
+

∂%

∂z
+ γz = 0 (4.8)

∂2uz

∂t∂z
− k

γf

∂2%

∂z2
+

n

Kf

∂%

∂t
−Q = 0 (4.9)

We have thus combined statements of equilibrium (4.1), strain compatibility
(4.2) and conservation of volume (4.5), with constitutive laws governing the
stress-strain response of the soil (4.4) and the flow characteristics of the soil
(4.6) in order to provide sufficient equations to be able, in principle, to deduce
the values of our field variables. We might in general wish to know the variation
of stress with position and stress is in principle an additional field variable.
However, it is clear from (4.2) and (4.4) that once we know the displacement,
and more particularly the gradient of displacement, we can calculate the stresses
without further ado.

Terzaghi’s equation of one-dimensional consolidation can be deduced from
(4.9). The total stress is assumed constant so that changes in pore pressure and
effective stress are equal (recall the sign convention in (4.3) and

∂2uz

∂t∂z
+

n

Kf

∂%

∂t
=

∂εz

∂t
+

n

Kf

∂%

∂t
=

1
Eoed

∂σ′z
∂t

+
n

Kf

∂%

∂t
=

(
1

Eoed
+

n

Kf

)
∂%

∂t
(4.10)

and thence, from (4.9) with Q = 0, if we assume that the pore fluid is incom-
pressible so that Kf = ∞,

∂%

∂t
=

kEoed

γf

∂2%

∂z2
= cv

∂2%

∂z2
(4.11)

where cv = kEo/γf is the coefficient of consolidation.
For a drained equilibrium analysis in which flow is of no concern, and hence

H is constant (4.7), the gradient of pore pressure is given by

∂%

∂z
= −γf (4.12)
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and the equilibrium equation (4.8) becomes

−Eoed
∂2uz

∂z2
+ (γz − γf ) = 0 (4.13)

or

−∂σ′z
∂z

+ (γz − γf ) = 0 (4.14)

and the difference of unit weights, (γz − γf ), would be described as the buoyant
unit weight of the soil.

4.2.2 Two-dimensional problem

Many geotechnical systems can be seen as two-dimensional problems which can
be analysed in plane strain. There are obviously additional degrees of freedom by
comparison with the one-dimensional problem. However, subsequent extension
to three dimensions merely increases the number of degrees of freedom without
particularly influencing the structure of the governing equations.

We assume that the problem is defined within cartesian axes (x y), where
the y axis will typically be vertical but this will not be a necessary restriction.
We start by defining a vector of stresses, σ = (σxx σyy τxy)T and a correspond-
ing vector of strains ε = (εxx εyy γxy)T . There will in general be a vector of
body forces per unit volume F = (Fx Fy)T . If the body forces come purely
from the unit weight of the soil then we would expect F = γĝ where γ is the
total unit weight of the soil and ĝ is a unit vector in the direction of gravita-
tional acceleration. Typically, with vertical y axis, ĝ = (0 − 1)T . The vector
differential ∇:

∇ =
(

∂/∂x
∂/∂y

)
(4.15)

and the differential matrix ∂:

∂ =




∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x


 (4.16)

will be useful.
Equilibrium then requires that (compare (4.1)):

∂T σ + F = 0 (4.17)

Kinematic compatibility (the definition of strain) implies that (compare (4.2)):

ε = ∂u (4.18)

where u = (ux uy)T is a vector displacement.
The definition of effective stress (compare (4.3)) becomes:

σ = σ′ − µ% (4.19)

introducing the vector µ = (1 1 0)T .
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With a constitutive link between stresses and strains, σ′ = Dε our equilib-
rium equation (4.17) becomes:

∂T D∂u− ∂T µ% + F = 0 (4.20)

Flow through a soil is controlled by the permeability of the soil, which in
general can be described by a permeability matrix k linking flow velocities
v = (vx vy)T with the gradient of total head H. In general

k =
(

kxx kxy

kyx kyy

)
(4.21)

to allow for anisotropy of permeability. Then

v = −k∇H (4.22)

where the total head H is given from Bernoulli’s equation:

H =
%

γf
− rT ĝ (4.23)

where % is the pore pressure, γf is the unit weight of the pore fluid, and r =
(x y)T is the position vector.

Continuity requires a volume balance (strictly a mass balance but we will
neglect density changes in the flowing fluid). There will in general be sources or
sinks giving a nett flow Q per unit volume into a soil element. The soil element
will change in volume because it undergoes changes in effective stress and the
pore fluid may itself change in volume as the pore pressure changes. Combining
these effects, and invoking (4.22 and 4.23) (compare (4.5)):

−∇T v + Q = ∇T k∇H + Q =
∂εp

∂t
+

n

Kf

∂%

∂t
(4.24)

We can link the volumetric strain εp with the general two-dimensional strain
ε:

εp = µT ε (4.25)

Hence (compare (4.9))

µT ∂
∂u

∂t
− 1

γf
∇T k∇% +

n

Kf

∂%

∂t
−Q = 0 (4.26)

The presence of displacement u in (4.26) and the presence of pore pressure
% in (4.20) lead to coupling between the flow and mechanical effects in the soil.

Various special cases can be extracted from these general equations. Terza-
ghi’s consolidation equation is obtained if we eliminate sources and sinks, Q = 0,
assume the pore fluid to be incompressible and specify that the total stress is
held constant. The volumetric strain in the element arises because the effective
stress changes directly with the pore pressure:

εp = µT D−1µ% (4.27)
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and
1
γf

∇T k∇% = µT D−1µ
∂%

∂t
(4.28)

With incompressible fluid Kf = ∞ and steady state conditions, so that all
time differentials are zero,

1
γf

∇T k∇% + Q = 0 (4.29)

which is Laplace’s equation, as expected.

4.3 One-dimensional finite elements

We take a continuum approach to geotechnical systems and assume that our
field variables vary continuously throughout our region of interest. We know
that in certain circumstances the governing equations (4.8) and (4.9) can be
solved analytically. The situations where this will be possible will be much more
frequent for one-dimensional problems than for fully three-dimensional problems
but even for one-dimensional problems analytical solutions may become tricky
if the stiffness properties (encapsulated in Eoed) are nonlinear and/or history
dependent. However, our concern here is to consider approximate solutions
where, instead of discovering the values of our field variables at every point
within our continuum, we aim to find the values at a finite number of points
only. We will concentrate on equilibrium problems where our aim is to discover
a field of displacements and stresses.

Let us divide the one-dimensional problem up into a series of elements of
typical length ` connected at their nodes (Fig 4.2). The displacements at the
bottom and top of a typical element are uz1 and uz2 and we assume that we have
some description of the variation of displacement within the element using so-
called interpolation or shape functions N1 and N2 such that, within the element

uz = N1uz1 + N2uz2 or u =
(

N1 N2

) (
uz1

uz2

)
or u = Nd (4.30)

An obvious simple form for these shape functions, in terms of a local coor-
dinate z for a given element (Fig 4.2b), might be

N1 =
`− z

`
; N2 =

z

`
(4.31)

These describe a linear variation of displacement within the element and have
the evidently desirable characteristic that N1 = 0 for z = ` and N2 = 0 for
z = 0. The strain at any point within the element is then given by:

εz =
∂N1

∂z
uz1 +

∂N2

∂z
uz2 or εz =

∂N

∂z
d (4.32)

Accompanying the nodal displacements there will be nodal forces F1 and
F2 at the ends of the elements transferring stresses from one element to the
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Figure 4.2: (a) One-dimensional elements connected at nodes; (b) forces and
displacements at nodes; (c) nodal equilibrium of connected elements

next—assuming unit cross sectional area for the one-dimensional elements. We
suppose that all external loads, including body forces, are applied at the nodes in
some appropriately distributed form—for this simple one-dimensional element
we can divide the body force γz` equally between the two ends of the element.
Equilibrium is applied at the node as the force leaving one element becomes
the force entering the next element (Fig 4.2c). Equilibrium at the connection
between element i and element i + 1 then tells us that

(F2)i + (F1)i+1 −
(

γz`

2

)

i

−
(

γz`

2

)

i+1

= 0 (4.33)

In general, the lengths and unit weights of successive elements might be different.
Information can only be passed between elements at the nodes. We take the

displacements of the nodes as the independent variables and therefore have to
look for ways in which we can calculate the nodal forces as dependent variables.
We are searching for a link between the nodal forces and the nodal displacements
in the form of a stiffness matrix K:

(
F1

F2

)
=

(
k11 k12

k21 k22

) (
uz1

uz2

)
or F = Kd (4.34)

For this simple one-dimensional element it is not difficult to draw the simplest
link between nodal forces and nodal displacements, through the stiffness prop-
erties of the material in the element, and deduce

(
F1

F2

)
=

EoedA

`

(
1 −1
−1 1

) (
uz1

uz2

)
or F = Kd (4.35)

maintaining a careful sign convention that forces and displacements are positive
in the positive z direction. The cross-sectional area A is included in (4.35) even
though we are considering a unit section, in order to remind ourselves of the
necessary dimensional consistency of the expression.

For more elaborate elements for analysis of two- and three-dimensional prob-
lems it is not easy to deduce the stiffness matrix by this direct route. A more
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Figure 4.3: (a) Spring extended by weight W ; (b) components of energy for
extending spring

general procedure is obtained by thinking about strain energy in the element.
Imagine a weight W being applied to an unstressed spring of length ` and stiff-
ness AEo (Fig 4.3a). As the weight displaces slowly through a distance x it loses
potential energy −Wx. As the spring extends it stores strain energy 1

2AEox
2.

The total energy of the system is then

V =
1
2
AEox

2 −Wx (4.36)

and this has a minimum (Fig 4.3b) at

x =
W

AEo
(4.37)

which is the expected stable extension of the spring. (An identical result can
be obtained using a virtual work approach (Livesley, 1983).)

This is an example of a general principle of stationary potential energy which
states that: Among all admissible configurations of a conservative system, those
that satisfy the equations of equilibrium make the potential energy stationary
with respect to small admissible variations of displacement (Cook et al., 1989).
The configurations of interest to us are the values of nodal displacements. The
principle as stated applies to an entire system: we will make the assumption
that the same principle can also be applied to individual elements within the
system.

As for the simple spring in Fig 4.3, we have two components of potential
energy: the strain energy in the element and the work done by the forces acting
on the element. The strain at any point within the element is given by (4.32),
the stress is then

σz = Eoed
∂N

∂z
d (4.38)

and the strain energy in the element of length ` and cross sectional area A is

VE =
∫

vol

1
2

(
∂N

∂z
d

)T

Eoed

(
∂N

∂z
d

)
d (vol) =
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=
1
2
AdT

[∫ `

0

(
∂N

∂z

)T

Eoed

(
∂N

∂z

)
dz

]
d (4.39)

The potential energy of the nodal forces is

VP = −dT F (4.40)

Seeking a minimum of the total potential energy with respect to the unknown
nodal displacements we find

AδdT

{[∫ `

0

(
∂N

∂z

)T

Eoed

(
∂N

∂z

)
dz

]
d− F

}
= 0 (4.41)

which must be satisfied by all possible displacements δd. Hence we have a set
of equations

F = A

[∫ `

0

(
∂N

∂z

)T

Eoed

(
∂N

∂z

)
dz

]
d (4.42)

This is an expression of the virtual work principle which states that the total
work of internal and external forces must vanish for any admissible infinitesimal
displacement from an equilibrium configuration.

From our definition of N we know that

∂N

∂z
=

( −1/` 1/`
)

(4.43)

so that

A

[∫ `

0

(
∂N

∂z

)T

Eoed

(
∂N

∂z

)
dz

]
=

= EoedA`

( −1/`
1/`

) ( −1/` 1/`
)

=
EoedA

`

(
1 −1
−1 1

)
(4.44)

which exactly matches the stiffness matrix K defined in (4.35).

4.4 Two-dimensional finite elements

This route to deduction of the form of the stiffness matrix from energy consid-
erations can be extended to two and three dimensional systems. The detailed
demonstration will not be shown here but can be found in standard texts on the
finite element method (see §4.1). We have to note that the expression in (4.44)
from which the stiffness matrix is generated is an integration over the volume of
the element of the product of three terms. The first and third terms (∂N/∂z)
represent, in general, the matrix of expressions which convert nodal displace-
ments to strains within the element, where N are now more general shape
functions which describe the variation of displacement within the element in
terms of the values of displacement at the nodes. The term Eoed becomes a
more general stiffness matrix for the material.
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For example, in a two-dimensional problem we might have a field of dis-
placements ux and uy in the x and y directions respectively. The strains are
then

εx =
∂ux

∂x
; εy =

∂uy

∂y
; γxy =

∂ux

∂y
+

∂uy

∂x
(4.45)

or
ε = ∂u (4.46)

Within the element the displacement field u is linked to the nodal displace-
ments through as many shape functions as there are nodes:

(
ux

uy

)
=

(
N1 0 N2 0 · · ·
0 N1 0 N2 · · ·

)



ux1

uy1

ux2

uy2

· · ·




or u = Nd (4.47)

Then
ε = ∂Nd or ε = Bd where B = ∂N (4.48)

With a stiffness matrix D linking the changes in stresses that result from changes
in strains (developed from one of the candidate models described in Chapter 3,
for example), the stiffness matrix for the two-dimensional finite element be-
comes:

K =
∫

V

BT DBdV (4.49)

where V is the volume of the element.
For problems involving flow, as in (4.47), we write both displacement and

pore pressure in terms of nodal values of these quantities invoking shape func-
tions for displacement N and for pore pressure N% which will in general be
different:

u = Nd and % = N%%w (4.50)

where %w is the vector of nodal values of pore pressure. Ultimately, through
argument similar to that just adopted (see Smith and Griffiths, 1988 or Potts
and Zdravković, 1999), we can convert the governing equations ((4.26) and
(4.20)) into equations involving integrals of soil properties over the elements:

Kd− T%w + F = 0 (4.51)

and
T T ∂d

∂t
− S

∂%w

∂t
−R%w −Q = 0 (4.52)

where K was given in (4.49) and

T =
∫

V

BT µN%dV (4.53)

S =
∫

V

NT
%

n

Kf
N%dV (4.54)
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R =
1
γf

∫

V

(∇N%)T k(∇N%)dV (4.55)

The effects of flow have thus been presented in a way that is compatible with
the effects of stress change and the problem is defined in terms of a number of
standard integrals.

Analysis of flow—even steady flow—contains the possible complexity of the
need to model a free fluid surface within the soil separating saturated from
unsaturated or dry soil. The location of this boundary to the flow is initially
unknown—and in unsteady flow this will be a moving unknown boundary. Potts
and Zdravković (1999) suggest that this is an area where robust algorithms do
not yet exist and further research is required. The user of a finite element code
is warned to take care in setting up the analysis and interpreting the results.

The choice of shape function is an important consideration. It will very often
be hidden from the user of a finite element program, or there may be very little
choice available. However, the type of element and associated shape function
will have a major influence on the accuracy with which continuous strain fields
can be reproduced and hence on the accuracy of numerical results which are
obtained.

4.4.1 Example: Constant strain triangle

A typical triangular element is shown in Fig 4.4. This element has three nodes
located at its vertices and can be imagined to be attached to adjacent elements
only at these nodes. The displacement field within the element is given by:

ux = α1 + α2x + α3y; uy = α4 + α5x + α6y (4.56)

so that the strain field within the element is:

εx =
∂ux

∂x
= α2; εy =

∂uy

∂y
= α6; γxy =

∂uy

∂x
+

∂ux

∂y
= α5 + α3 (4.57)

and components α1 and α4 merely generate rigid body displacements. The
displacement varies linearly so that the strains are constant within the element.
The link between the coefficients α1, · · · , α6 and the nodal displacements is
somewhat tedious to derive (see, for example, Cook et al., 1989) but in the end
the strain:displacement relationship can be written in the form ε = Bd:




εx

εy

γxy


 =

1
2A




y23 0 y31 0 y12 0
0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12







ux1

uy1

ux2

uy2

ux3

uy3




(4.58)

where xij = xi−xj ; yij = yi−yj ; xi, yi (i = 1, 2, 3) are nodal coordinates,
numbered sequentially anticlockwise round the element as shown in Fig 4.4, and
2A is twice the area of the element, so that 2A = x21y31 − x31y21 (or any other
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Figure 4.4: Constant strain triangle element

expression obtained by appropriate permutation). (If the nodes are numbered
sequentially in the clockwise direction round the element then the area A will
be negative and the sign in (4.58) has to be changed accordingly.) Since there
is no variation of strain within the element, the integral in expression (4.49) for
the element stiffness can be written exactly

K = BT DBtA (4.59)

where t is the element thickness.
It will be evident that the constant strain triangle is not going to be well

suited to analysis of problems which contain significant gradients of strain: it is
not particularly good for problems which involve bending.

4.4.2 Example: Linear strain triangle

If we want to be able to describe more elaborate variations of strain within
elements then we will usually need to link the elements together at additional
side nodes in addition to the vertices. For example, the linear strain triangle
(Fig 4.5) has additional nodes at the mid-points of each side. This element can
sustain a full quadratic displacement field

ux = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2 (4.60)
uy = α7 + α8x + α9y + α10x

2 + α11xy + α12y
2 (4.61)

and a corresponding strain field

εx =
∂ux

∂x
= α2 + 2α4x + α5y (4.62)

εy =
∂uy

∂y
= α9 + α11x + 2α12y (4.63)

γxy =
∂uy

∂x
+

∂ux

∂y
= (α8 + α3) + (α5 + 2α10)x + (2α6 + α11) y (4.64)
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Figure 4.5: (a) Linear strain triangle; (b) isoparametric coordinates

Because all the nodes of the linear strain triangle have separate degrees of
freedom and are free to move independently, the sides of the triangle do not
necessarily remain straight as the element deforms. However, connectivity be-
tween elements ensures that no gaps open along the curving boundary between
adjacent elements.

We can map the general triangular element of Fig 4.5a onto a general
‘isoparametric’ element defined in terms of ‘natural’ coordinates (ξ, η), with
non-orthogonal axes as shown. The expressions that link global coordinates and
natural coordinates, interpolating between the coordinates of the nodes (xi, yi),
introduce shape functions which are the same as those used to interpolate the
displacements within the element from the nodal displacements (uxi, uyi).

x =
∑

Nixi; y =
∑

Niyi

ux =
∑

Niuxi; uy =
∑

Niuyi
(4.65)

where the shape functions Ni are

N1 = (1− ξ − η)(1− 2ξ − 2η)
N2 = ξ(2ξ − 1)
N3 = η(2η − 1)
N4 = 4ξ(1− ξ − η)
N5 = 4ξη
N6 = 4η(1− ξ − η)

(4.66)

Note that Ni = 1 at node i and Ni = 0 at every other node—this is a general
property of shape functions.

(For the three node constant strain triangle of the previous section:

N1 = 1− ξ − η; N2 = ξ; N3 = η (4.67)

omitting nodes 4, 5, 6 and their associated shape functions, and leaving a purely
linear interpolation of displacements.)
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In order to calculate the general element stiffness matrix we need, on the
way, to calculate the strain-displacement matrix B = ∂N (4.48). However, the
displacements are calculated from (4.65) and (4.66) as functions of (ξ, η) and
not of (x, y). We have to start by differentiating displacements as a function of
(ξ, η) and then use the chain rule. For example,

(
∂ux/∂ξ
∂ux/∂η

)
=

(
∂x/∂ξ ∂y/∂ξ
∂x/∂η ∂y/∂η

)(
∂ux/∂x
∂ux/∂y

)
(4.68)

where the 2× 2 matrix is the coordinate linking Jacobian matrix J :

J =
(

∂x/∂ξ ∂y/∂ξ
∂x/∂η ∂y/∂η

)
(4.69)

with
∂x

∂ξ
=

∑ ∂Ni

∂ξ
xi etc (4.70)

Equation (4.68) can be solved to give the necessary derivatives from which
the strains can be calculated

(
∂ux/∂x
∂ux/∂y

)
= J−1

(
∂ux/∂ξ
∂ux/∂η

)
(4.71)

The element stiffness matrix is obtained by integrating over the volume of
the element. This integration is again performed in terms of natural coordinates

K =
∫ 1

0

∫ 1

0

BT DBt |J |dξdη (4.72)

where t is the element thickness and |J | is the determinant of the Jacobian
matrix which provides a scale factor between areas: dxdy = |J |dξdη.

4.4.3 Quadrilateral elements

We can quickly introduce the shape functions for some of the quadrilateral ele-
ments that are used. The procedures for implementing them in the construction
of stiffness matrices are exactly the same as that just described.

The mapping of global coordinates (x, y) onto natural coordinates (ξ, η) is
illustrated in Fig 4.6a. For a four noded quadrilateral the shape functions are

N1 = 1
4 (1− ξ)(1− η)

N2 = 1
4 (1 + ξ)(1− η)

N3 = 1
4 (1 + ξ)(1 + η)

N4 = 1
4 (1− ξ)(1 + η)

(4.73)

These interpolation functions lead to a linear variation of εx with η and a linear
variation of εy with ξ. The shear strain γxy has linear variations with both ξ
and η.

Because the sides of this four noded element always deform as straight lines
it cannot describe the strain field associated with bending—which would require
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Figure 4.7: (a) ‘Bending’ of four noded quadrilateral; (b) desired shape of rect-
angular element subjected to pure bending
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curvature of the sides. If these elements are subjected to pure moment loading
(Fig 4.7) then, although the linear variation of direct strain with position is cor-
rectly described, no right angles in the element are preserved and shear stresses
must be generated on all surfaces. The stiffness of such elements tends to be
too high.

Greater freedom can be obtained by adding additional nodes (Fig 4.6b), al-
lowing the sides of the element to take up general quadratic shapes in conformity
with neighbouring elements. The interpolation functions are now

N1 = −(1− ξ)(1− η)(1 + ξ + η)/4
N2 = −(1 + ξ)(1− η)(1− ξ + η)/4
N3 = −(1 + ξ)(1 + η)(1− ξ − η)/4
N4 = −(1− ξ)(1 + η)(1 + ξ − η)/4
N5 =

(
1− ξ2

)
(1− η) /2

N6 = (1 + ξ)
(
1− η2

)
/2

N7 =
(
1− ξ2

)
(1 + η) /2

N8 = (1− ξ)
(
1 + η2

)
/2

(4.74)

Each of the three strains now contains some quadratic variation—but there is
no variation of εx with ξ2, for example. In its rectangular form this element can
exactly represent bending states.

4.4.4 Comparison of elements

In order to illustrate the relative advantage of using higher order elements—
those with more degrees of freedom and greater ability to match spatially varying
strain fields—it is convenient to analyse a problem for which the exact analytical
result is known (Livesley, 1983). The deep cantilever of depth d and length L
in Fig 4.8a carries a transverse load W at its tip. The tip deflection δ is:

δ =
WL3

3EI

[
1 +

(
2 +

5
2
ν

)
d2

4L2

]
(4.75)

where I, E and ν are second moment of area, Young’s modulus and Poisson’s
ratio respectively (Timoshenko and Goodier, 1970).

The calculated fraction of this exact tip deflection is shown in Fig 4.8b as a
function of the number of free nodes in the numerical analysis for different types
of element—including comparison of triangular elements laid out on a square
grid or a rectangular grid. The results illustrate clearly that any numerical
approximation of this type will be too stiff—it is not able to deform as freely as
the continuum that it is trying to represent. The higher order elements which
permit internal variation of strain converge rapidly towards the correct result:
in fact using eight noded squares or rectangles a very small number of elements
is required. The six noded triangles are clearly superior to the constant strain,
three noded, triangles and to the four noded squares.

Evidently more complex elements require more computing time for any ele-
ment calculation. However, in general the greatly reduced number of elements
that can be used outweighs this apparent computational disadvantage and leads
to a lower overall computing time for a given accuracy of result.
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It is often tempting in assessing results of numerical analysis to look only
at the output quantity of direct interest—in this case perhaps just the tip de-
flection. It is, however, always instructive to probe more deeply. The difference
between the different elements can be seen more strikingly when internal stresses
within the deep beam are investigated. Fig 4.8c shows the variation of the longi-
tudinal stress σxx along the beam at a position y = 0.375d for three distributions
of elements, all using the same nodal positions. Only the eight noded square is
able to produce a displacement field which matches the result σxx = Wxy/I:
the numerical calculation for these elements is indistinguishable from the exact
result. It proves even harder to match the shear stresses shown in Fig 4.8d for
a transverse plane near the centre of the cantilever. The shear stresses vary
with y2, but even the eight noded square element has none of the y3 terms in
the displacement field that could provide this desired variation. Nevertheless
these elements are still very much superior to the other elements used in the
comparison.

4.5 Integration - Gauss points

The element stiffness matrix is obtained in (4.49) or (4.72) by integration of a
possibly quite elaborate function over the volume of the element. While this
may be possible for simple models and simple geometries, in general it may
be computationally exhausting. For a nonlinear material—such as soil—the
components of the material stiffness matrix D will vary from point to point.
Gauss quadrature provides an efficient route to numerical integration. The exact
integral is replaced by the sum of a number of weighted terms

I =
∫ +1

−1

φdξ becomes I ≈
n∑
1

wiφi (4.76)

The function φ is evaluated at n carefully chosen points and each value of the
function is weighted by a corresponding factor wi. If φ = φ(ξ) is a polynomial,
then use of n sampling points gives an exact result for polynomials of degree not
greater than 2n−1. The locations of one, two and three sampling points and the
corresponding weightings for this one-dimensional integration are shown in Fig
4.9. Evidently sampling at the centre is sufficient—and exact—if the function is
linear. For non-polynomial functions the accuracy will improve as the number
of sampling points increases.

The locations of the Gauss points can be identified in just the same way in
two dimensions (Fig 4.10). The metamorphosis (4.76) is now

I =
∫ +1

−1

∫ +1

−1

φdξdη becomes I ≈
n∑

i=1

m∑

j=1

wijφ (ξi, ηj) (4.77)

Usually n = m and the same numbers of sampling points are used in each
direction. For a single central Gauss point n = m = 1, ξ = 0, η = 0, w = 4 and
I ≈ 4φ1. For four point and nine point quadrature the summation rules are:

I ≈ φ1 + φ2 + φ3 + φ4 (four) (4.78)
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Figure 4.9: Gauss integration points: (a) I =
∫ +1

−1
φdξ; (b) single point integra-

tion I ≈ 2φ1; (c) two point integration I ≈ φ1 + φ2, α = 1/
√

3; (d) three point
integration I ≈ 5

9φ1 + 8
9φ2 + 5

9φ3, β =
√

3/5

and

I ≈ 25
81

(φ1 + φ2 + φ3 + φ4) +
40
81

(φ5 + φ6 + φ7 + φ8) +
64
81

φ9 (nine) (4.79)

4.5.1 Reduced integration

Given a particular form of shape function describing the internal variation of
displacement within an element, we will obtain an accurate calculation of the
stiffness matrix of the element if we use a Gaussian integration rule which is
compatible with the polynomial degree of the shape function. Thus with the
eight noded quadrilateral element (Fig 4.6b, (4.74)) the shape functions imply
polynomial interpolation of degree 3 and the integral of (4.72) implies a polyno-
mial of degree 4 which requires a 3×3 Gauss point formula (Fig 4.10b) for exact
evaluation of the stiffness matrix. (In fact, once this element deforms and the
sides are no longer straight, then the Jacobian J varies across the element and
there are polynomial terms in the denominator of J−1 which enter the terms of
B through (4.71). Numerical integration can then never be exact.)

Because a finite element model only permits a finite number of degrees of
freedom it will be usually be stiffer than the continuum reality that it is try-
ing to describe (see Fig 4.8). This excessive stiffness is usually worsened when
additional Gauss points are used because these resist higher order deformation
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Figure 4.11: (a) Instability mode for four node square elements with single
Gauss point; (b) ‘hourglass’ instability mode for eight node rectangular element
with four Gauss points (after Cook, 1995)

modes which are released in lower order integration rules. Paradoxically, in-
creased accuracy in the computation of the element stiffness matrix K can lead
to reduced accuracy in the outcome of the finite element analysis (as well as
involving more cumbersome calculation). ‘Reduced integration’ then implies
using a lower order Gaussian integration rule than would apparently be asso-
ciated with the interpolation function (shape function) of the element. It is in
fact common practice to use a 2×2 Gauss point formula to compute K for four
and eight node quadrilateral elements.

The disadvantage of using lower order integration rules is that there is the
possibility of the introduction of spurious element deformation modes which
are able to occur without any change in strain energy—‘zero energy modes’—
because the nodal displacements are somehow dissociated from the displace-
ments of the Gauss points, and hence there is no stiffness associated with these
mechanisms. Classic examples are shown in Fig 4.11 for 4-noded elements in-
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tegrated with a 1-point Gauss rule, and for 8-noded elements integrated with a
4-point Gauss rule. Cook et al. (1989) note that the instability mode shown in
Fig 4.11b is not communicable in a mesh of such elements and may therefore
not be of concern. However, it can generate problems at an interface between
materials of widely differing stiffness. Sudden jumps in material properties can
often lead to numerical problems anyway.

Strains and hence stresses calculated from the displacement field within an
element are often most accurate at Gauss points: Gauss point values of strains
and stresses will typically be presented as the output of a numerical, finite
element analysis. To calculate the stresses at nodes or other points in an element
it is then necessary to extrapolate from the known values at Gauss points. This
extrapolation can be achieved using a polynomial of degree appropriate to the
number of Gauss points that is available and, if reduced integration has been
used, may not necessarily contain as much nonlinearity as is contained in the
shape functions Ni which were used to build up the element stiffness matrix in
the first place.

4.6 Nodal forces and external loads

Finite elements can only convey information to each other, and to the boundaries
of the problem being analysed, at their nodes. It has already been mentioned
(§4.3) that body forces have to be divided among the nodes bounding an ele-
ment. Any external loading then also has to be converted into equivalent nodal
quantities even if it is conceived—in the design of the problem—as a distributed
load. As in the generation of other aspects of finite element theory, considera-
tions of work control the conversion of distributed loadings to nodal quantities.

For an element having only two nodes on each boundary we can at most
describe a linear variation of transverse displacement uy and a linear variation
of loading q (Fig 4.12)2. We require to establish the nodal loads FA and FB to
give the correct work:

∫ `

0

uyqdx =

∫ `

0

[(
1− x

`

)
uyA +

x

`
uyB

] [(
1− x

`

)
qA +

x

`
qB

]
dx =

FAuyA + FbuyB (4.80)

where the linear interpolation functions are evidently those that we previously
used for the one-dimensional proto-element (4.31). Hence:

(
FA

FB

)
=

`

6

(
2 1
1 2

)(
qA

qB

)
(4.81)

2For convenience we associate the x direction with the boundary linking the nodes and
apply the loads and the corresponding displacements in the orthogonal y direction. However,
the result is general so that the same result would also apply for tangential as opposed to
orthogonal boundary loading.
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Figure 4.13: Nodal loads for element with three boundary nodes
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For an element with three nodes along its boundary we can exactly reproduce
quadratic variation of displacement and of loading (Fig 4.13) and the resulting
nodal load equivalence is:




FA

FB

FC


 =

`

30




4 2 −1
2 16 2
−1 2 4







qA

qB

qC


 (4.82)

In many finite element programs the conversion of distributed loading to
equivalent nodal quantities is achieved automatically. A corresponding inverse
process is required in order to convert nodal forces calculated by a finite element
program, and presented as output, into equivalent distributed boundary loading.

4.7 Dynamic analysis

For dynamic analyses we are concerned with variations of acceleration within
the soil; accelerations lead to equivalent forces through application of Newton’s
laws. We need to be able to write equations of motion in terms of the time
derivatives of the nodal displacements and we have to discover some way of
assigning the mass of the element to the individual nodal degrees of freedom.

Our statement of minimum potential energy, or zero virtual work, that was
used to deduce the general form of the stiffness matrix for any chosen finite
element (4.49) can also be used to generate the mass matrix. The virtual work
from the acceleration forces subjected to a virtual displacement field δu is

∫

V

(δu)T ρüdV

and, with the usual link between internal displacements u and nodal displace-
ments d and their derivatives

u = Nd; u̇ = Nḋ ü = Nd̈

we obtain integrals of the form

δdT




∫

V

NT ρNdV


 d̈

and the mass matrix to be used in analysis is

m =
∫

V

NT ρNdV (4.83)

It can be shown that an exactly similar form of integral is required to produce
the damping matrix:

c =
∫

V

NT ηNdV (4.84)
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where η is the material viscosity, linking stresses and rates of displacement.
The element equations of motion then take the form

Kd + cḋ + md̈ = F (4.85)

where F is the applied force, now potentially varying with time.
The mass matrix computed using (4.83) is called a ‘consistent’ mass ma-

trix precisely because it is determined rigorously from considerations of energy.
However, it is sometimes computationally expedient—though usually (but not
always) somewhat less accurate—to work with a purely diagonal ‘lumped’ mass
matrix in which the mass of the element m is simply assigned to the individual
nodes in a very discontinuous way. For a three noded homogeneous triangular
element the consistent mass matrix is

m =
m

12




2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2




(4.86)

whereas the lumped mass matrix is

m =
m

3




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(4.87)

which is obviously somewhat different.
Other procedures have been proposed for producing more suitable diagonal

mass matrices but there does not appear to be any one algorithm which guaran-
tees accurate results. Zienkiewicz and Taylor (2000) suggest that in some ways
lumping mass is equivalent to increasing the material viscosity which thus leads
to somewhat smoother (more damped), if less accurate, solutions.

Damping is often included in dynamic analyses as a numerical device. It is
known that there are dissipative effects present—we expect these to be primarily
associated with real material hysteretic nonlinearities arising from irrecoverable
plastic deformations and frictional dissipation within the material. However,
the computational costs of performing full dynamic analyses using advanced
constitutive models of the type described, or hinted at, in Chapter 3 may be
such that engineers prefer to use more commonly available (more extensively
verified) simpler models—such as elastic-perfectly plastic models—and then add
in some extra damping to allow for dissipation of energy in the elastic region.

A classical way of doing this is through the use of Rayleigh damping, assum-
ing (arbitrarily) that the damping matrix is a linear combination of the mass
and stiffness matrices:

c = αm + βK (4.88)
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Figure 4.14: Rayleigh damping

The resulting effective damping ratio is

ξ =
α

2ω
+

βω

2
(4.89)

and this varies with frequency ω in a way that damping effects produced by
material plasticity would not be expected to vary. However, if the range of
frequencies of importance in a particular dynamic analysis can be estimated
then the values of α and β can be chosen to give tolerably constant damping
over this frequency range (Fig 4.14). With damping ratio ξ = ξc at ω = ω1 and
at ω = ω2

α

2ω1
+

βω1

2
= ξc =

α

2ω2
+

βω2

2
(4.90)

and hence

α =
2ξcω1ω2

ω1 + ω2
β =

2ξc

ω1 + ω2
(4.91)

Evidently the mass damping operates primarily at low frequencies and the stiff-
ness damping operates more at higher frequencies.

4.8 Finite differences

Numerical modelling is required as a vehicle for the solution of the field equations
that govern geotechnical problems. Finite element schemes provide a powerful
and much adopted treatment of the spatial discretisation of a problem. Finite
difference schemes provide an alternative route to the conversion of continuum
field equations into relationships between discrete numerical values—a link with
finite element discretisation will be noted for the spatial domain. However, we
have just encountered equations which introduce the time domain for transient
or dynamic problems. Problems are usually spatially finite—or at least can
be treated as spatially finite—and the spatial boundary conditions consist of
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prescribed loadings or displacements. In the time domain our concern is usually
to march into the infinite future from some initial condition and, while there
may be some asymptotic condition to which we expect to tend (for example,
an eventual state of zero excess pore pressure once consolidation is complete, or
an eventual renewed state of rest), we expect the numerical modelling to tell us
how fast and by what route we will get there.

We imagine that we are calculating the values of a function φ at intervals
separated by finite time steps ∆t (though the stepping could be in space rather
than time). Using Taylor’s series expansion we can write down expressions for
the values of the function one step ahead of, φn+1, and one step behind, φn−1,
the current value, φn, in terms of the current values of the function and its
derivatives:

φn+1 = φn + ∆t
∂φ

∂t
+

∆t2

2!
∂2φ

∂t2
+

∆t3

3!
∂3φ

∂t3
+ . . . (4.92)

φn−1 = φn −∆t
∂φ

∂t
+

∆t2

2!
∂2φ

∂t2
− ∆t3

3!
∂3φ

∂t3
+ . . . (4.93)

From these we can deduce so called ‘central difference’ approximate expressions
for the first and second derivatives

∂φ

∂t
≈ φn+1 − φn−1

2∆t
(4.94)

∂2φ

∂t2
≈ φn+1 − 2φn + φn−1

∆t2
(4.95)

where we have ignored terms in the Taylor series involving ∆t3 and higher pow-
ers. These expressions thus have second order accuracy: if the time step is
halved then the error is reduced roughly by a factor of 4. A graphical inter-
pretation (Fig 4.15) confirms our expectation that (4.94) will be more accurate
than a ‘forward difference’ approximation of first derivative

∂φ

∂t
≈ φn+1 − φn

∆t
(4.96)

or a ‘backward difference’ form
∂φ

∂t
≈ φn − φn−1

∆t
(4.97)

though it may sometimes be necessary to make use of these forms. However, the
central difference approximation of the second derivative (4.95) is just the dif-
ference between these forward and backward approximations of first derivative.

Spatially, we would naturally estimate strains in a simple triangular element
(Fig 4.16) using

εx =
∂ux

∂x
≈ ux2 − ux1

x2 − x1

εy =
∂uy

∂y
≈ uy3 − uy1

y3 − y1

γxy =
∂ux

∂y
+

∂ux

∂y
≈ uy2 − uy1

x2 − x1
+

ux3 − ux1

x3 − x1

(4.98)
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Figure 4.16: Strains in triangular element from nodal displacements

and these are evidently first order finite difference approximations to the dis-
placement derivatives. They are exactly equivalent to the approximations im-
plicit in the constant strain triangle finite element (4.58).

Typically, in dynamic problems, we will have some governing equation of the
form

mφ̈ + cφ̇ + λφ = F (4.99)

where m, c and λ are mass, damping and stiffness, F is a driving force and φ
will usually be some displacement variable. In this equation, these symbols can
equally represent systems of equations for a finite element description of the
problem (see, for example, (4.85)).

Combining (4.94) and (4.95) and (4.99) we can obtain an expression for the
future value of the variable. φn+1 in terms of present and past information:
(

1
∆t2

m +
1

2∆t
c

)
φn+1 = Fn−λφn+

1
∆t2

m (2φn − φn−1)+
1

2∆t
cφn−1 (4.100)

This ‘explicit’ equation shows us how we can predict the future using only
present and past information. The solution requires starting information φo and
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φ̇o at t = 0 which will usually be available. This explicit prediction equation is
only conditionally stable (see, for example, Cook et al., 1989) and the time step
to be used for numerical integration must be less than a critical value:

∆t ≤ ∆tcrit =
2

ωmax
=

Tmin

π
(4.101)

where ωmax is the maximum natural frequency (Tmin is the minimum period)
of the system. For a simple single degree of freedom equation of motion,

ω2
max =

λ

m
(4.102)

but higher oscillation modes are possible for a system of connected elements.
For a system of spatially discretised finite elements the need for a critical

time step can be interpreted in a slightly different way. If an element has
typical length ` then in-plane vibration involves displacement waves travelling
across the element at a speed which will be equal to the speed of sound in the
material—given in §3.2.3 as the one-dimensional compression wave velocity vp =√

(K + 4G/3) /ρ. The time step must be sufficiently small that information
cannot travel across the element within a single time step:

∆t <
`

vp
(4.103)

and we expect that, whatever the mode of vibration, the element will form an
integral number of half wavelengths in the direction of travel so that the natural
frequency is

ωmax ∝ vp

`
(4.104)

It is evident that the choice of time step will be influenced both by the material
properties (which control the compression wave velocity) and by the size of
elements. Small elements of stiff material will necessitate small time steps.
In fact, convergent numerical results will often require the use of time steps
considerably smaller than the theoretical limit for numerical stability (Itasca,
2000).

On the other hand the element size must be sufficiently small that the dy-
namic motion of the system can be adequately reproduced. A vibrating soil
layer (Fig 4.17) will need at least ten elements per wavelength to give adequate
detail (Kuhlemeyer and Lysmer, 1973).

Implicit integration schemes are more numerically stable than the explicit
scheme so far described. Implicit schemes introduce future values into the pre-
dictive formula. For example, the Newmark methods use a relationship

φn+1 = φn + ∆tφ̇n +
∆t2

2

[
(1− 2β) φ̈n + 2βφ̈n+1

]
(4.105)

φ̇n+1 = φ̇n + ∆t
[
(1− γ) φ̈n + γφ̈n+1

]
(4.106)
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Figure 4.17: Shear wave propagating up through soil layer

where β and γ are numbers that can be selected by the user. Substitution into
the equation of motion (4.99) for time tn+1 gives

(
m

β∆t2
+

cγ

β∆t
+ λ

)
φn+1 =

Fn+1 +
m

β∆t2
φn +

cγ

β∆t
φn +

m

β∆t
φ̇n − cφ̇n +

cγ

β
φ̇n+

m

2β
(1− 2β) φ̈n − c∆t (1− γ) φ̈n +

cγ∆t

2β
(1− 2β) φ̈n (4.107)

and we are able to compute the new value of φn+1 in terms of the information
available at time tn (the external force Fn+1 is assumed to be given by some
known time history).

For nonlinear problems λ and c may well depend on the state of the system
at time tn+1—which is not known in advance—and some iterative technique
will be required which may delay convergence and increase the computational
cost. However, this procedure is unconditionally stable for 2β ≥ γ ≥ 1/2. A
popular choice is γ = 1/2 and β = 1/4 which leads to the ‘constant average
acceleration’ method. For γ > 1/2 and β = (γ + 1/2)2 /4 the method provides
some artificial algorithmic damping but the accuracy of the solution is reduced
(Cook et al., 1989). Of course, as noted by Cook (1995), just because the
procedure is numerically stable for any value of the time step, this does not
mean that the results are guaranteed to be accurate if large time steps are
used and an argument like that associated with Fig 4.17 suggests that the time
steps should be small enough to pick up the detail of the motion at the highest
frequency of the system that is believed to be important.

The one-dimensional consolidation equation has already been encountered
in various forms (§4.2.1):

cv
∂2%

∂z2
=

∂%

∂t
(4.108)

We can use the central difference approximation for the first and second deriva-
tives ((4.94) and (4.95)) to write this as

%i,t+∆t ≈ %i,t−∆t +
2cv∆t

∆z2
(%i−1,t − 2%i,t + %i+1,t) (4.109)
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where the subscript i indicates spatial location. This equation can again be
solved explicitly to give prediction of future pore pressure variation at each
node at time t+∆t in terms of information that is available now at times t and
t−∆t. However, there are constraints on the choice of time step and of spatial
grid dimension if numerical stability of the prediction into the future is to be
guaranteed:

cv∆t

∆z2
≤ 1

2
(4.110)

and small time steps are required to guarantee stability.
A similar approach can be used to write the wave equation in finite difference

form
∂2φ

∂x2
=

1
v2

p

∂2φ

∂t2
(4.111)

for compression waves, where vp =
√

(K + 4G/3)/ρ is the compression wave
speed. The explicit finite difference form of this equation becomes

φi,t+∆t ≈ 2φi,t − φi,t−∆t +
v2

p∆t2

∆x2
(φi−1,t − 2φi,t + φi+1,t) (4.112)

Again there are limits on stability of the explicit solution

vp∆t

∆x
< 1 (4.113)

and again the size of time step depends on a material property—the wave speed
vp—and a dimension of the discretisation grid. The finer the grid or the stiffer
the material (the higher the wave speed) the smaller the time step. The wave
velocity vp for compression waves is the speed of sound through the material
and this constraint on time step is again essentially requiring the time step to
be smaller than the time required for the compression wave to travel across the
element.

It has been noted that the simple finite difference expressions for derivatives
in terms of nodal values imply that strains are uniform between nodes and
hence there is an equivalence to the constant strain shape functions assumed
in finite element analysis. The ability of finite difference grids to represent
rapidly varying quantities will be similar to that of meshes of constant strain
finite elements and very fine meshes will often be required in regions (spatial or
temporal) of high gradients of these quantities. Use of finite difference equations
in explicit form has the advantage that the mathematics and hence programming
are very simple and this simplicity and consequent efficiency of computer storage
may often the disadvantage of needing very large numbers of elements and time
steps.

4.9 Solution schemes

For linear problems, such as the application of working loads to systems of elas-
tic materials, the finite element solution of the problem of determination of the
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Figure 4.18: Finite element solution schemes: (a) tangent stiffness; (b) Newton-
Raphson; (c) modified Newton-Raphson

field of displacements (and thence strains and stresses) is relatively straight-
forward. It matters not whether we write the governing equations in terms of
stresses or increments of stresses. The resulting displacements will be directly
proportional to any applied loading (assuming that the resulting displacements
do not change the geometry of the problem significantly). However, we know
that soils are extremely nonlinear materials with mechanical response which is
history dependent. We can expect that the displacement of a geotechnical sys-
tem, reached at the end of a loading process, will depend on the detail of that
process, and not just on the final loads that are imposed. The analysis of such
nonlinear systems poses challenges which are not so different from those linked
with attempts to use fully explicit schemes to predict the future in time domain
analyses of dynamic problems. We can illustrate some of the possible solution
schemes with reference to a single load:displacement relationship (Fig 4.18).

We assume that there is a correct, true link between load and displacement
which we are trying to recover. Inevitably we have to discretise the loading in
some way into finite (as opposed to infinitesimal) steps. The simplest tangent
stiffness algorithm would be satisfied with a prediction based on the current
tangent (incremental) stiffness of the material. Thus, given an initial tangent
stiffness k1, the application of a load ∆P1 would be predicted to produce a
displacement ∆u′1 = ∆P1/k1 (Fig 4.18a). At this new displacement we are able
to calculate the tangent stiffness to be k2 so that the effect of applying a second
load increment ∆P2 is to produce an additional displacement ∆u′2 = ∆P2/k2.
Evidently the predicted load:displacement response drifts away from the correct
relationship.

In order to obtain results which are accurate to within some specified toler-
ance it is necessary to use very small loading steps. The accuracy of the method
can be particularly poor if the material changes from elastic to plastic during
a single increment—but the calculation assumes a single (high) initial stiffness
for the entire increment.

The nonlinearity necessitates an iterative approach. The Newton-Raphson
scheme (Fig 4.18b) produces a first prediction of displacement ∆u1 resulting
from load increment ∆PA using the initial stiffness k1 in the same way as the
tangent stiffness method. However, the constitutive model is used to calculate
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Figure 4.19: (a) Return strategy for initial prediction of inadmissible stress
increment; (b) substepping strategy for elasto-plastic increment

the true load ∆P1 corresponding to this displacement and the difference between
this load ∆P1 and ∆PA becomes a load imbalance which is now applied using
a tangent stiffness k2 calculated at the displacement ∆u1. This leads to a new
incremental displacement ∆u2 and a new load imbalance. The procedure is
repeated until the load and displacement satisfy the constitutive model within
the specified tolerance.

This Newton-Raphson method can be expensive computationally because
the tangent stiffness matrix should be recalculated after each iteration. In the
modified Newton-Raphson scheme (Fig 4.18c) the stiffness used for each iterative
computation of displacement within an overall load increment is the same—in
some cases the initial elastic stiffness is used throughout. Evidently, this is likely
to increase the number of iterations required to reach a satisfactory solution but
the saving in not recalculating and inverting stiffness matrices may make this
computationally desirable.

There is an inevitable paradox in these iterative methods that the load im-
balance has to be calculated from a finite displacement increment applied to a
model which is constructed (as in Chapter 3) for infinitesimal increments. The
model has in fact to be integrated along an implied strain path. Potts and
Zdravković (1999) describe substepping procedures for achieving this—again
with a specified convergence tolerance being imposed to limit the size of the
substeps within a displacement increment. This substepping scheme must also
be iterative in order to make some adequate accommodation for the variation
in stiffness occurring over a substep. These iterations have to be performed for
each Gauss point in each element of the problem because of course in general
the displacement gradients and hence the strains and stresses will vary within
each element.

The number of substeps can be reduced if instead an ‘implicit’ return strat-
egy is used in which plastic strains are calculated from the conditions at the
(initially unknown) end of the increment. Typically an elastic prediction of the
stress changes is used to start the iteration and an algorithm is then used to
return the stress state to the (hardened or softened) yield surface (Fig 4.19), if
the predicted stress state is found to have violated the yield condition. Once
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Figure 4.20: Viscoplastic strategy for interpretation of inadmissible stress states

again the computational advantage of rapid convergence and reduced number of
iterations has to be set against the computational disadvantage of a more com-
plex driving algorithm. Potts and Zdravković discuss the particular desirability
of integrating along a path which is admissible throughout its length (Fig 4.19b)
as opposed to a path which is certainly inadmissible (Fig 4.19a).

When using commercial software packages, engineers may not have much
opportunity to choose the solution scheme—still less the return strategy—which
is to be adopted. However, they should be able to vary the size of the load steps
that they use to drive the problem in order to convince themselves that these
steps are sufficienlty small to give a convergent and presumably accurate result.

Numerical solution of geotechnical problems is driven by time—either explic-
itly, as in transient seepage or dynamic problems, or notionally as a sequence
of construction stages in pseudo-static problems. In either case the purpose of
the numerical subterfuges is to accommodate the finite size of time steps (or
the notional arrow of time, as loading stages) in the same way that the finite
element spatial discretisation divides a continuous field problem into a finite
number of chunks. Two other techniques have been used to achieve the same
result by the application of (pseudo?) physical principles.

It has already been noted that the solution difficulties arise because the
geotechnical materials are nonlinear and our assertion in this book is that this
nonlinearity is primarily the result of plasticity. In the elastic-hardening plastic
models (§3.4), the consistency condition (3.103) specifies that the only permis-
sible stress states are on or within the current yield surface. The finite element
solution algorithm has to find some way of ensuring admissible states of the soil
during finite loading increments.

Elastic-viscoplastic models provide a different constraint on response. There
is still a yield surface which forms a boundary to the region of elastically attain-
able states (Fig 4.20) but there is then a family of progressively larger surfaces
(perhaps all of the same shape) each corresponding to a higher plastic strain
rate. With a yield function f(σ, χ) and plastic potential g(σ) we have
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δεp = µ
∂g

∂σ
(4.114)

µ = γ〈φ(f)〉 (4.115)

where 〈 〉 implies that
〈φ(f)〉 = 0 if f ≤ 0 (4.116)

〈φ(f)〉 = φ(f) if f > 0 (4.117)

γ is some viscosity parameter and φ is a monotonic function of f .
Of course, as seen in §3.7, some soils have mechanical properties which can

legitimately be described as viscoplastic. For any soil, however, we can use
a notional numerical viscoplasticity as a means of coping with finite loading
steps. The initial elastic stress increment prediction is no longer seen as leading
to an inadmissible stress state (Fig 4.19) but rather to a high plastic strain rate
stress state (Fig 4.20a). Using notional time to march through the viscoplastic
straining, the plastic strains produce hardening of all the yield surfaces until
eventually the calculated stress states imply viscoplastic strain rates which are
deemed to be below an acceptable tolerance (though it is implicit that, for a
constant load which has caused yielding, truly zero strain rates can only be
obtained at infinite time) (Fig 4.20b).

A second quasi-physical algorithm, dynamic relaxation, also presents itself.
If forces on a mass are not in equilibrium then Newton’s laws of motion tell
us that the mass will accelerate and move. If we take a simple lumped mass
approach to the distribution of mass at nodes within our finite element dis-
cretisation, we can calculate out-of-balance nodal forces at any stage and again
march through time using the deformations of the mesh to generate new internal
stresses (from the constitutive law—and we have seen in Chapter 3 that moving
from strain increments to stress increments will usually be a well defined process
even for strain softening materials), and hence new out-of-balance nodal forces,
and hence new accelerations. The masses provide distributed inertia but usu-
ally some additional numerical or constitutive damping is needed to speed up
the attainment of equilibrium (when the accelerations become tolerably small).
Such a procedure could of course also be used for real dynamic analyses (Fig
4.21, 4.22) using real material damping rather than notional numerical damping
properties.

The computer program FLAC (Fast Lagrangian Analysis of Continua) (It-
asca, 2000) adopts this solution strategy. Although it is programmed as a finite
difference code the spatial discretisation is handled in essentially the same way
as for constant strain finite element triangles and we can deduce that reliable
results will require a mesh containing a large number of small elements. The
advantage, for nonlinear problems, is that the computational processes involved
in each time step are extremely simple.

Evidently for both this dynamic relaxation method and for the viscoplastic
solution it is rather necessary to choose the time step for calculation carefully.
For dynamic relaxation we are limited by the time it takes for information to
travel across the smallest/stiffest element (recall section 4.8). In both cases a
pseudo-physical analogy has been used to cope with the finite size of loading
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steps. The results obtained will be no more reliable than the detail of the implied
stress:strain response within each step. Potts and Zdravković (1999) come down
firmly in favour of the modified Newton-Raphson solution algorithm and this is
probably the numerical approach that has received the most attention precisely
because it is a purely numerical algorithm. It is not obvious that either the
viscoplasticity or the dynamic relaxation algorithm could not be developed to
the same degree of constitutive rigour. One of the difficulties associated with
these approaches is that prior to equilibrium the solution method may require
the calculation of the gradient of the plastic potential in illegal or erroneous
parts of stress space and therefore the stress path during the increment, as it
heads to a convergent state, may be spurious. The error associated with this
will evidently depend on the local curvature of the plastic potential.

An example of the computational efficiency of different solution procedures
is given in Fig 4.23, taken from Potts and Zdravković (1999). The settlement
of the edge of an excavation is shown as a function of number of increments.
The modified Newton-Raphson algorithm is found to be fast and accurate—a
result confirmed for other classes of geotechnical system. The tangent stiffness
algorithm is usually quite slow to converge to the correct result.

4.10 Conduct of numerical modelling

Having embarked upon the numerical analysis of a geotechnical problem, how
can an engineer be confident that he or she has obtained the right answer to the
problem? What does it mean to seek the ‘right’ answer to the problem? There
seem to be three aspects to consider.
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Figure 4.24: Patch test for group of four-node elements of unit thickness: bound-
ary loading implies uniform stress state σx = F/l, σy = τxy = 0

4.10.1 Verification: Is the program doing what it claims
to be doing?

Evidently the numerical analysis program itself should be correctly coded and
implemented. If it is a widely used commercially available or publicly accessible
program then there is a good chance that the openness of access will with time
lead to discovery and correction of coding errors. There may be checks that the
engineer should undertake in order to satisfy himself or herself—or his or her
client—that this is indeed the case. This is a verification exercise.

A patch test provides some sort of check on the coding of the elements (Fig
4.24). A small group of elements with at least one irregularly placed internal
node is subjected to the least amount of boundary constraint that is necessary,
and subjected to boundary loads which are compatible with a calculable ele-
mentary uniform state of stress and strain. Thus the loading in Fig 4.24 is
compatible with a uniform normal stress σx in the x direction and zero shear
stress τxy and direct stress σy. That stress distribution should be independent of
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Figure 4.25: Location of boundaries for finite element analysis of footing

the soil model. For an elastic soil the strains in the y direction and the x direc-
tion should also be related by Poisson’s ratio—and this could be checked. At all
Gauss points in the patch the stress and strain components should correspond
to the precalculated homogeneous values.

It should be possible to test individual elements under appropriate boundary
conditions in order to check that constitutive models have been correctly imple-
mented. In general, results for any constitutive model will either be calculable
theoretically or, as published, will have been obtained by numerical algorithms
which (it is hoped) are different from those implemented in the numerical anal-
ysis program thus ensuring a certain independence in the verification process.

Some boundary value problems are capable of closed form solution and at-
tempts can be made to model these using finite elements. Many elastic analyses
are available (for example in the wonderful compendium compiled by Poulos and
Davis, 1974). Some of these—for example, stress and displacement distributions
within elastic layers or half-spaces (§7.2)—will impose the challenge of deciding
where to put the boundaries of the problem (Fig 4.25) in order to minimise
their influence. The bottom boundary may represent a real geological stiffness
discontinuity, but the location of lateral boundaries may often be somewhat
arbitrary. A finite problem will usually be stiffer than its infinite counterpart.
(Alternatively, it may be possible to use so-called ‘infinite’ elements which de-
liberately set out to reproduce boundaries at infinite distance (see, for example,
Zienkiewicz and Taylor, 2000).)

There are some problems in plasticity which are capable of exact analysis—
for example, the expansion or contraction of a cylindrical cavity (pressuremeter
or tunnel, §8.8)—though again the location and effect of the boundaries needs
to be considered carefully. However, as the constitutive model becomes more
elaborate the likelihood that any closed form analysis of any useful boundary
value problem will exist diminishes.

If the program claims to be able to model interfaces which allow concentrated
relative displacement between adjacent blocks of deforming material, then it
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should be possible to set up simple analyses to demonstrate that the mode of
mechanical operation of the interfaces that is described in the program man-
ual can indeed be reproduced. Exactly the same can be said about structural
elements—such as beams, bars, shells, cables.

Problems of transient flow—consolidation—or steady state flow—seepage—
can also be checked against independent analyses for certain simple situations
in order to reassure the user that algorithms for these typical geotechnical ap-
plications have been correctly implemented.

There may be published benchmark results for relatively simple problems
that have been obtained with other programs which can be used as at least
a first check. However, some reported studies (Schweiger, 2003) suggest that,
even when the same benchmark problem is analysed by different people us-
ing the same numerical analysis program (PLAXIS), and the same constitutive
model with the same soil parameters (so that the subjectivity in matching soil
model to laboratory test data is supposedly eliminated), then the same results
are not necessarily obtained (Fig 4.26) probably because of differences in the as-
sumptions governing the detailed numerical description of the past history and
the future perturbations. Even for such a ‘simple’ excavation problem there
are nevertheless decisions to be made in locating the right hand and bottom
boundaries and in the precise way in which the excavation is modelled. This
sort of result should obviously make users cautious and aware that numerical
modelling of complex problems is not to be undertaken lightly.

4.10.2 Are we getting the answers that we think we are
getting?

The computer has reached the end of a finite element analysis without producing
any error messages; post-processing of the output has produced colourful plots
of stresses and displacements. We heave a sigh of relief and move on to the next
project. Unfortunately, it is rarely as simple as this: users of numerical analysis
programs need to do rather more than produce one successful analysis.

First there are the details of the numerical model. We have already men-
tioned boundaries (Fig 4.25). The bottom boundary of a model will often be
defined by some known geological stratum with high stiffness and continuity
which can be considered to provide a rigid base to the problem. Lateral bound-
aries are less easily fixed by natural features of the problem under investigation
and it will be necessary to repeat the analysis with different widths of the nu-
merical model to see how far away the boundary needs to be placed for its
influence to become negligible. Evidently, the cost of numerical analysis will
increase with the size of the problem being studied—the nearer the boundaries
can be located the better. We can clearly economise by taking advantage of
symmetries: the centre line of a foundation may form an obvious plane of re-
flection so that only half the problem needs to be analysed (Fig 4.25); or, for a
circular structure symmetrically loaded, the analysis can treat one segment.

There are boundary conditions to consider. A plane of symmetry can sustain
no shear stress and must be modelled as a smooth boundary with constraint
on normal but not tangential motion. The bottom and distant side boundaries
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might often be described as fully rough—a check on the influence of releasing
the tangential constraint might be appropriate.

Then there are the details of the mesh to be chosen. There may be limited
choice of element type. Probably, higher order elements, if available, are to be
preferred to simple elements, especially if high strain gradients are anticipated.
More, smaller elements need to be placed where gradients are expected to be
highest, and at regions of stress concentration. Many physical problems involve
severe discontinuities: a footing has finite width (Fig 4.25), a retaining wall
has finite height and at the ends of these structural loading elements there will
be sudden changes in boundary loads and element stiffnesses. Sophisticated
programs will permit adaptive mesh refinement during an analysis so that the
mesh is progressively automatically refined in the areas where the highest strain
gradients develop. Alternatively a user might inspect the output obtained with
a simple mesh and repeat the analysis with a new mesh with strategically placed
extra elements. It has to be noted that discontinuities are often associated with
infinities in analytical results and these are always going to prove disturbing
to numerical analysis. By the same token, analytical economy can be obtained
by using large elements in regions where strain gradients are expected to be
low—for example, towards the lateral boundary in Fig 4.25.

The shape of elements is also important to ensure that the stiffness equations
are well conditioned: long thin elements tend to be unsatisfactory.

Data checking forms a vital part of the process—most programs will permit
plotting of the mesh and the boundary conditions and constraints in ways which
will readily reveal any obvious errors. A simple numerical error in one piece of
input data may produce some very visible distortion of the mesh.

We have seen how significant the discretisation of the loading process can be
(Fig 4.23). It is beholden on the user to ensure that the loading has been broken
down into sufficiently small steps that further subdivision of steps produces no
further improvement in the result.

Convergence will often be sought in a key output—for example, the load:-
displacement response of a footing or horizontal displacement of the top of a
retaining structure. Confirmation of reliability of the response requires closer
inspection of the output. For example, it is valuable to plot contours or pro-
files of displacements, strains, and stresses across the model—both horizontally
and vertically—to seek departures from expected monotonic or at least smooth
variations. If the analysis has been performed with an assumed centreline sym-
metry, then contours of any variable should be orthogonal to this centreline.
It is also valuable to plot paths for active elements through the course of the
analysis—either strain paths or stress paths—again to demonstrate that these
are in accord with expectation (and with the underlying modelling assumptions
discussed in the next section).

4.10.3 Validation: Are we getting the answers that we
need?

The third issue in interpreting the results of numerical modelling is much more
fundamental and relates to the modelling itself. There are several stages that
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we should go through in planning a campaign of numerical modelling.
First we need to understand the problem. What effects are likely to be im-

portant? We need to have identified the key controlling influences—soil prop-
erties or features of the construction process—in order to ensure that these are
included in the modelling. In performing numerical analysis there is always the
danger that the complexity of the analysis—and more especially the apparent
finality of the colourful output—will obscure the physical understanding of the
system response. Before we embark on the analysis we should have some idea of
what we expect to happen: we should be able to perform a back-of-the-envelope
calculation to give us some idea of the magnitude of the effects that we expect
to see. If the numerical analysis produces results which are initially counterintu-
itional then we should nevertheless be able to produce new back-of-the-envelope
calculations to support what we have actually seen. It is unlikely that results
for which we have no physical explanation are correct.

We must not be seduced by the precision with which a computer is able
to report numerical results into thinking that the results are in fact imbued
with this level of accuracy. We know that there are approximations in the
finite element method. There are approximations in the assumptions about the
constitutive response of the soil and the detailed description of the numerical
model and its boundary conditions.

The constitutive model may well be the weakest link in performing numer-
ical modelling. All programs used for analysis of geotechnical problems will
include elastic models—perhaps permitting anisotropic elasticity. Any program
that is seriously intended for geotechnical application should certainly permit
the use of the elastic-perfectly plastic Mohr-Coulomb model. Whether such a
model will permit the rather necessary luxury of nonassociated flow (dilation
6= friction) is less certain though rather crucial—the numerical advantage of
symmetrical stiffness matrices may have taken precedence over physical plau-
sibility. Many programs will permit the use of Cam clay models. That will
probably be the end of standard constitutive modelling provision. Availability
of kinematic hardening models—or even Mohr-Coulomb models with pre-failure
plastic nonlinearity—is likely to be restricted.

As a result, the possibilities of accurate and reliable matching of experimen-
tal data with the constitutive models actually available are limited. We may well
have to make the type of approximation illustrated in Fig 4.27 (§3.3.4)—and
as we will see in Fig 4.29 even an elastic-perfectly plastic model can generate a
smooth transition from initial elastic to ultimate plastic behaviour of a system
(see also §7.5.1). However, the resulting analysis can hardly be expected to give
a six figure precision for the way in which the real soil would behave.

Even if we are able to make use of a constitutive model which provides a
reasonable fit to data obtained from a range of laboratory stress paths we must
recognise that almost every element in our numerical model will be undergoing
stress changes which are quite different from those that we are able to apply
in the laboratory—we are certainly extrapolating towards the unknown region.
We need to beware that the constitutive model does not contain any hidden
secrets leading to unexpected modes of response, which were not intended by
the developer of the model, when it is used in the analysis for stress paths
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Figure 4.27: Elastic-perfectly plastic approximation to actual stress:strain re-
sponse of soil

for which its behaviour has never been calibrated or investigated. It may be
worthwhile to take a few key elements and study the predicted stress:strain
response in detail to check that it does make sense in the spirit in which the
constitutive model was created.

In geotechnical analyses we know that initial conditions are as important as
constitutive properties in computing response under working loads (the value of
ultimate, failure, loads will be less affected). We rarely have great detail of the
in-situ stress conditions. We may have to attempt to model the full geological
processes by which the soil has reached its present condition—but we certainly
need to recognise the associated uncertainty.

In discussing physical modelling in Chapter 5 we will see how an efficient
programme of physical modelling can be designed if we have a clear idea about
those parameters of a problem and those material properties which are likely
to control the behaviour. We hope that we can generate dimensionless groups
which will characterise the system response and permit specific models to be
interpreted for generic application. The same ideas should guide our numerical
modelling too. Numerical parametric studies should be much more rapid than
physical parametric studies but in terms of presentation of results the route to
distillation should be the same.

With nonlinear history dependent materials such as soils it is to be expected
that the final response that is calculated will depend on the route by which
it is obtained. All aspects of the modelling need to be considered: the past,
and how the soil has reached its present state, and the detail of the future
changes that are expected. Uniqueness of ultimate response without attention
to intermediate detail cannot be guaranteed.
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Figure 4.28: FLAC model of footing on surface of layer of elastic-perfectly plastic
Mohr-Coulomb soil

We have made very little mention of three-dimensional analyses. Everything
that has been said about two-dimensional elements for analysis of plane strain
geotechnical problems can be extended to three dimensions. Three-dimensional
models are tedious to prepare and time consuming to intepret. They should
certainly be preceded by some carefully chosen two-dimensional models. For
three-dimensional numerical models even more than for two-dimensional models
there is the danger that the apparent beauty of the result—any result—will
distract attention from all the assumptions on which it is dependent. The need
to be able to produce a simple qualitative physical explanation for the predicted
behaviour remains vital.

In the end, it is the engineer who uses the software who is responsible for
the results. The aim of this book is to encourage engineers to take an interest
in—because they will probably have to take ownership of—the whole process of
numerical modelling and not just the one result—footing settlement, structural
displacement, tunnel lining movement—which he or she thinks is necessary for
a design application.

4.10.4 Exercise in numerical modelling: FLAC analysis of
footing on Mohr-Coulomb soil

As an exercise in model validation and interpretation—and a demonstration of
some of the features that may influence the results of numerical modelling—
a simple student activity has been devised using the finite difference program
FLAC (Itasca, 2000). This is intended to be illustrative of some of the issues
that might be encountered in numerical modeling and not intended to provide
a definitive analysis of the footing.

The modelling of the load:settlement response of a strip footing on the sur-
face of a layer of elastic-perfectly plastic soil has been kept deliberately simple.
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Table 4.1: Analysis of footing on Mohr-Coulomb soil: soil properties

bulk modulus K 200 MPa
shear modulus G 100 MPa
density ρ 1.8 Mg/m3

friction φ 30◦ also 20◦, 40◦

dilation ψ 0◦ also 10◦, 20◦, 30◦

earth pressure coefficient Ko 1 also 0.33, 3
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Figure 4.29: Effect of number of elements under footing NB on footing response
(NL/NB = 3, NH/NB = 2)

The material properties used for the analysis are shown in Table 4.1. Notwith-
standing what was written earlier (§4.4.1, §4.8, §4.10.2), the soil is discretised
as a series of square elements (Fig 4.28). The numbers of elements under the
footing (NB), across the model (NL), and over the depth of the model (NH) can
be varied. The load is applied to the nodes bounding the NB elements so that
the half footing width (which is kept fixed at 1 m) corresponds to NB +1/2 ele-
ments. The left boundary is a smooth plane of symmetry. The other boundaries
are perfectly rough.

The footing is loaded by pushing it into the soil at a slow constant velocity—
the pseudo-dynamic nature of FLAC has been described above. The chosen
velocity is a compromise between calculation time and accuracy of results.

First, the effect of spatial discretisation with constant model proportions is
explored by varying NB while keeping NL/NB and NH/NB constant at 3 and 2
respectively. Typical results for the load:settlement response are shown in Fig
4.29. It is noted that with NB > 4 little further improvement is obtained.

Next, keeping NB and NH constant (at 4 and 8 respectively), NL is varied
to explore the influence of the proximity of the right hand boundary. Typi-
cal results are shown in Fig 4.30. In the limit, when NL = NB , there is no
possibility of soil displacement to the side under the footing and the very stiff
response discovered is that of an elastic material under one-dimensional oedo-
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Figure 4.31: Displacement vectors around footing (NB = 4, NL = 16, NH = 8)

metric loading. As the boundary moves further away its influence reduces until
eventually the model is able to accommodate the displacement pattern for the
failure mechanism for this frictional soil (Fig 4.31). For NL/NB > 3 no further
significant change in the bearing capacity is obtained.

Keeping NB and NL constant (at 4 and 12 respectively), the depth of the
model NH is changed (Fig 4.32). There are two effects to observe. The initial
stiffness of the footing (P/ρ) is dependent on the ratio of soil layer thickness
to footing width B. Results can be extracted from Poulos and Davis (1974) to
show that

P/ρ = E/ω (4.118)

where ω is a function of H/B and Poisson’s ratio ν (Table 4.2). The results
of the FLAC analysis can be used to confirm that the calculated initial footing
stiffnesses correspond reasonably well with the theoretical values as H/B is
changed (Fig 4.32b). The ultimate load also varies with H/B (when NH < NB

the layer being compressed is very thin and the ultimate load would be extremely
high—and this has not been reached in the example shown in Fig 4.32 for
NH = 2) but reaches a limiting value once the soil layer is thick enough to
include the full plastic mechanism (Figs 4.31, 4.32).



Table 4.2: Values of ω (equation (4.118)) for calculation of settlement of footing
width B on elastic layer of thickness H with Poisson’s ratio ν

ν
H/B 0.005 0.3 0.45

1 0.7900 0.6684 0.4170
2 1.1959 1.0685 0.7618
3 1.5015 1.3523 0.9940
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Figure 4.32: (a) Effect of model depth on load:settlement response (NB = 4,
NL = 12); (b) comparison of calculated and theoretical initial footing stiffness
as function of H/B
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Figure 4.33: (a) Effect of φ on load:settlement response; (b) comparison of
bearing capacity factors deduced from numerical analysis with expressions pro-
posed by Meyerhof (1963) and Hansen (1968) (analyses performed with NB = 4,
NL = 16, NH = 8)

Having explored issues of discretisation and boundary location, this simple
model can be used to compare predicted and calculated bearing capacities for
this frictional soil. In the absence of cohesion and surcharge we expect the
ultimate footing load to be given by

P

B
=

1
2
γBNγ (4.119)

where Nγ is a function of angle of shearing resistance φ. The deduced values of
Nγ are compared in Fig 4.33 with the values predicted using formulae proposed
by Meyerhof (1963):

Nγ =
(

1 + sin φ

1− sinφ
eπ tan φ − 1

)
tan 1.4φ (4.120)

and by Hansen (1968):

Nγ = 1.8
(

1 + sin φ

1− sin φ
eπ tan φ − 1

)
tanφ (4.121)

The two expressions give rather similar results and the match with the values
calculated using FLAC is satisfactory. Increasing the angle of shearing resistance
increases the distance from the initial stress state to failure so that the elastic
region is greatly increased and the displacement required to reach the ultimate
load is also increased.

The soil model used in these analyses is an elastic-perfectly plastic Mohr-
Coulomb model (section 3.3.4). The analyses presented so far have been per-
formed with a zero angle of dilation ψ = 0 implying that plastic deformation
occurs at constant volume. The effect of varying ψ on the load:displacement
relationship is shown in Fig 4.34. The bearing capacity increases slightly as
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Figure 4.34: Effect of angle of dilation ψ on load:settlement response

ψ increases: this is not the place to dwell on the implications of the value of
angle of dilation on bearing capacity of frictional soil. The calculation becomes
somewhat wobbly when ψ = φ: it was noted in section 3.3.4 that when an-
gles of friction and dilation are equal there is no plastic energy dissipation in
the material—which is physically unreasonable and numerically disconcerting
particularly for a pseudo-dynamic calculation procedure which will be upset by
deformations which are able to occur without any energy change.

The emphasis, in understanding elastic-plastic constitutive models, on the
need to specify the past (the resulting initial size of the yield surface), the
present (the initial stress state in relation to the yield surface), and the future
(the nature of the loading to which the geotechnical system is to be subjected)
applies to a numerical model just as much as to a single soil element. The
analyses described so far have assumed that before the footing is loaded the
ratio Ko of horizontal (effective) stress to vertical (effective) stress in the dry
frictional soil is given by

σ′h
σ′v

= Ko = 1 (4.122)

Evidently the earth pressure coefficient at rest Ko can in fact take any value
between the limits of the active pressure ratio Ka and the passive pressure ratio
Kp:

Ka =
1

Kp
=

1− sin φ′

1 + sin φ′
(4.123)

which, with φ = 30◦, take the values of 0.33 and 3 respectively.
The effect of varying Ko between these limits is shown in Fig 4.35a. The

effect is not great, but on close inspection it can be seen that as Ko falls the
stiffness at intermediate loads also falls. The value of Ko controls the location
of the initial stress state relative to the Mohr-Coulomb failure loci (Fig 4.35b).
Underneath the footing—these are the soil elements that particularly control the
load:settlement response—the vertical stress increases rapidly as the footing is
loaded, with much less change in horizontal stress. If Ko is initially low, so
that the soil is close to active failure (A in Fig 4.35b), then the onset of failure
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Figure 4.35: Effect of Ko on load:settlement response

occurs early as the footing load is increased, the purely elastic region finishes
earlier and the overall footing stiffness falls. As Ko increases (towards B in Fig
4.35b), the attainment of local failure is delayed and the intermediate stiffness
increases. As expected, varying Ko has negligible effect on the ultimate footing
load: this is the result of the development of a plastic mechanism throughout
the soil and the stresses associated with failure are essentially independent of
the starting point.

4.11 Closure

Potts (2003) poses the question: ‘Is numerical modelling just an advanced toy
for academics and the privileged few, or is it in a position to provide a genuine
tool for routine geotechnical analysis?’ He observes that, while many geotech-
nical engineers have had some involvement with numerical modelling, few have
been sufficiently engaged in the detail of the modelling to appreciate the com-
plexities and subtleties that its use implies. In debating a motion that numerical
modelling is well placed to play a central role in much geotechnical design he
observes that numerical analysis can:

• do everything that conventional analysis can do—all the theoretical mod-
elling strategies that are described in Chapter 7 can be reproduced in
numerical modelling;

• accommodate realistic soil behaviour - in principle any of the models de-
scribed or alluded to in Chapter 3 can be invoked in numerical modelling;

• account for complex soil stratigraphy;

• describe mechanisms of system response for comparison with physical
modelling (Chapters 5 and 6);

• describe soil-structure and structure-soil-structure interaction as will be
illustrated in Chapter 8; and
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• accommodate three-dimensional geometries—whereas many of the simpler
theoretical models find this difficult.

On the other hand he also observes that there are difficulties with numerical
modelling:

• because there is no standard numerical strategy for implementation of
nonlinear models;

• because some constitutive models seem to be unable to give reasonable
predictions—and we have noted some obvious deficiencies in Chapter 3;
and

• because, even for apparently simple problems, the results of numerical
modelling can be very dependent on the decisions made by the user.

He further suggests that useful numerical modelling requires skilled operators
who:

• have a detailed understanding of soil mechanics and the underpinning
theory for the numerical algorithms;

• understand the limitations of constitutive models; and

• are familiar with the software that is being used for the numerical mod-
elling.

If the message seems gloomy, it is more that the warning is important because
numerical modelling, much more than physical modelling—which requires equip-
ment and laboratories and technical support—or theoretical modelling—which
requires conscious adaptation and simplification to fit analytical capabilities—is
apparently available at the touch of a keyboard on any computer in any design
office. The potential for disaster through misuse is certainly great.

We have attempted here to give some clues to the problems that may be
associated with numerical modelling in the hope that the users of tomorrow will
be more alert to the challenges to which Potts refers.
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Physical modelling

5.1 Introduction

Physical modelling is performed in order to study particular aspects of the
behaviour of prototypes. Full-scale testing is in a way an example of physical
modelling where all features of the prototype being studied are reproduced at
full scale. However, most physical models will be constructed at much smaller
scales than the prototype precisely because it is desired to obtain information
about expected patterns of response more rapidly and with closer control over
model details than would be possible with full-scale testing. This usually implies
that parametric studies should be performed in which key parameters of models
are varied in order to discover their effect. This itself implies that many model
tests will be required and in addition it is often desirable to repeat individual
tests in order to gain greater confidence in the results that are obtained.

If the model is not constructed at full scale then we need to have some idea
about the way in which we should extrapolate the observations that we make at
model scale to the prototype scale. If the material behaviour is entirely linear
and homogeneous for the loads that we apply in the model and expect in the
prototype then it may be a simple matter to scale up the model observations
and the details of the model may not be particularly important but, as will be
shown, this still depends on the details of the underlying theoretical model which
informs our physical modelling. Dimensional analysis is particularly important.

However, if the material behaviour is nonlinear, or if the geotechnical struc-
ture to be studied contains several materials which interact with each other,
then the development of the underlying theoretical model will become more dif-
ficult. It then becomes even more vital to consider and understand the nature
of the expected behaviour so that the details of the model can be correctly es-
tablished and the rules to be applied for extrapolation of observations are clear.
In short we need to understand the scaling laws.

233
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5.2 Dimensional analysis

Dimensional analysis is a method for deducing elements of the form of a theoret-
ical relationship from consideration of the variables and parameters that make
up that relationship. The underlying premise is simply that any phenomenon
can be described by a dimensionally consistent equation linking the controlling
variables. Dimensional analysis of a problem then leads to a reduction in the
number of variables that must be studied in order to understand the problem.
The key is to seek to create dimensionally homogeneous equations whose form
does not depend on the units of measurement. Governing equations cannot just
be plucked from the air: they must come from an underlying insight into the
phenomenon that is being modelled. If dimensional homogeneity appears elu-
sive then this is probably an indication that some key variables or parameters
have been omitted.

The theory of dimensional analysis is encapsulated in Buckingham’s theorem:
If an equation is dimensionally homogeneous, it can be reduced to a relationship
among a complete set of dimensionless products. Once the application of this
theorem has been understood it may appear to be intuitive but it can in fact be
supported by rigorous mathematical proof (Langhaar, 1951). A further general
conclusion can be drawn: A set of dimensionless products of given variables is
complete if each product in the set is independent of the others and every other
dimensionless product of the variables is a product of powers of dimensionless
products in the set.

Dimensional analysis does not reveal the form of the relationships between
the dimensionless products but correct use of the dimensionless products makes
parametric studies more efficient by revealing which variables are truly indepen-
dent and also forms the basis for extrapolating from one scale of observation to
another.

There are various different ways in which dimensions of variables can be
defined but the most commonly used fundamental system reduces everything
to combinations of length [L], mass [M], time [T]. Where thermal or electrical
effects are important then it is necessary also to add in temperature and charge
respectively but those additions will not concern us here. For many geotechnical
problems we are concerned with forces and stresses rather than masses and
the dimension of time only comes in through the conversion of mass to force.
Butterfield (1999) shows that application of classical theories of dimensional
analysis in this situation can produce misleading results unless the alternative
grouping for force [MLT−2 = F] is used as a member of the fundamental system.

5.2.1 Slope in cohesive soil

Take as an example the factor of safety of a slope formed in purely cohesive soil.
The variables that need to be considered are the factor of safety F , which is
already dimensionless, and is expected to be a function of the geometry of the
problem characterised by the height H of the slope (dimensions of length, L)
and angle θ of the slope (dimensionless), together with the physical properties of
the soil: its undrained cohesive strength cu (dimensions of stress = force/area,
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θ
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cu, γ

Figure 5.1: Slope in cohesive soil

FL−2) and unit weight γ (dimensions of force/volume, FL−3) (Fig 5.1). We can
immediately write:

F = f (H, θ, cu, γ) (5.1)

or in terms of dimensions

[1] = f
(
[L], [1], [FL−2], [FL−3]

)
(5.2)

A quick inspection of the dimensions of these variables indicates that the only
dimensionless group that can be formed is: cu/γH. One can then conclude that
the governing equation for this problem is

F = f

(
cu

γH
, θ

)
(5.3)

and the number of variables that needs to be considered has been reduced by
two. The factor of safety F is only of interest in association with the shear
strength: it indicates the degree to which the shear strength can be reduced
while still just ensuring slope stability (F = 1). So the result is in accord with
our geotechnical experience: charts (Fig 5.2) presented by Taylor (1948), for
example, show stability number cu/γH as a function of slope angle θ and also
of depth D to a strong layer below the slope (Fig 5.1)—but this is merely intro-
ducing a second dimensionless group D/H which characterises another aspect
of the geometry of the slope: cu/FγH = f(θ,D/H).

A practical consequence from the point of view of physical modelling is that
to maintain the same margin of safety in a model and prototype not only the
geometry (the slope angle θ) but also the dimensionless group cu/γH should
be kept constant. If the slope height is reduced, as it usually will be in a small
scale model, then, if the unit weight of the soil remains unchanged, as at first
sight it must, the strength of the soil must be reduced in the same proportion.

In fact, the unit weight γ that we have introduced as a basic variable in
our assessment of slope stability is not actually a fundamental quantity: it is
calculated as a product of density ρ and gravitational acceleration g. Whereas
the density of a material is a direct function of the packing of the particles
for a soil or is a basic property for a metal, the gravitational acceleration can
change from one celestial body to another (on the moon the acceleration due
to lunar gravity is about 20% of the acceleration due to gravity at the surface
of the earth) and can be artificially controlled in a geotechnical centrifuge, as
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Figure 5.2: Stability chart for slope in cohesive soil (after Taylor, 1948)

described in more detail in Chapter 6. More fundamentally, therefore, we should
write

cu

FρgH
= f (θ, D/H) (5.4)

and our assessment of the conditions necessary for a small physical model of a
slope to maintain the same margin of safety as a prototype slope now concludes
that, if we increase g as we reduce H then the soil properties, strength cu and
density ρ, can be kept unchanged.

mα

cu
d

a. b.

Figure 5.3: Fall-cone test in cohesive soil
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5.2.2 Fall-cone

The fall-cone used as a quick measure of undrained strength in the laboratory
can also be conveniently subjected to dimensional analysis (Fig 5.3). The pene-
tration d of the cone, released from contact with the surface of a sample of soil
and allowed to fall and penetrate the soil under its own weight will depend on
the mass m of the cone, the gravitational acceleration g, the undrained strength
cu of the soil and the geometry of the cone, expressed by the tip angle α. (We
neglect the buoyancy effect of the different densities of the soil and falling cone
on the penetration process.) We conclude that

cud2

mg
= f(α) = kα (5.5)

so that for a given cone angle α the dimensionless group cud2/mg should be
a constant kα. The fall-cone is of course used to determine the liquid limit of
cohesive soils as the water content for which a cone with tip angle α = 30◦ and
mass m = 80 g penetrates a distance d = 20 mm when allowed to fall under
its own weight (§1.8). This analysis demonstrates the much more powerful use
of the fall-cone as a strength measuring device and demonstrates too that the
liquid limit test is itself a strength measuring test. It is found that for angle
α = 30◦, k30 = 0.85 (Wood, 1985) so that at the liquid limit all cohesive soils
have undrained strength cu = 1.7 kPa. For a fall cone with angle α = 60◦, the
cone factor k60 = 0.29. In Scandinavian countries the liquid limit is defined
as the water content at which a 60 g, 60◦ cone penetrates 10 mm from rest.
Knowing k60 we can deduce that the associated undrained strength is again
cu = 1.7 kPa. The fall-cone definition of the liquid limit is seen to be in reality a
strength index—and thus helpfully relevant to geotechnical engineering practice.

5.2.3 Consolidation

In the two examples that we have just discussed, slope stability and penetration
of the fall-cone, we do not know the exact form of the theoretical relationship.
Dimensional analysis helps us to understand how we might efficiently explore
it experimentally. There are other situations where we have a clear idea of the
theoretical model which controls the phenomena in which we are interested.
Consolidation is one such example.

Terzaghi’s theory of one-dimensional consolidation tells us that temporal
and spatial variations of pore pressure u are linked through a partial differential
equation which introduces a coefficient of consolidation cv (§4.2.1, §4.8):

∂u

∂t
= cv

∂2u

∂z2
(5.6)

This equation is certainly dimensionally consistent because the coefficient of
consolidation cv has dimensions L2T−1. We can expect to be able to charac-
terise the solution in terms of pore pressure u as a proportion of some reference
stress (initial pore pressure ui or applied total stress change ∆σ—the solution
of the consolidation equation requires some particular boundary conditions for
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its completion) as a function of position z and time t. We must suppose that
there is some typical length H that characterises the geometry of a series of
similar consolidation problems. Then

u = f (ui, z, t,H, cv) (5.7)

and consideration of the dimensions of these variables allows us to write more
efficiently

u

ui
= f

(
z

H
,
cvt

H2

)
(5.8)

which recovers the dimensionless time variable

T =
cvt

H2
(5.9)

If we were also to write
U =

u

ui
(5.10)

Z =
z

H
(5.11)

then (5.8) becomes U = f(Z, T ). Theory tells us, consistent with this, that the
consolidation equation itself can then be written

∂U

∂T
=

∂2U

∂Z2
(5.12)

and solutions of this equation will be entirely general and capable of application,
by decoding the definitions of U , T and Z, to specific physical problems. We
only need one set of observations for a known soil to be able to compute an
expected response for any soil.

5.2.4 Fluid drag

In the examples of slope stability and of cone penetration, study of the groups
of variables which controlled the problem indicated that there was really only
one dimensionless group of interest. In other situations there will be many
more variables and there is some element of choice in selection of the impor-
tant dimensionless groups which should desirably be chosen in order to isolate
particular effects. An example from fluid mechanics may help to illustrate this.

Let us suppose that we are concerned to study the drag exerted on a body
by a fluid. We deduce that the drag force F is likely to depend on some or all
of these variables: a typical dimension (assuming that we are considering geo-
metrically similar bodies); the velocity of flow; the density, viscosity and elastic
properties of the fluid. The gravitational field within which the flow is taking
place may influence the drag effects, so we should include the acceleration due
to gravity. There may be situations is which we have measured some pressure
drop across the body and are interested in the correlation of this pressure drop
with the drag force. If the object breaks the surface of the fluid then the surface
tension will also be important. The variables and their dimensions are shown
in Table 5.1.
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Table 5.1: Fluid drag: summary of variables

symbol variable dimensions
F force ML/T2

` dimension L
V velocity L/T
ρ density M/L3

µ viscosity M/LT
K bulk modulus M/LT2

g gravity L/T2

∆p pressure change M/LT2

T surface tension M/T2

Table 5.2: Fluid drag: different types of fluid force

types of force
external force F
fluid pressure force ∆p`2

inertial force ρv2`2

viscous force µv`
gravitational force ρg`3

elastic force K`2

surface tension force T`

Since each of these variables can be expressed in terms of the three dimen-
sions length, mass and time we can reduce the number of variables from nine
to six dimensionless groups. It is ultimately a force that is of concern to us, so
one logical route for generating these dimensionless groups is to think of ways in
which force-like quantities can be generated. Bernoulli’s equation tells us that
inertial pressure is 1

2ρv2 and hence inertial force is 1
2ρv2`2. A viscous shear stress

is proportional to a velocity gradient: force is stress×area. A gravitational force
comes directly from the weight of an element of fluid. If the fluid is changing
in volume then the link between stresses and deformations will be controlled by
the elastic stiffness of the fluid. Surface tension gives a force proportional to
the length of broken fluid surface. Expressions for the typical forces originating
from these different sources are shown in Table 5.2.

A series of dimensionless groups can be obtained by comparing different
types of forces. These are summarised in Table 5.3. It should not be surprising
that five of the ratios (or quantities directly proportional to them) are familiar
groupings of parameters used so regularly in fluid mechanics that they are given
special names. Thus Reynolds Number is a ratio of inertial and viscous forces.
Froude Number is a ratio of inertial and gravitational forces. Mach Number
is a ratio of inertial and elastic forces. Euler Number is a ratio of inertial and
pressure forces. Weber Number is a ratio of inertial and surface tension forces.
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Table 5.3: Fluid drag: dimensionless groups

group name

inertial/viscous ρv`
µ Reynolds

inertial/gravitational v2

g` Froude2

inertial/elastic ρv2

K Mach2

inertial/pressure ρv2

∆p Euler2

inertial/(surface tension) ρv2`
T Weber

(external force)/inertial F
ρv2`2 drag coefficient

Any other ratio of forces—for example, a drag coefficient—could be obtained as
a ratio of two of these Numbers.

The choice of these particular ratios deliberately tries to isolate effects that in
certain circumstances can be expected to be negligible. Mach Number is really
about comparing flow velocity with the speed of sound in the fluid and obviously
this ratio will often be extremely small and effects of fluid compressibility of no
interest if we are concerned with low speed drag on an object under water.

This argument can also be presented in the opposite way. The identification
of dimensionless groups provides a structure for the experimental investigation
of the general problem of, in this instance, fluid drag. The dimensionless groups
tell us, as before for the slope or the fall-cone, that certain combinations of
variables are likely to influence the result in an interrelated way and that we
can achieve an adequate coverage of the study of the problem provided we
study appropriate ranges of the values of the dimensionless groups but we do
not need to cover the full range of each individual variable. As a result of
such a comprehensive experimental study we may well conclude that the drag,
for example, is insensitive to Mach number over a certain range of values. In
designing our physical models we would ideally want to ensure that we maintain
in the models the same values of all dimensionless groups as in the prototype.
This may be extremely restrictive on the design of exact small scale models.
A discovery of insensitivity to one group tells us that we do not necessarily
need to strive too carefully to retain the same value of this group in model and
prototype.

5.2.5 Settlement of a footing

Returning to geotechnical applications, let us now explore the application of
dimensional analysis to the modelling of the behaviour of a footing (Fig 5.4).
First we can consider the settlement of a rigid circular footing on an elastic soil.
We expect that the settlement ρ will be a function of the footing load P , the
footing radius a, and the elastic properties of the soil, bulk modulus K and
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Figure 5.4: Settlement of circular footing on elastic soil

shear modulus G (or Young’s modulus E and Poisson’s ratio ν):

ρ = f (P, a, K,G) (5.13)

Consideration of the dimensions of these quantities shows that we can expect
a dimensionless relationship of the form:

ρ

a
= f

(
P

Ga2
,
G

K

)
(5.14)

where the ratio G/K is directly related to Poisson’s ratio. In fact, our prior
knowledge of the behaviour of linear elastic materials leads us to expect that
the settlement will be directly proportional to the load so that the form of
relationship must actually be:

ρ

a
=

P

Ga2
f

(
G

K

)
(5.15)

or
ρGa

P
= f(ν) (5.16)

and, for a given material (constant value of ν) we would only need to perform
one footing test at any scale to determine the particular value of f(ν).

In fact, this is a problem that is capable of exact elastic solution from inte-
gration of Boussinesq equations giving (§8.2.4):

ρGa

P
=

1− ν

4
(5.17)

Dimensional analysis cannot determine the constants and the details of the
functions but it can set us on the right track.

For a rectangular footing of width B and length L (Fig 5.5) an exactly similar
argument gives

ρ

B
=

P

GLB
f

(
ν,

L

B

)
(5.18)

Here there is no exact result but Poulos and Davis (1974) quote results of an
approximate solution in the form (§8.2.4):

ρG
√

LB

P
=

1− ν

βz
(5.19)
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Figure 5.5: Settlement of rectangular footing on elastic soil
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Figure 5.6: Flexible circular footing on elastic soil

where βz is a function of both ν and L/B. This is directly consistent with our
generalised dimensional deduction (5.18).

We can extend this analysis a little further by introducing the possibility of
footing flexibility. This will be considered in greater detail in the chapter on
soil-structure interaction (§8.4). Here we need to note that the settlement is
no longer a single quantity but will vary with location on the footing. Let us
consider a circular footing or raft for simplicity (Fig 5.6): the settlement will be
a function of radius r. The footing is flexible so the structural material will be
deforming and the behaviour will in some way depend on the elastic properties
of the footing. We could introduce these in the form of Young’s modulus Er

and Poisson’s ratio νr (or shear modulus Gr and bulk modulus Kr) but, if we
restrict ourselves to a class of footings which deform only by bending, we expect
the stiffness properties of the footing of thickness h to enter our analysis through
the flexural rigidity Dr

Dr =
Erh

3

12 (1− ν2
r )

(5.20)

This immediately solves part of our problem since we no longer need to consider
footing thickness, footing Young’s modulus and footing Poisson’s ratio indepen-
dently. We can now write that we expect the settlement ρ at some radius r to
be a function of the total load P on the footing, the elastic properties of the
soil, G and K, the radius of the footing a, and the composite property, flexural
rigidity of the footing, Dr:

ρ = f (r, a, P, G, K,Dr) (5.21)
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which from considerations of dimensional analysis becomes:

ρ

a
= f

(
P

Ga2
,
r

a
,
G

K
,
Ga3

Dr

)
(5.22)

and once again from our prior knowledge of behaviour of elastic systems we can
combine two of the dimensionless groups to give (compare §8.4):

ρGa

P
= f

(
r

a
,
G

K
,
Ga3

Dr

)
(5.23)

We are using a certain amount of background knowledge to underpin our
description of the problem and guide our modelling. This now tells us that we
can obtain similar settlements at corresponding points in model and prototype
footings for appropriately scaled loads if the Poisson’s ratio of the soil is the
same in both and if the flexural rigidity of the footing is scaled appropriately
with the soil stiffness and the radius of the footing.

A natural extension of this line of thought can be used to deduce rational
expressions for the stress distribution as a function of the variables. We can
argue from symmetry for a circular footing that the stresses will not depend
on circumferential position. Hence depth z and radius r should be sufficient
coordinates (Fig 5.6). The elastic change of a general stress component σ will
be given by

σ = f (r, z, a, P, G, K,Dr) (5.24)

which, in principle, becomes

σa2

P
= f

(
r

a
,
z

a
,

P

Ga2
,
G

K
,
Ga3

Dr

)
(5.25)

However, we can again introduce our prior understanding of elastic problems to
indicate that, since we expect the elastic stress changes to be directly propor-
tional to the applied load (and that guided our choice of the dimensionless group
σa2/P ), there can be no further dependence on the applied load and therefore
no dependence on the dimensionless group P/Ga2. The result is

σa2

P
= f

(
r

a
,
z

a
,
G

K
,
Ga3

Dr

)
(5.26)

and at geometrically similar locations in model and prototype (same values of
r/a and z/a) the normalised stress will be the same provided the Poisson’s ratio
of the soil is retained together with the relative stiffness of the footing—but the
absolute value of soil stiffness is not important.

5.2.6 Bearing capacity of a footing

At the other extreme we can seek appropriate forms of relationship for the
ultimate load on a footing (Fig 5.7). We can now suggest, from our physical
understanding of the problem, that the deformation properties of the soil (and
the footing) will not be important and that the ultimate load Pu will depend
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Figure 5.7: Bearing capacity of rectangular footing on cohesive-frictional soil

on the geometry and dimensions of the footing—for example, breadth B and
length L for a rectangular footing—and the depth of embedment of foundation d,
together with the strength properties of the soil—for example, cohesive strength
c and frictional strength φ. We can imagine also that the unit weight γ of the
soil will be relevant since it must be harder to push an object into a heavier
medium.

Pu = f (L, B, d, c, φ, γ) (5.27)

Rearranging into dimensionless groups this becomes

Pu

γB2L
= f

(
L

B
,

d

B
,

c

γB
, φ

)
(5.28)

and for similarity in model and prototype we should not only maintain geomet-
rical similarity—L/B, d/B—but also scale cohesive strength c with γB. As for
the slope, this implies reduction of strength by the geometrical scale factor if we
are testing at one gravity but implies that the strength can be maintained at
its prototype value if the gravitational acceleration (and hence the unit weight)
is increased by the same factor by which the linear dimensions are reduced.

We are more familiar with the bearing capacity expression

Pu

γB2L
= Nc

c

γB
f1

(
L

B

)
+ Nq

γd

γB
f2

(
L

B

)
+

1
2
Nγf3

(
L

B

)
(5.29)

where Nc, Nq, Nγ are all functions of φ and the depth of embedment d has been
represented by a surcharge γd. The functions f1, f2, f3 are shape factors. This
result is thus entirely in accordance with our dimensional analysis. In fact, of
course, the dimensional analysis places no constraints on the form of dependency
that we should expect so that the additive result that is traditionally assumed
(5.29) is only one acceptable possibility and certainly not the only one. This
traditional result comes from empirical expediency and not from theoretical
rigour.

Theoretical results for the analysis of bearing capacity are made much easier
if certain simplifications are made (§7.3.4, §7.3.6). Thus, the footing might be
assumed to be at the surface of the ground so that the effect of embedment is
equivalent to the provision of a surcharge at foundation level. That appears
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to be a reasonable but possibly very conservative assumption: strength of soil
above the level of the footing is entirely neglected. For a frictional soil the
shear strength that can be mobilised at any point in the material depends on
the stress level at that point. The heavier the soil in the region that is being
brought to failure the greater the stress level and hence the greater the available
strength. The incorporation of heavy soil into the theoretical analysis is tricky
and tends to be, artificially, kept separate from the effect of the surcharge—
hence the separate bearing capacity factors Nq and Nγ . In reality the soil
unit weight above the footing level will certainly influence the way in which the
surcharge is amplified to contribute to the footing load and a more multiplicative
combination of effects would be implied.

5.2.7 Soil nonlinearity

We have looked at regimes of footing behaviour which are entirely governed by
the elastic response of the soil or by the strength of the soil. In practice we are
interested in the response of footings under working loads on a material which we
know has an extremely limited elastic region: in the light of discussion in earlier
chapters we can confidently assert that truly elastic, recoverable behaviour of the
soil is unlikely to be dominant. We now need to introduce into our dimensional
analysis some means of characterising the nonlinear material response of the
soil. We need to have some prior understanding or assumption concerning the
soil behaviour in order to be able to proceed: we need some soil constitutive
model. The more complex this model is assumed to be the more difficult it will
be to satisfy requirements of physical modelling.

Then we expect the settlement ρ of a rigid footing to be dependent on
geometry (Fig 5.8) (radius a for a circular footing), load P , elastic properties
(the elastic-plastic (?) soil is still supposed to possess underpinning elastic
properties: shear and bulk moduli, G and K) and strength properties (cohesion
c and friction φ) of the soil. The unit weight γ of the soil will characterise the
rate of stress increase with depth which will influence the variation of stress-
strain response with depth.

ρ = f (a, P, G, K, γ, c, φ) (5.30)

Applying our ideas of dimensional analysis we can deduce

ρ

a
= f

(
P

Ga2
,
G

K
,

c

G
,
γa

c
, φ

)
(5.31)

For an elastic-perfectly plastic model with shear strength c and shear stiffness
G the ratio of strength to stiffness is the shear strain required to reach the
strength of the soil which can be regarded as some sort of characteristic strain
εc for the soil

εc =
c

G
(5.32)

The idea of a characteristic strain can be introduced more generally: for a
hardening plastic model defined in terms of mobilised friction or stress ratio it
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Figure 5.8: Rigid circular footing on elastic-plastic soil

could be the strain required to reach 50% of the frictional strength. We can
then suggest that several of the dimensionless groups are actually strain-like
quantities and that our modelling should try to ensure that ratios of strains are
maintained as far as possible:

ρ

aεc
= f

(
P

a2Gεc
,

γa

Gεc
,
G

K
, φ

)
(5.33)

The characteristic strain εc typifies a class of soil models and does not need to be
considered separately provided that all implied ratios of strains are maintained
identical in the model and the prototype. Recall, however, that choosing to
consider only a certain class of soil models does not constrain real soils to behave
in the way that has been assumed.

The dimensionless quantity, angle of friction φ, has been included in the
relationship and is left as a free dimensionless variable. If we are lucky then
our class of soil models may be sufficiently characterised by εc, so that sepa-
rate consideration of angle of friction may be unnecessary. However, our prior
knowledge of soil behaviour would have to remind us that friction is not only
a first order function of strain but is also a (possibly second order) function of
mean stress and soil density.

5.3 Scaling laws revisited

We are now in a position to attack the scaling laws with rather more rigour
and to discover the implications for physical geotechnical modelling. We are
interested both in modelling on the laboratory floor at single gravity and mod-
elling on a geotechnical centrifuge at multiple gravities so we will specifically
allow for both these possibilities within a general framework. The mechanics of
centrifuge modelling will be considered in the next chapter.

A summary of scale factors is given in Table 5.41. The factors listed symbol-
ically under the heading ‘general’ indicate the fundamental linkage between the
various modelling decisions that might be taken: these are the ratios of model
and prototype values. The particular factors listed under ‘1g (laboratory)’ and
‘ng (centrifuge)’ are the result of typical modelling choices—but other choices
could be made. The table indicates aspirational guidance.

1Of course the list cannot be complete.



Table 5.4: Scale factors

scale factors

quantity general 1g ng

(laboratory) (centrifuge)
length n` 1/n 1/n
mass density nρ 1 1
acceleration ng 1 n
stiffness nG 1/nα 1
stress nρngn` 1/n 1
force nρngn

3
` 1/n3 1/n2

force/unit length nρngn
2
` 1/n2 1/n

strain nρngn`/nG 1/n1−α 1
displacement nρngn`

2/nG 1/n2−α 1/n
pore fluid viscosity nµ 1 1

or∗ n1−α/2 or∗ n
pore fluid density nρf 1 1
permeability (Darcy’s Law) nρfng/nµ 1 n

or∗ 1/n1−α/2 or∗ 1
hydraulic gradient nρ/nρf 1 1
time (diffusion) nµn2

`/nG 1/n2−α 1/n2

or∗ 1/n1−α/2 or∗ 1/n
time (creep) 1 1 1
time (dynamic) n` (nρ/nG)1/2 1/n1−α/2 1/n

velocity ngn` (nρ/nG)1/2 1/n1−α/2 1
frequency (nG/nρ)

1/2
/n` n1−α/2 n

shear wave velocity (nG/nρ)
1/2 1/nα/2 1

∗scaling of pore fluid viscosity introduced in order to force identity of scale
factors for diffusion time and dynamic time
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A true model is obtained when all the governing laws of similitude are in
place. However, often for geotechnical modelling it will be necessary to make
do with an adequate model which maintains ‘first order’ similarity (Harris and
Sabnis, 1999)—by arguing, from a proper consideration of the likely mechanisms
of response, that some of the constraints imposed by dimensional analysis are of
second order importance. This will often be the case for shaking table models
where it is generally not possible to properly scale gravitational loads—and this
will have other implications for material and system behaviour. Many authors
have discussed scaling factors for models in general and geotechnical models in
particular (eg Harris and Sabnis, 1999; Krawinkler, 1979; Iai, 1989; Schofield
and Steedman, 1988)—some of these have been primarily concerned with the
factors that are relevant to centrifuge modelling. A brief discussion is warranted
here: often stiffness is not identified as a factor that needs to be considered
separately and it seems to be helpful to use stiffness rather than strain as an
independent quantity (although in practice the degree of independence may be
somewhat illusory).

There are various scaling factors that need to be chosen and there may be
discussion about the most fundamental set to use. Some of the factors that
are introduced will be treated as independent factors though it will be shown
that the soil will often manage to take control of the apparent (and possibly
desirable) independence.

5.3.1 Length

We naturally start with a scale factor for length n`

(length)model
(length)prototype

= n` (5.34)

because the reduction of dimension is usually the primary objective in perform-
ing physical modelling.

5.3.2 Density

We have seen in our earlier discussion of dimensional analysis applied to geotech-
nical systems that the unit weight of the material—which is actually a product
of density and gravitational acceleration—will often control response. Although
we will usually try to make use of real soils in our physical models we can retain
for the moment a scale factor for density nρ

(density)model
(density)prototype

= nρ (5.35)

Even if we use the same material in model and prototype there may be
(second order?) density differences arising from different stress levels and con-
sequently different densities of packing. We could reckon to create an artifi-
cial granular material by using heavy particles of, say, iron ore instead of the
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Figure 5.9: Gravitational variation of vertical stress in soil

usual silica or feldspar—but the uncertainties of effects on resulting mechani-
cal response (from particle shape and interaction) would probably outweigh any
benefit that might be obtained from an increased density.

5.3.3 Acceleration

We naturally introduce next a scale factor for gravitational acceleration ng

(acceleration)model
(acceleration)prototype

= ng (5.36)

which will be 1 for single gravity models and will take some chosen higher
value n for models tested on a geotechnical centrifuge. There is an implicit
assumption that dynamic accelerations must (will?) be scaled with the model
equivalent gravitational acceleration so that there is a single scale factor for
all accelerations. This seems logical because if dynamic vertical accelerations
are being studied then the response of the soil or of elements of a geotechnical
system will certainly depend on the proportion of gravitational acceleration that
the dynamic accelerations take up.

Stresses build up in the ground because of the density of the soil and the
gravitational acceleration. We know (Fig 5.9) that

δσv = ρgδz (5.37)

and hence the scale for stresses is nρngn`.
We make the assumption that we are interested in physical modelling of

geotechnical problems in which autogenous—gravitational—stress gradients are
important. If there are external anthropogenic forces (such as foundation loads)
then we will expect to scale them in the same way as the internal forces: thus
force on an isolated footing or pile will scale as nρngn

3
` while force per unit

length of a plane strain system—such as prop loads for a long wall—will scale
as nρngn

2
` . If the external loads are large by comparison with the in-situ stresses
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H

D

Figure 5.10: Deep tunnel: H À D

then the effect of the internal stress gradients may be negligible. Equally, there
are geotechnical problems such as the deformation around a small very deep
tunnel (Fig 5.10) where the gravitational variation of stress across the model
may be negligible by comparison with the average level of pre-existing stress
around the tunnel.

5.3.4 Stiffness

The concept of stiffness is difficult for a nonlinear material such as soil and
in general we have to permit the possibility that stiffness of our geotechnical
material may or may not be under our control to some extent. We therefore
leave as independent a scale factor for shear stiffness NG.

(stiffness)model
(stiffness)prototype

= nG (5.38)

We have introduced stiffness as an independent scaling factor. In many cases
it will not really be independent because the deformation properties of soils are
not easily controlled. The stiffness term might be considered to include two
elements: the very small strain stiffness, which will in many situations control
the dynamic response and propagation of waves through the model ground; and
the nonlinear medium to large strain deformation properties of the soil. The
small strain stiffness might be reckoned to be, to first order, dependent on the
effective stress level, σ, according to a relationship of the form:

G ∝ σα (5.39)

Experimental experience suggests that the exponent α might be of the order
of 0.5 for sands but of the order of 1 for clays. Evidently a value α = 0 implies
that the stiffness is independent of stress level. Table 5.4 shows scaling factors
for single gravity modelling introducing this dependence together with factors
for centrifuge models, in each case with linear scale 1/n. For all models it is
assumed that the same soil material has been used in prototype and model so
that the scale factor for density is, to first order, unity.

For medium strain deformation response, the optimum approach to ensuring
that model and prototype bear some resemblance is to invoke critical state
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soil mechanics and argue for similar values of state variable (or equivalent—
section §2.6.1) between the two cases (Roscoe and Poorooshasb, 1963; Been
and Jefferies, 1985). For a material with local critical state line slope λ in a
conventional semi-logarithmic compression plane, then, if the value of density
relative to the critical state density, allowing for stress change (this relative
density is the state variable), is to be retained, a scale factor m on stresses
implies a necessary change in initial specific volume or void ratio of

∆v = ∆e = λ ln m (5.40)

For a typical sand with λ of the order of 0.03, and with a linear model scale
of, say 20, the necessary increase in specific volume or void ratio from prototype
to model to maintain the similarity (in fact identity) of state variable would
be around 0.1. For a typical sand the range of void ratio from maximum to
minimum density determined by standard procedures might be around 0.4. The
reduction in relative density required to maintain similarity is high: pluviation
procedures commonly adopted for reliable and repeatable preparation of sand
samples will probably not be able to achieve the necessary high initial void
ratios. If the sand bed were being prepared for dynamic testing then, even if
the initial void ratios could be achieved, the resulting extremely loose samples
would not survive beyond the first shake of a model earthquake. Bolton and
Steedman (1985) similarly note that no soil element will be able to mobilise more
than the critical state strength once significant seismic shearing has started no
matter what density and hence strength the element thought that it had a few
milliseconds earlier.

For a typical clay with λ of the order of 0.2 the required increase in specific
volume for a linear model scale of 50 is about 0.8 and, following typical correla-
tions, this implies an increase in liquidity index (§1.8) also around 0.8. Again,
the resulting samples may be initially rather soft and difficult to handle without
disturbance.

So while one can see nG as encapsulating the constitutive response of the
soil (and not just the strictly elastic properties), we can deduce that we will not
usually have much freedom to choose what might otherwise be considered the
optimum or most desirable value for nG. In writing down the particular scaling
factors for 1g and ng models in Table 5.4 we have assumed that the stiffness
has simply been allowed to take the value that corresponds to the stress level in
the model according to (5.39). Thus in 1g models the stiffness scales as 1/nα.

5.3.5 Strain

Strain results from changes in stress relative to the stiffness of the material. The
chosen or imposed scale factor for stiffness will control the scale of strains and
also various other quantities which are implicitly dependent on strains.

It is often suggested that the scale for strains should be unity in order to
ensure geometric similarity and similar mobilisation of soil stiffness at all times
but, desirable though this may be, modelling choices may often preclude it.
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Figure 5.11: (a) Softening relationship between shear stress and relative dis-
placement across an interface; (b) prototype footing; (c) small model footing

5.3.6 Displacement

Displacement results from the integration of a field of strains over distances
within the soil and hence the scale for displacement is the product of the scales
for strain and length. Although in general, because of the usual nonlinearity
of the constitutive response of soils, it would be desirable for the strains at
corresponding points in model and prototype to be the same, so that the scale
for strain would be unity, this may be difficult in single gravity models because
of the implicitly different scale factors for stress and stiffness. If strains are
identical in model and prototype then the displacements will scale with the
linear scale of the model n`.

If we are concerned about concepts such as stresses and strains then we
are assuming that the soil is behaving as a continuous material so that such
concepts have some clear meaning and relevance. If the geotechnical system
under study leads to relative movement on interfaces—either between separate
blocks of soil forming part of a failure mechanism, or between the soil and a
structural element such as a pile or section of reinforcement—then the interface
behaviour will be controlled by relative displacement across the interface and a
small model may have difficulty in correctly reproducing the system response.

Consider a material for which the shear stress transmitted across the inter-
face varies nonlinearly with displacement, with a residual stress beyond some
relative displacement δr (Fig 5.11a). For a prototype system (Fig 5.11b), dis-
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placements at failure will be sufficiently large that only a small proportion of
the failure surface, of length `1 is mobilising interface stress above the residual
value at the moment that the soil at the emerging end of the failure surface just
attains the peak of the shear stress:displacement relationship. In a small model
the length `2 over which the stresses are above the residual value may make up
a much higher proportion of the failure surface—in fact it is possible that no
part of the failure surface will have fully lost strength as far as the residual value
(Fig 5.11c). The prototype collapse load would then be overestimated from the
small model.

Actually one might expect the interface behaviour to be controlled not by dis-
placement per se but (non-dimensionally) by displacement scaled with particle
diameter. Then, if the constitutive response of the soil could be left unaffected
as the particle size were reduced, some of the problems associated with reduced
model displacement might be overcome. Possibilities are limited: particle shape
does not automatically remain unchanged as particle size falls; abrasion of as-
perities on large particles may occur more readily than for small particles; if
particles become too small then surface forces (Van der Waals attractions) be-
come significant in proportion to mechanical forces and the character of the
particle interactions will change.

We conclude that care is necessary in extrapolating discontinuous phenom-
ena where displacements rather than strains drive the response.

5.3.7 Permeability

In geotechnical engineering we are familiar with a coefficient of permeability
k introduced through Darcy’s law which says that the velocity v of fluid flow
through the pores of a soil is proportional to hydraulic gradient i

v = ki (5.41)

The concept of hydraulic gradient is useful because hydraulic head is readily
visualised as the height of a fluid column. However, what this form of Darcy’s
law conceals is that flow is actually driven by pressure gradient ∆p/`:

v =
k

γw

∆p

`
(5.42)

where γw = ρwg is the unit weight of the water and ρw is its density.
Theoretical expressions for permeability of soils have been deduced by apply-

ing Poiseuille’s law for flow through capillaries as a result of a pressure gradient,
which does not need to be gravitationally driven (whereas the concept of unit
weight implies gravity). A typical result produced by Taylor (1948) is

k = Cd2
s

γw

µ

e3

1 + e
(5.43)

where ds is a typical average grain size, e is void ratio, µ is the viscosity of the
permeating fluid and C is a composite shape factor which somehow characterises
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Figure 5.12: External hydraulic pressure difference ∆p driving seepage (a) under
sheet pile wall; and (b) through slope

the shape of typical void spaces within the soil and the tortuosity of the flow
path. For a given soil there is an absolute or specific permeability K

K =
kµ

γw
=

kµ

ρwg
= Cd2

s

e3

1 + e
(5.44)

which, neglecting changes in void ratio, is more or less a soil constant, inde-
pendent of permeant and external conditions (such as temperature). The spe-
cific permeability has units of length2 and is also expressed in darcys, where
1 darcy = 0.987×10−14 m2. Since K is essentially independent of soil and per-
meant, the scale factor for permeability as conventionally used is the ratio of
scale factors of fluid unit weight and viscosity.

k =
Kρwg

µ
(5.45)

and Darcy’s law (5.42) becomes

v =
K

µ

∆p

`
(5.46)

If we have a scale of pore fluid density nρf and a scale of pore fluid viscosity
nµ, then the scale for permeability is nρfng/nµ as shown in Table 5.4. If the
same soil is used in the prototype and the model then nρ = 1 for the soil but
there might be good reasons, as noted below, to use a pore fluid other than
water so that nµ 6= 1 and nρf 6= 1.

5.3.8 Hydraulic gradient

Hydraulic gradient i (5.41) appears to be a dimensionless quantity—a ratio
of lengths—which therefore should automatically remain unchanged as we go
from the prototype to the model. However, as we have seen in rewriting the
flow equation (5.42), hydraulic gradient is actually a special way of presenting
a pore pressure gradient in the soil.

Pore pressure gradients can emerge for two different reasons. There may be
some overall steady seepage regime driven by some difference in elevation of free
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fluid surfaces across the soil (Fig 5.12). Pore pressures within the model will
be controlled by this externally imposed pressure difference ∆p and hydraulic
gradients will be controlled by ∆p/ρwg`. The scale factor for hydraulic gradi-
ent is then np/nρfngn` where np is the scale factor for the external pressure
difference.

However, pore pressures—often transient—will also develop as a result sim-
ply of total and effective stress change in the soil. If the soil permeability is
low then any total stress change which would tend to produce a volume change
of the soil will instead produce a change in mean effective stress (and hence
pore pressure) in order to keep the volume of each soil element constant. The
changes in total and effective stress scale with nρngn` and hence the hydraulic
gradient resulting from these pore pressures scales with nρ/nρf .

In the same way that we concluded that external forces should be scaled
with internal stresses, we deduce that, if we are trying to maintain similarity
of seepage pore pressures and stress-induced pore pressures in prototype and
model, we must scale the pressure ∆p such that np = nρngn` and we will then
have consistent scaling of hydraulic gradient nρ/nρf .

5.3.9 Time scales

There are three time scales that may be relevant for interpretation of the results
of model tests. Many soils show some time dependent response in the form of
creep, or strain rate or relaxation effects, or weathering or chemical decay or
diagenetic bond growth. Insofar as these are real aspects of material response
(rather than a misinterpretation of transient consolidation effects associated
with migration of pore water down gradients of pore water pressure) then they
will occur at the same rate, if the soil is subjected to the same stress conditions,
whether in the prototype or in a model. Such creep effects are possibly driven by
some law such as Arrhenius’ law of reaction rates which will show an exponential
influence of temperature on reaction rate. In principle, then, it might be possible
to change the time scale for creep events by changing the temperature from
prototype to model but this will not usually be feasible. In the absence of such
stratagems the time scale for creep will be unity.

For many geotechnical situations the time scale that is of greatest interest
will be that which controls the rate at which consolidation can occur. We have
already seen that the normalisation of the equation of consolidation introduces
a dimensionless time

T =
cvt

H2
(5.47)

and recalling the definition of coefficient of consolidation and the definition of
specific permeability this becomes

T =
kt

mvγwH2
= K

tEoed

µH2
(5.48)

where the coefficient of volume compressibility mv is a volumetric compliance,
the inverse of Eoed the one-dimensional soil stiffness. The scale factor for diffu-
sion time can therefore be deduced from the scale factors for fluid viscosity nµ,
soil stiffness nG, and length n` giving an overall factor nµn2

`/nG.
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An alternative argument deduces this time scale nt for diffusion (consolida-
tion) by insisting on similarity of two volumes: a flow volume (permeability ×
hydraulic gradient × area × time) and a volume change related to change in
stress (strain × volume). Then

nρfng

nµ

nρ

nρf
n2

`nt = n3
` ×

nρngn`

nG
(5.49)

and hence, as before,

nt =
nµn2

`

nG
(5.50)

On a centrifuge with n` = 1/n, nG = nµ = 1, diffusion time scales as 1/n2

and there is an enormous benefit obtained from reduced consolidation times.
Thus, a centrifuge model constructed at a linear scale of 1:100 and tested at 100g
will consolidate 104 times faster than the prototype. One year of prototype time
becomes about 53 minutes of model time. The advantage of centrifuge modelling
for studying phenomena where consolidation or other diffusion effects dominate
is very clear.

In a single gravity model with n` = 1/n, nµ = 1, nG = 1/nα, diffusion
time scales as 1/n2−α and the benefit is not so great. For example, with α = 1
(stiffness proportional to stress—typical for clays), time scales only as 1/n.
Although the drainage path is reduced by the factor n, the flow volume required
to produce an equivalent change of scaled stress has increased by the same factor
n because of the reduction in stiffness.

The third time scale of interest is that which governs dynamic events. A scale
factor for velocity nvel can be proposed from the need to maintain similarity
of potential and kinetic energies in prototype and model. Change in potential
energy per unit volume is unit weight × displacement. Kinetic energy per unit
volume is density × velocity2. Hence

nρng × nρngn
2
`

nG
= nρ × n2

vel

and

nvel = ngn`

√
nρ

nG
(5.51)

Then dynamic time scales as the ratio of displacement to velocity giving a
dynamic time scale n`(nρ/nG)1/2. Dynamic frequency scales as the inverse of
this: (nG/nρ)1/2/n`.

The time scales for dynamic events and diffusion events are different. This
has significant implications for modelling of situations where both dynamic
events and diffusion events are significant. For example, earthquake shaking
of fine granular soils may induce liquefaction through pore pressure increase.
However, there are likely to be vertical and horizontal gradients of pore pres-
sure created during the earthquake and some dissipation of pore pressures will
be able to occur (Fig 5.13). Whether or not dissipation can occur fast enough to
remove the possibility of liquefaction will crucially control the overall geotech-
nical response.
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Figure 5.13: Simultaneous pore pressure generation and dissipation in soil
around retaining structure under seismic excitation

Study of the scaling relationships for these two aspects of time suggests a
route for solving the problem and bringing the two time scales into alignment.
We require

nµn2
`

nG
= n`

√
nρ

nG
(5.52)

and hence

nµ =
1
n`

(nρnG)1/2 (5.53)

In other words we can force these two time scales to coalesce by changing the
properties of the permeant. In the centrifuge, with n` = 1/n, nρ = nG = 1 we
need to change the viscosity of the permeant such that nµ = n. Typically in
centrifuge modelling a silicone fluid with viscosity 100 times that of water could
be used in a model tested at 100g. The density of the silicone fluid is almost
the same as that of water so the scaling laws are exactly satisfied and hydraulic
gradients are not affected. Of course we then have to assume that there are no
other changes in the mechanical behaviour of the soils which arise because of
the change in pore fluid. For single gravity modelling the viscosity of the fluid
to be used in a model at linear scale n` = 1/n would need to be increased by
a factor of n1−α/2 (because of the inclusion of the stiffness scale nG in (5.53)).
Then for n = 100 and α = 1/2 (typical of sand), nµ = 31.6.

5.3.10 Shear wave velocity

A further quantity of interest to us in considering dynamic modelling is the
shear wave velocity which describes the speed with which shear disturbances
propagate through the soil. (Compression wave velocity describes the propaga-
tion of longitudinal compression waves and an exactly similar argument can be
used.) The shear wave velocity, vs, can be shown theoretically (see §3.2.3) to
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be given by

vs =

√
G

ρ
(5.54)

and consequently it scales according to the square root of the ratio of the scales
of stiffness and density: (nG/nρ)1/2. The dynamic time scale can be recovered
by considering the time taken for a shear wave to propagate through a model:
(= typical dimension/shear wave velocity : n`(nρ/nG)1/2). Both natural fre-
quency of a soil layer (= shear wave velocity/typical dimension) and frequency
of dynamic events scale in the same way—which may seem curious given that
dynamic velocity and shear wave velocity have quite different scales which only
align when (

nG

nρ

)1/2

= ngn`

(
nρ

nG

)1/2

or, in other words
ngn`nρ

nG
= 1 (5.55)

and the scale factor for strain is unity. However, the two frequencies emerge
from different calculations. The natural frequency of the soil layer comes from
consideration of the overall dimensions of the layer; the dynamic frequency
comes from consideration of displacements within the soil. Thus it may be
possible to preserve characteristics of dynamic system response without insisting
on similarity of strains.

5.4 Soil-structure interaction

5.4.1 Footing

Modelling of soil-structure interaction requires further scale factors for struc-
tural elements. We have already seen in section 5.2.5 that to obtain similarity
of settlements and stresses around a flexible footing we need to scale footing
flexural rigidity Dr (5.20) with the stiffness of the soil through a dimensionless
group Ga3/Dr where a is a typical dimension (5.22). Thus the scale factor nD

for Dr should be (see also §8.4)

nD = nGn3
` (5.56)

and if nG 6= 1 then we will need to adjust the thickness and/or Young’s modulus
of the material from which the model footing is made in order to satisfy (5.56)
and it will not be sufficient merely to scale the footing thickness according to
the linear scale of the model.

For example, suppose that we have a prototype footing with thickness hp =
0.5 m made of concrete with Young’s modulus Ep = 25 GPa and Poisson’s ratio
0.3 which we wish to model at 1g at a scale n` = 1/100. The foundation soil
is a sandy material for which α = 1/2. We choose to model this with a footing
made of aluminium alloy for which Em = 70 GPa. We need to choose a value
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for the thickness hm of the model footing. Thus, introducing scale factors nE

and nh for footing Young’s modulus and thickness respectively, we require

nEn3
h = nGn3

`

or

nh = n`

(
nG

nE

)1/3

and substituting

nh =
1

100

(
1/1001/2

70/25

)1/3

= 3.29× 10−3 = 1/304

so that the model footing thickness is 500× nh = 1.65 mm. (We have assumed
that the difference (if any) between the values of Poisson’s ratio for prototype
and model footing materials is negligible but this, if known reliably, could ob-
viously be included in the calculation.)

5.4.2 Pile under lateral loading

We are interested in modelling the load transfer between a pile and the sur-
rounding ground (Fig 5.14) (see also §8.2.2). We will assume that the pile is not
being so heavily loaded that it is stressed by axial load or in bending beyond
its elastic range. We assume also that we are not concerned with the ultimate
lateral load capacity of the pile moving relative to the soil. Let us consider
initially simply the response of the pile to lateral loading which will be governed
primarily by the flexural rigidity of the pile EI—its actual physical dimensions
and shape may be less important. The pile can be considered as a beam with
certain loads applied both by loading at the ground surface or at the head of
the pile and by the resistance of the ground to relative movement of pile and
soil. If the soil responds elastically to this relative movement then the resisting
force will be proportional to relative displacement according to some coefficient
of subgrade reaction k and the equation governing the deformation of the pile
will be of the form:

EI
d4y

dz4
= −ky (5.57)

where z is the distance measured down the pile and y is the horizontal deflection
of the pile. The coefficient k will be expected to be proportional to the shear
modulus G of the soil k = βG (although the pile:soil interaction is not strictly
a process of pure shear).

Following the same procedure that we used in our interpretation of the con-
solidation equation we observe that this equation can be normalised by defining
a dimensionless depth ζ

ζ =
z

`
(5.58)

where ` is the length of the pile, and a dimensionless pile deflection λ

λ =
y

yo
(5.59)
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Figure 5.14: Pile under lateral loading

where yo is the lateral deflection of the pile at its top (say). The equation then
becomes

EI

`4
d4λ

dζ4
= −kλ (5.60)

and, since k = βG, a natural dimensionless group to characterise the problem
is G`4/EI which describes relative pile:soil stiffness.

Alternatively, we can observe that terms in the solution of (5.57) involve
µ` where µ4 = k/EI = βG/EI and hence deduce again that G`4/EI is an
appropriate dimensionless group to describe relative pile:soil stiffness (§8.2.2).

The soil quantity G`4 somehow has an equivalence to the flexural rigidity
EI of the pile. Then we might suppose that correct physical modelling will be
obtained if we maintain the dimensionless ratio Φ1

Φ1 =
G`4

EI
(5.61)

identical in the model and the prototype. If we have scale factors nE and nI for
Young’s modulus E and second moment of area I of the pile then we deduce
that

nEnI = nGn4
` (5.62)

With a length scale n` = 1/n this leads to nEnI = 1/n4+α for single gravity
testing and nEnI = 1/n4 for modelling on a geotechnical centrifuge with an
acceleration of ng.

Let us consider different possibilities for modelling a prototype tubular pile
which is 20m long, 0.5m diameter, with 25mm wall thickness, and made from
steel with Young’s modulus E = 210 GPa. For the sake of argument we will
suppose that a length scale of n` = 1/100 has been selected for the physical
modelling.

Soil stiffness G identical in prototype and model: α = 0

If α = 0 and the stiffness is the same in the prototype and the model then
the design of the model is the same whether the model is destined for testing
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at 1g or 100g. For 1g testing, if we are studying the behaviour of piles in
overconsolidated clay, then we might choose to prepare a model block of clay
with a consolidation history which we reckon matches the typical history of
the prototype soil—or even to sample the actual prototype material—and we
might suppose that to a first order the stiffness properties of the ground are
rather independent of depth over the length of the pile. The model soil thus
has the same stiffness as the prototype soil and in a single gravity model where
the stresses are reduced by a factor 1/n we would expect the strains also to be
reduced by 1/n.

We have a length scale n` = 1/n = 1/100 so that our typical dimension `,
which is the length of the model pile, is 0.2 m. We need to reduce the flexural
rigidity of the pile by 1/n4 in order to maintain the value of Φ1. We could
achieve this by making the model pile from steel (the same material as the
prototype) with all dimensions reduced by 1/n: 5 mm diameter, 0.25 mm wall
thickness.

However, we might decide that such a model pile was rather delicate to
manufacture and choose to replace the tubular prototype pile with a solid model
pile. For the prototype tubular pile of diameter dp and wall thickness tp the
second moment of area is Ip = π

8 tpd
3
p. For a solid model pile of diameter dm

the second moment of area is Im = π
64d4

m and to maintain similarity we require
Im/Ip = 1/n4 giving a model pile diameter dp = 3.98 mm.

Alternatively we might choose to make the model pile out of a less stiff
material such as aluminium alloy with Em = 70 GPa and increase Im and dm

to compensate. For a solid pile this would imply a model pile diameter of
5.23 mm.

Evidently the governing equation (5.57) is only concerned with elastic inter-
action between the pile and the ground. If we are concerned with the devel-
opment of inelasticity or even eventual lateral failure with significant relative
movement between soil and pile, then there may be other considerations (§8.9).
For example, it may be seen as rather important to maintain the scaled geomet-
rical profile of the pile so that the diameter should be correctly scaled to 5 mm
(the solid aluminium model pile might be attractive). Failure suggests that be-
haviour at the pile-soil interface will be of concern. Modelling of surface effects
might require deliberately roughened model piles to match rough—corroded?—
prototype piles. ‘Roughness’ starts to introduce additional significant lengths—
both absolute (the scale of asperities) and relative (the height of asperities in
relation to particle size)—and the detail of the modelling of the pile surface in
relation to the surrounding soil may not be straightforward.

Soil stiffness G dependent on stress: eg α = 0.5

In a single gravity model created from a soil with α 6= 0 we should take some
account of the scaling of soil stiffness when we select the dimensions of our model
pile. With α = 0.5 we now require nEnI = 1/n9/2.

With a length scale n` = 1/n = 1/100 the diameter dm of a solid model pile
of material with Young’s modulus Em is given by:

π

64
d4

mEm =
1

n9/2

π

8
d3

ptpEp



262 5. Physical modelling

excavation

Figure 5.15: Anchored flexible retaining wall

leading to a diameter dm = 2.94 mm for a solid aluminium model pile or
2.23 mm for a solid steel model pile.

If α = 1, so that soil stiffness scales directly with stress then the flexu-
ral rigidity of the pile scales with 1/n5 leading to diameters of 1.65 mm and
1.25 mm for aluminium and steel model piles respectively. The departure from
proper scaling of the geometrical aspect ratio of the pile is now such that an al-
ternative much less stiff material such as polypropylene (Em = 0.9 GPa) might
be considered as an alternative (assuming that surface roughness can be prop-
erly modelled). With α = 1 this would lead to a diameter of solid model pile
dm = 4.9 mm which is geometrically more attractive.

5.4.3 Flexible retaining wall

A flexible retaining wall is an example of a geotechnical structure which deforms
under conditions of plane strain (as opposed to the pile in the previous example
which is an isolated structural element). A typical desirable output from mod-
elling of such a structure would be the bending moment that is generated in the
wall as a result of excavation in front of the wall (Fig 5.15). As a plane structure,
the moment would be quoted as a moment per unit width of the structure M/b
and the structural property that will influence the bending will be the flexural
rigidity per unit width of the structure EI/b. The interaction between the wall
and the soil will be influenced by the stiffness G of the soil at a typical depth H.
For similarity we need to maintain the value of the dimensionless group (§8.7):

Φ2 =
EI/b

GH3
(5.63)

The quantity b is merely a notional unit width of model or prototype which
does not scale so that the consequence of considering plane models such as this
is that, in single gravity models with length scale n` = 1/n, the flexural rigidity
scales with 1/n3+α instead of 1/n4+α as we found for the single pile.

We can now calculate the wall thickness required for our model. Suppose
that the prototype is made from concrete with Young’s modulus Ep = 20 GPa
and thickness tp = 0.3 m. We wish to construct our model wall at a linear scale
of 1/100 out of aluminium with Young’s modulus Em = 70 GPa. We assume
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Table 5.5: Model wall thicknesses for flexible retaining wall

material Em GPa tm mm
steel 210 0.64
aluminium 70 0.9
microconcrete 10 1.75
polypropylene 0.9 3.9

that α = 1/2. Then for a model wall of thickness tm we find that:

1
12Emt3m
1
12Ept3p

= 1/n7/2

and hence

tm = tp

(
Ep

Em

1
n7/2

)1/3

= 0.3×
(

20
70
× 1

1007/2

)1/3

= 0.9 mm

We might alternatively reckon that interface effects could be more satis-
factorily reproduced by making the wall using a modelling microconcrete with
fine aggregate. With Em = 10 GPa, for example, the wall dimension becomes
tm = 1.75 mm. Alternatively again, using polypropylene (Em = 0.9 GPa),
tm = 3.9 mm which might in the end be more manageable. Various modelling
possibilities are summarised in Table 5.5.

If the retaining wall is an anchored wall, as shown in Fig 5.15, then the an-
chor system will also need to be modelled. The ties can probably be regarded as
essentially rigid so their properties may not matter in detail (but in some cases
the interaction of flexible ties with consolidating or settling backfill might be
important). However, the anchor system—perhaps a series of short individual
anchor piles—is evidently important. Insofar as their role is to provide a fixed
point of support for the wall, it is unlikely that we will be particularly concerned
about their flexibility. We are primarily concerned about the rapid mobilisation
of sufficient passive resistance as the anchor ties try to pull the anchors towards
the wall. Mobilisation of passive resistance will potentially be affected by inter-
action with the wall itself. Correct geometrical modelling of the location and
proportions (and interface properties) of the anchor piles will be key.

5.4.4 Buried flexible culvert

A buried flexible culvert (Fig 5.16) is another example of a geotechnical struc-
ture which deforms under conditions of plane strain. A typical desirable output
from modelling of such a structure would be the bending moment per unit width
M/b that is generated in the wall of the culvert as a result of construction proce-
dures and surface traffic loading. The structural property that will influence the
bending will again be a flexural rigidity per unit width of the structure EI/b. In
addition, the moments will be influenced by the geometry of the culvert (char-
acterised by a typical diameter D and a typical depth to mid-diameter from the
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Figure 5.16: Buried flexible culvert

free ground surface C), by the unit weight of the soil ρg and the applied surface
load per unit width (for example a line load P/b) and its line of action.

The interaction between the culvert and the soil will be influenced by the
stiffness of the soil G at the typical depth C.

M

b
= f

(
C,D,

P

b
, ρg,

EI

b
,G

)
(5.64)

which becomes2:

M/b

ρgD3
= f

(
C

D
,

P/b

ρgCD
,
EI/b

GD3
,
PD2

EI

)
(5.65)

There is a geometric characteristic C/D which we need to retain to preserve
similarity. Then there are various stress and stiffness related quantities in the
loading spread over the cross section of the culvert P/bD and the stress in
the ground at the mid-height of the culvert ρgC; the flexural rigidity of the
culvert EI/b and a corresponding soil stiffness GD3. Evidently we need to retain
similarity between these pairs of related quantities (P/b)/ρgCD, (EI/b)/GD3

and also maintain similarity between the loading and the structural stiffness
(P/b)D2/(EI/b). Again, in single gravity models at linear scale n` = 1/n, the
flexural rigidity scales with 1/n3+α.

We can follow the same procedure as before to calculate the wall thickness
required for our model culvert. Suppose that the prototype culvert is made
from steel with Ep = 210 GPa and has second moment of area I/b = 6.25 ×
10−6 m4/m. The prototype culvert will probably be made from steel formed
into a corrugated section, and this section is reflected in the quoted second
moment of area. We may well consider it acceptable to model the culvert with
a curved sheet of thickness tm. If we are modelling at a linear scale of 1/100,

2But rearrangement of the several groups shows that the dimensionless moment could just
as well be (M/b)/GD2.
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Figure 5.17: Pile under axial loading

and α = 1/2, then for a model culvert made from steel sheet we find that:

1
12

t3m = 6.25× 10−6

(
1

100

)7/2

(5.66)

and hence tm = 0.19 mm.
Alternatively we might find that plastic sheet was more readily available

and, so long as local plastic moment failure of the steel culvert is not initially
reckoned to be a modelling issue, we can then reproduce all deformation effects
with this different material. With Em = 0.9 GPa we find tm = 1.2 mm.

5.4.5 Piles under axial load

It is usually implicitly assumed that piles can be treated as axially rigid inclu-
sions so that axial deformation of the pile is not immediately a constraint on
physical modelling. However, a long pile, shedding its load by shaft friction
along its length, may compress by an amount which is comparable with the
relative movements between the pile and the ground (Fig 5.17). The possible
need to model axial stiffness correctly needs to be borne in mind.

An appropriate dimensionless group can be constructed by comparing two
characteristic forces (Nuñez and Randolph, 1984). Suppose that we have a pile
which is sufficiently long and compressible that virtually no force reaches the
toe of the pile when it is loaded at its top—all the load is shed to the soil in shaft
resistance. For a pile of Young’s modulus E, cross-sectional area A and length
`, the force generated by a settlement wt at the top will be related to EAwt/`
since wt/` provides some indication of the level of axial strain in the pile. If
the pile of radius ro is moving in elastic soil, then it is shown by Fleming et al.
(1985) that the shear stress at the interface between pile and soil is related to
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the relative movement by (compare §8.2.3):

τ

w/ro
≈ kG (5.67)

where k ≈ 1/4. So a characteristic shaft friction force is 2πro`(G/4)(wt/ro) and
the dimensionless ratio of forces is

1
2

(
`

ro

)2 (
G

E∗

)

where E∗ is the Young’s modulus for an equivalent solid pile so that E∗πr2
o =

EA. Similitude in modelling then requires selection of model dimensions and
stiffnesses so that (`/ro)

√
(G/E∗) is identical in model and prototype.

If we are concerned about development of limiting shear strength cu at the
pile-soil interface, as well as elastic transfer of stress, then (5.67) tells us that
we will need to retain similarity of the ratio w/ro. If we are modelling on a
centrifuge with G, and probably cu, unchanged from prototype to model, we
will want to maintain full geometric similarity so that `, ro (and we hope w) scale
directly with n` and the only modelling choice left to us will be the selection
of the material and cross-section of the model pile so that EA scales with n2

` .
Interface behaviour and surface roughness effects may also be important and
we may be concerned with the nonlinearities of the pile:ground interaction as
the relative movements develop. The constraints imposed to maintain complete
similarity may be quite tight.

5.4.6 Dynamic soil-structure interaction

The response of a geotechnical structure under dynamic loading will depend,
broadly, on the comparison of the frequencies over which the input energy (for
example from vibrating machinery or from an earthquake) is distributed with
the natural frequencies of the geotechnical structure. Deducing in advance what
the natural frequencies of the combination of soil and structural elements will
be may not be straightforward but we can assess the natural frequencies of the
soil bed on its own and of the structure on its own. Understanding the way in
which we should extrapolate from model observation to prototype expectation
then requires us to think about maintaining similarity of dimensionless groups
which characterise not only the static soil-structure interaction but also the
natural frequencies.

We have already noted that dynamic frequencies scale as (nG/nρ)1/2/n` and
that the natural frequency of a soil layer will scale with the same group of scaling
factors. The natural frequencies of a laterally loaded pile of length `, flexural
rigidity EI, cross-sectional area A and density ρs, treated as a cantilever (in
air), are multiples of (π/`)2

√
(EI/ρsA). The scale factors for these natural

frequencies nfs will then be

nfs =
1
n2

`

(
nEI

nρsnA

)1/2
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where nEI , nρs and nA are scale factors for flexural rigidity, density and area
for the pile. Now we suppose that we have already decided to ensure that our
pile satisfies similarity rules for static soil-structure interaction as outlined in
section 5.4.2. Then nEI = nGn4

` and we require

(
nG

nρsnA

)1/2

=
(

nG

nρ

)1/2 1
n`

or
nρsnA = nρn

2
` (5.68)

which seems reassuringly plausible but allows us to vary the material of the
pile and the cross sectional area if necessary. For example, while it might be
desirable to scale the perimeter of the pile correctly if shaft:soil interaction is
important, we could still replace a solid section by a hollow section if this were
more convenient experimentally to help us satisfy (5.62) and (5.68)—and at the
same time we might replace the prototype material with some more convenient
model material provided we could guarantee that we were going to remain in
a range of either linear response or reproducible nonlinear material response.
With linear scale 1/n on a centrifuge, or at 1g in a material having α = 0, all
frequencies scale as n. This is perhaps a little glib for, if we are not working on
a centrifuge at prototype stress levels, then the need to scale flexural rigidity to
cope with the changed soil stiffness may conflict with the scaling of cross-section
and density.

This discussion may appear arcane but it should indicate that for complex
situations there may well be several separate but interconnected features of re-
sponse that are regarded as critical for correct modelling of the prototype. These
features may well place conflicting and possibly unresolvable constraints on the
selection of materials, dimensions and loadings for the model tests. Neverthe-
less, if the results of the model tests are to have any value and to be capable
of being applied to a prototype, then understanding of these features and the
physical characteristics that underlie the behaviour of the geotechnical structure
is vital.

5.5 Single gravity modelling

The intention in this chapter has been to indicate how we can deduce the scaling
factors that apply to various quantities that we may control or measure in our
model tests. We need to know the scaling factors in order that we may be
able correctly to extrapolate from observations made in model tests in order to
predict behaviour at prototype scale. The links between apparently independent
scaling choices have been demonstrated and it has then been shown what these
composite scaling factors will look like when typical modelling decisions are
made for single gravity and multiple gravity situations. Where some of these
composite factors appear to run into difficulties it may be necessary to make
alternative choices but this must always be done with care. For example, if
we consider that soil strain is a first order indicator of mobilisation of strength
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for nonlinear soils then it will be wise to try to ensure that the scale factor for
strains is always kept at unity.

It is obviously often harder to satisfy similarity constraints for single gravity
modelling than for modelling on a geotechnical centrifuge at increased acceler-
ation levels. The assumption that all aspects of stress:strain response can be
encapsulated in a single soil stiffness G and, by implication, that all aspects of
soil nonlinearity vary with stressα may well be questioned. One is left with a
probable expectation that it will be difficult to rely on a small single gravity
model to provide an accurate representation of the response of a prototype—and
this is of course the principal justification of centrifuge modelling which forms
the subject of Chapter 6.

The single gravity laboratory model retains three attractions.

• As with other laboratory modelling the boundary conditions are, in prin-
ciple, well defined and well controlled. The physical modelling provides
a source of reliable data for supporting numerical modelling and back
analysis.

• The size of the models can be quite large—limited only by available space
and loading devices—so that the linear model scale from typical proto-
types may be low. For dynamic modelling (Muir Wood et al., 2002),
shaking tables are typically used to test the seismic response of quarter
scale model buildings, for example. The degree of extrapolation required
of the supporting numerical modelling may then be low—and other un-
desirable effects that may be associated with small models (for example,
particle size problems) may be somewhat avoided.

• Because the models are large the space available for instrumentation and
actuators will be greater and more subtlety in loading, control and obser-
vation will be feasible. The disturbance to the soil arising from the finite
size of instruments will be correspondingly lower.
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Centrifuge modelling

6.1 Introduction

In discussing the choice of scaling factors required to maintain similitude be-
tween prototypes and small models it has been indicated in Chapter 5 that
many (but not all) of the difficulties associated with scaling can be avoided
if the stresses at corresponding points in the model and the prototype are the
same. One way that this can be achieved is by using a geotechnical centrifuge to
increase the local equivalent gravitational field in order to balance the decrease
in stresses that would otherwise result from the chosen linear scale. In this chap-
ter we will present the underpinning mechanics of centrifuge modelling, some
of the machines that have been developed to create the artificial acceleration
fields, and some of the ancillary devices that have been developed to perform
centrifuge models of geotechnical problems and to observe what is happening
in the soil. The intention is to give a flavour of the possibilities of geotechnical
centrifuge modelling. More detail of particular techniques and applications can
be found in conferences such as Kimura et al. (1998), Phillips et al. (2002) and
books such as Taylor (1995). Developments in robotics, control, electronics and
miniaturisation seem to be occurring so rapidly that any description of instru-
mentation or of techniques for modelling geotechnical processes at small scale
must rapidly go out of date: we can provide only a dated snapshot here.

6.2 Mechanics of centrifuge modelling

The mechanical principle that underpins centrifuge modelling is simple: if a
body of mass m is rotating at constant radius r about an axis with steady
speed v (Fig 6.1) then in order to keep it in that circular orbit it must be
subjected to a constant radial centripetal acceleration v2/r or rω2 where ω is
the swept angular velocity. In order to produce this acceleration the body must
experience a radial force mrω2 directed towards the axis. We can normalise the
centripetal acceleration with earth’s gravity g and state that the body is being
subjected to an acceleration of ng where n = rω2/g.

269
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Figure 6.1: Object moving in steady circular orbit
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Figure 6.2: Element of soil (a) at surface of the earth and (b) on centrifuge

If we consider the equilibrium of an element of unit cross-sectional area and
of thickness δz taken from a column of soil at the surface of the earth (Fig 6.2a)
then we know that the increase of stress through the element must balance
the weight of the element (which itself comes from the gravitational pull of the
earth) in order to prevent any acceleration of the element:

δσv = ρgδz (6.1)

and, with constant density, at a depth z below the free surface

σv =
∫ z

0

ρgdz = ρgz (6.2)

On the centrifuge, if we consider the equilibrium of an element of unit cross-
sectional area and of thickness δz (Fig 6.2b), then we see that the stress increase
must provide the force necessary to generate the centripetal acceleration. The
equation of motion becomes:

δσv = ρngδz (6.3)

and at depth z/n below the free surface (assuming constant density)

σv =
∫ z/n

0

nρgdz = ρgz (6.4)
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Figure 6.3: Finite dimensions of two-dimensional centrifuge model of embank-
ment

Thus stresses are identical at geometrically equivalent points in the prototype
and in the centrifuge model, provided the linear scale in the model is the inverse
of the acceleration scale ng = n = 1/n` (Table 5.4). Consequently we can expect
that if mechanical behaviour of the soil is strongly dependent on stress level then
such behaviour should be correctly reproduced in our centrifuge model.

There are a number of caveats that we need to insert. The value of n depends
on r. Any model that we create—such as the model embankment on a soft clay
foundation shown schematically in Fig 6.3—will have a finite radial dimension,
and the value of n will vary through the model. The integration in (6.4) is
thus not strictly correct. It is usually assumed that, provided the height H of
the model is less than about 0.1r then the variation in the acceleration field is
acceptable.

The acceleration field of earth’s gravity is parallel (at the scale of civil en-
gineering systems with dimensions small by comparison with the radius of the
earth); the acceleration field on a centrifuge is radial. Model containers are usu-
ally fabricated for convenience with parallel sides (Fig 6.4a). Again it might be
proposed that this difference will be negligible provided B/r < 0.1. A free water
surface in a centrifuge model will adopt a cylindrical profile (Fig 6.4a) and in
principle the soil surface should also follow this cylindrical profile—which would
lead to obvious (but not necessarily intractable) problems in model preparation.
If the model is, however, conveniently created with a flat surface then, in the
radial acceleration field, this is equivalent to a gently curved surface in a par-
allel field (Fig 6.4b). A very soft soil may not be able to survive this implied
somewhat hilly profile (Stone and Muir Wood, 1988).

Of course, one of the reasons for performing any physical modelling is to
provide data of behaviour of boundary value problems against which numerical
modelling, and hence by implication constitutive models, can be validated. Such
numerical modelling can, in principle, take account of the actual variable and
radial nature of the acceleration field.
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Figure 6.4: (a) Radial acceleration field on centrifuge; (b) flat surface ‘feels’
curved: soft soil may suffer ‘slope’ instability

For modelling of dynamic geotechnical problems there is a further detail.
If an element of soil within the model is moving with velocity v∗ as a result,
for example, of some simulated earthquake event (Fig 6.5) (or underground
explosion) then, because the soil is also rotating with an angular velocity ω, the
element will experience a Coriolis acceleration 2ωv∗ and stresses must develop
within the soil in order to produce this acceleration. The ratio of Coriolis to
centripetal acceleration is 2v∗/rω = 2v∗/

√
rng and perhaps we should try to

design our dynamic experiments in order to ensure that this ratio too remains
below about 0.1.

Such limitations will be relevant to modelling of dynamic penetration prob-
lems. At the other extreme, if we wish to model explosions and the interaction
of ejecta with the ground then we could try to ensure that velocities are so
high that the trajectories of flying objects relative to the model are close to the
absolute trajectories. For modelling of seismic response of geotechnical systems,
where the prototype is being perturbed by horizontal base shaking, we could
avoid these parasitic Coriolis accelerations by mounting our model on the cen-
trifuge in such a way that the model ‘horizontal’ is parallel with the vertical
axis of rotation of the machine.

It is tempting to think of the centrifuge model as having its own local grav-
itational acceleration field but really it should be thought of as simply having
its own rotational velocity and hence radial acceleration field. Gravitational
accelerations arise because of the attractive forces exerted on each other by two
masses. The acceleration field on the centrifuge is entirely mechanical in origin.
If an object is released within the centrifuge model container (Fig 6.6) then, if it
is not in contact with the model, it will experience no forces apart from earth’s
gravity and will retain any initial absolute velocity that it possesses. Relative
to the model it will appear to move because the model is itself moving in space
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Figure 6.5: Coriolis acceleration experienced by particle moving with velocity
v∗ within model on centrifuge with angular velocity ω

(and the air in the model container will tend to drag the object with it) but
the object will not accelerate towards the surface of the model (the modelled
surface of the earth) with an acceleration of ng.

If an object (for example, a sand grain) is released above a centrifuge model
at radius r with radial velocity krω then the position in the model, relative to
the point of release (Fig 6.7a), is given parametrically by:

x

r
= (1 + kωt) sin ωt (6.5)

y

r
= (1 + kωt) cos ωt− 1 (6.6)

Typical trajectories are shown in Fig 6.7b.
If the object is released with velocity krω at an angle θ to the radius, mea-

sured positive in the direction of centrifuge motion (Fig 6.7c) then the paramet-
ric equations become:

x

r
= sinωt + kωt sin(ωt− θ) (6.7)

y

r
= (cos ωt− 1) + kωt cos(ωt− θ) (6.8)

and it is evident (Fig 6.7d) that a combination of positive ejection together with
directional vanes can help to give a somewhat more nearly ‘vertical’ path towards
the surface of the centrifuge model. An illustration of such a path followed in
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Figure 6.6: Object stationary in space appears to move relative to rotating
centrifuge model

sand pluviation is given by Randolph et al. (1991). An exactly similar analysis
can be used to follow the trajectory of objects ejected from the soil surface
by modelled underground explosions (Steedman and Zeng, 1995): while in the
soil such accelerated objects will of course experience forces generated by the
Coriolis component of acceleration.

6.3 Centrifuges

There are two types of centrifuge that are in common use: beam and drum.
In a beam centrifuge (Figs 6.8, 6.9, 6.10), the model is rotated about a

vertical axis at the end of a strong beam which at its other end carries some
sort of a balancing mass or counterweight in order to prevent damaging out-of-
balance rotatory forces on the centrifuge bearings. In many beam centrifuges
the model is placed on a swinging platform (Figs 6.8, 6.9, 6.10) so that the
local ‘gravitational’ acceleration field in the model is always coincident with the
model vertical as the centrifuge speed is increased. This has obvious advantages
for preparation of models. Typical statistics for beam centrifuges are given
in Table 6.1. The statistics of interest are evidently the physical dimensions
of the model and the mean radius at which the model is moving, but also
the acceleration capability of the centrifuge. There is an inevitable trade-off
betwen the permitted mass of the model and the maximum acceleration that
can be achieved. The ‘power’ of the centrifuge is usually quoted in g-tonnes—a
given device may be able to tolerate a larger model but with lower permissible
maximum acceleration. Fig 6.11 shows the three regimes of a typical limiting
centrifuge performance envelope: in region A the performance is limited by
the balancing capabilities of the counterweight; in region B the performance is
limited by the mechanical stresses in the structural elements—there is a more or
less inverse link between acceleration and total accelerated mass including the
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Figure 6.8: Schematic diagram of beam centrifuge: model on swinging platform



Figure 6.9: Diagram of Acutronic 680 beam centrifuge (Nicolas-Font, 1988) (1:
swinging basket; 2: centrifuge beam; 3: counterweight; 4: slip-ring assembly; 5:
rotary-joint assembly; 6: drive system; 7: aerodynamic enclosure)

Figure 6.10: Beam centrifuge at Hong Kong University of Science and Technol-
ogy (photograph reproduced by kind permission of CWW Ng)
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Figure 6.11: Beam centrifuge performance envelope (after de Souza, 2002)

Figure 6.12: Schematic section through a drum centrifuge: continuous model of
embankment

geotechnical modelling payload; in region C the performance is limited by the
maximum rotational speed of the motor or its maximum rated power (Nicolas-
Font, 1988).

In a drum centrifuge (Figs 6.12, 6.13) the model is created on the inside of a
drum which typically rotates about a vertical axis. The model soil bed has no
ends and can either be used for modelling a single long geotechnical structure
or can be used as a model-scale test site on which various different structures
can be created with a common geotechnical history of the foundation materials.
Statistics for drum centrifuges are given in Table 6.2. The physical dimensions
are of interest since they govern the intricacy of model construction processes.
The acceleration levels attainable in drum centrifuges are typically much greater
than for beam centrifuges but the physical dimensions are in general much lower.

A beam centrifuge might typically have a model depth of the order of 0.5 m
and be accelerated to 100g—equivalent to a prototype depth of 50 m. On a drum



Table 6.1: Beam centrifuges (based on http://geo.citg.tudelft.nl/allersma/tc2-
/cents.htm with additional information collected by the author)

nom max max year
country owner rad accn payload capacity

m g Mg g-tonnes
Australia UWA 1.8 200 0.2 40 1989

Brazil COPPE, UFRJ 0.5 450 0.2 90 1997
Brazil Inst Tech Res Sao Paulo 0.75 200 0.05 10 1996

Canada C’Core 5 200 2.2 220 1993
Canada Queen’s U 2.25 120 0.28 33.3 1997
Canada Queen’s U 0.9 60 0.03 1 1994
Canada Queen’s U 2.65 300 0.3 30
Canada U New Brunswick 1.6 200 0.11 22 1993

Colombia U de los Andes 1.7 200 0.4 40 2000
Denmark Danish Eng Acad 2.3 80 1.2 96
France CESTA 10 100 1 100 1956
France LCPC, Nantes 5.5 200 2 200 1985

Germany Ruhr U Bochum 4.125 250 2 500 1987
Germany Ruhr U Bochum 1.8 200 0.4 40

India IIT, Bombay 4.5 200 0.625 125 2000
Italy ISMES 2 600 0.4 240
Japan Aichi Inst Tech 1.36 200 0.075 16 1993
Japan Chuo U 3.05 150 0.66 100 1988
Japan Chuo U 1.18 270 0.15 30
Japan Fish Agy 3 150 0.25 37.5 1994
Japan Hokkaido Devel Agy 2.5 200 0.3 60 1994
Japan Japan Def Agy 2 100 0.15 15
Japan Kajima Co 2.63 200 1 100 1990
Japan Kanazawa U 0.5 10000 1998
Japan Kanto Gakuin U 0.4 500
Japan Kumamoto U 1.25 250 0.04 10 1996
Japan Kyoto U 2.5 200 0.12 24 1988
Japan Kyushu Inst Tech 1.27 150 0.18 27 1998
Japan Kyushu U 0.75 200 0.005 1 1990
Japan Min of Ag, For, Fish 1.3 200 0.07 14
Japan Min of Const 2 200 0.25 20 1987
Japan Min of Const, PWRI 6.6 150 5 400 1997
Japan Min of Labour 2.31 200 0.5 100 1988
Japan Min of Trans, PARI 3.8 113 2.769 312 1980
Japan Musashi Inst Tech 0.4 500
Japan Nagasaki U 1.5 200 0.06 12 1997
Japan Nat Inst Ind Safe 2.1 200 0.5 100
Japan Nippon Koei Co 2.6 250 1 100 1996
Japan Nishimatsu Co 3.8 150 1.3 200 1998
Japan Nikken Sekkei Nakase Geot Inst 2.7 200 1 100 1992
Japan Obayashi 7.01 120 7 700 2000
Japan Ohita Tech Coll 0.8 200 0.04 8 1996
Japan Osaka City U 2.56 200 0.12 24 1964
Japan Saga U 0.75 200
Japan Science U Tokyo 0.27 420 1992
Japan Shimizu Co 3.35 100 0.75 75 1991
Japan Taisei Co 2.65 200 0.4 80 1990
Japan Takenaka Co 6.5 200 5 500
Japan Tokyo Inst Tech 2.3 230 50 1995
Japan Tokyo Inst Tech 1.25 150 0.25 38
Japan Toyo Co 2.2 250 0.3 1984
Japan Utsunomiya U 1.18 120 0.15



Table 6.1: (continued)

nom max max year
country owner rad accn payload capacity

m g Mg g-tonnes
Korea Daewoo Inst Const Tech 2.7 200 1.2 120 1997

Netherlands Delft Geot 6 400 5.5 1989
Netherlands Delft Tech U 1.3 300 0.03 10 1989
PRChina Chengdu Sci Tech U 1.5 250 0.1 25 1991
PRChina China Inst Wat Res 5.03 300 1.5 450 1991
PRChina Hehai U 2 250 0.1 25
PRChina Hong Kong UST 4 150 400
PRChina Inst Wat Cons Res 4.5 300 1.5 450
PRChina Nanjing Hydr Res Inst 5 200 2 400 1992
PRChina Nanjing Hydr Res Inst 2.2 250 0.2 50
PRChina Nanjing Hydr Res Inst 1 500 0.01 5
PRChina Nanjing Hydr Res Inst 2.1 250 0.2 50 1989
PRChina Shanghai Inst Rail Tech 1.55 200 0.1 20
PRChina Tsinghua U 2.2 250 0.2 50 1993
PRChina Yangtze Riv Res Inst 3.5 300 180
Portugal LNEC 1.8 200 0.4 40
Russia Moscow Inst Rail Eng 2.5 322 0.17 1960

Singapore Nat U Singapore 1.87 200 0.4 40 1991
Taiwan Nat Cent U 3 200 1 100 1995

UK Cambridge U 4.125 150 1 150 1973
UK City U 1.6 200 0.2 40 1989
UK Dundee U 0.325 400 0.001 0.4
UK Liverpool U 1.1 200 0.2 13 1978
UK Manchester U 3.2 130 4.5 600 1971
UK UMIST 1.5 150 0.75 100
USA USAF Eng Serv Cent 1.83 100 0.225 13
USA CalTech 1.3 175 0.035 7.5
USA Case Western Reserve U 1.37 200 0.182 20 1997
USA Idaho Nat Eng Envir Lab 1.7 145 0.5 50 2002
USA MIT 1.07 200 0.0681 13.6 1985
USA New Mexico Eng Res Inst 1.8 100 0.227 25
USA Princeton U 1.3 200 0.076 10
USA Rensselaer Poly Inst 3 200 1 100 1989
USA Sandia Lab 7.62 150 1.814 300
USA Sandia Lab 2.1 150 0.227 15
USA Sandia Lab 7.62 240 7.257 800
USA U Calif, Davis 1 175 0.09 9 1976
USA U Calif, Davis 9.14 300 3.6 1080 1988
USA U Calif, Davis 1 100 0.027 1985
USA U Colorado, Boulder 1.5 220 15 1978
USA U Colorado, Boulder 6 200 2 400 1988
USA U Florida 1 100 0.023 2.5
USA U Florida 2 160 0.084
USA U Maryland 1.5 200 0.07 15 1983
USA US Army Corps Eng, WES 6.5 350 8 1256



Figure 6.13: Diagrammatic section through drum centrifuge at Tokyo Institute
of Technology with actuator arranged for pull-out test of enlarged base model
footing (from Gurung et al., 1998)

Table 6.2: Drum centrifuges (after Springman et al. (2001))

max
country owner H × d×W payload accn capacity year

m Mg g g-t
Australia UWA 0.15× 1.2× 0.3 0.6 484 290 1997

Brazil COPPE 0.17× 1× 0.25 0.2 450 90 1996
Japan Hiroshima U 0.115× 0.74× 0.185 0.13 416 50 1995
Japan Kiso Jiban Co 0.15× 1.2× 0.3 0.6 484 290 1997
Japan Tokyo Inst Tech 0.15× 1.2× 0.3 0.6 484 290 1997
Japan Toyo Co 0.3× 2.2× 0.8 3.7 440 1600 1998
Japan Utsunomiya U 0.1× 0.8× 0.3 0.195 150 43 1986

Switzerland ETH Zurich 0.3× 2.2× 0.7 2 440 880 1999
UK Cambridge U 0.15× 2× 1 1.7 400 675 1988
UK Cambridge U 0.12× 0.74× 0.18 0.13 400 50 1995
UK UMIST 0.025× 0.25× 0.12 0.006 1000 6.1 1971
USA UC Davis 0.13× 1.2× 0.23 0.2 650 145 1979

Dimensions indicate depth H m × diameter d m × width W m.
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centrifuge the soil bed might have a depth of about 0.2 m and be accelerated to
400g—equivalent to a prototype depth of about 80 m. The plan area of the test
site for a drum of radius 1 m and height 0.5 m would then be around 2.4 km ×
200 m at prototype scale. The high acceleration level for drum centrifuges leads
to even more dramatic compression of diffusion time scales (see section §5.3.9):
one year becomes 53 minutes at 100g but only 3.3 minutes at 400g.

Since we want to model geotechnical processes and to observe the response of
our models, we need to make provision for hydraulic and electrical connections
through slip-rings on the axis of the centrifuge (Fig 6.9) in order to provide
power and control for actuators and other loading or process initiation devices.
In early centrifuges all instrumentation signals were also led through high quality
slip-rings to be logged away from the centrifuge. However, such signals may be
of very low amplitude and these days it is usually preferred to undertake some
signal conditioning and amplification, and analogue to digital conversion, and
perhaps even logging of data, on the centrifuge itself using on-board computers
placed close to the axis where acceleration levels are low. Downloading of digital
information is much less sensitive to slip-ring noise and can take place in parallel
with the logging itself.

6.4 Model preparation

As for any modelling of geotechnical elements or systems it is essential to know—
and to be able to control—the past, the present and the future stress changes
to which the soils are subjected. The first stage, covering the past and the
present, represents the formation of the soil test bed and the establishment of
some initial condition from which the effects of subsequent perturbation can be
studied.

The first possibility might be to take a sample of real soil—particularly if
it is intended to model an actual prototype. This is unlikely to be feasible or
appropriate for a drum centrifuge but sizeable blocks of clay can be cut in the
field and trimmed to size for a beam centrifuge strong-box. A period of steady
centrifuge acceleration is then needed to reestablish pore pressure equilibrium
and to establish some combination of vertical and lateral stresses which may
not quite match the in-situ stress state. A block sample from one particular
depth is being transformed into a complete soil layer (its stress state is being
‘stretched’) for the centrifuge model. Use of block samples in this way will be
appropriate if the aim is to study behavioural characteristics that are linked
to features of the natural structure and fabric of the soil—particle alignment,
interparticle bonding, depositional details such as inclusion of seasonal varves of
slightly different grain size and hence permeability. Of course, the scale of such
natural features needs still to be small by comparison with typical dimensions
of the model, otherwise similarity of prototype and model will be vitiated.

Use of block samples will not be helpful if such samples cannot be obtained
without disturbance. There are techniques for in-situ freezing of block samples
of sand so even for such materials use of undisturbed soil might not be com-
pletely ruled out. However, more often, when the behaviour of general classes of
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Figure 6.14: Preparation of clay sample by consolidation in consolidometer
prior to establishing stress equilibrium on centrifuge: (a) vertical stresses; (b)
resulting profile of overconsolidation ratio; (c) resulting profile of undrained
strength

geotechnical systems is to be studied, the soil beds will deliberately be created
from disturbed, remoulded, reconstituted or artificial materials.

Establishment of equilibrium effective stress states in clays requires consoli-
dation and consolidation requires time. There is some advantage in performing
as much as possible of the model preparation off the centrifuge itself, in order to
avoid unnecessary machine occupancy. For beam centrifuge models it is stan-
dard to make use of free-standing consolidometers to prepare clay samples from
slurry. Typically, the clay might be subjected to progressively higher stresses
in the consolidometer (Fig 6.14) in order to give it at least enough strength to
be handled and formed into a model which can be mounted on the centrifuge.
(Any desired consolidation or overconsolidation history can be imposed on the
entire clay block in the consolidometer.) When the centrifuge is brought up to
speed, a stress field varying more or less linearly with radius is established (Fig
6.14a) so that the clay has an overconsolidation ratio which falls with depth
(Fig 6.14b)—and the clay may indeed be normally consolidated below a certain
depth. The strength of the clay will reflect this profile of overconsolidation (Fig
6.14c)—typical real soft clays have a somewhat stronger surface layer because
of water table variation and other effects.

Sand samples can be prepared by direct pluviation into the model container
(§6.2, §6.5): this provides a reasonably close approximation to the process by
which sand deposits are formed in nature. Ideally pluviation should take place
simultaneously across the whole area of the model in order to reproduce natural
deposition over areas of great lateral extent.

On a drum centrifuge there is of course no separate model container and the
soil layers have to be formed in the drum itself. Techniques have been developed
(Laue et al., 2002) for spraying clay slurry onto the drum. The centrifuge then
has to be used for the consolidation process. It is necessary to be a little careful
with the control of water in the drum: the clay needs to be kept saturated so the
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a. b.

Figure 6.15: Preparation of sand sample in drum centrifuge (a) by feeding sand
through nozzle; (b) by feeding sand onto spinning disc

water level should, during deposition, be always above the surface of the clay.
However, the effective stress in the clay—and hence the undrained strength of
the clay—at the surface is zero. If it is necessary to stop the centrifuge for a
subsequent stage of model preparation, then the surface layer—hanging on a
vertical face in the drum—may tend to slough off with any overlying water.

Sand beds can similarly be prepared on the drum by feeding sand from a
nozzle or from a spinning disc, either of which can be raised and lowered to
provide full coverage over the inside surface of the drum (Fig 6.15) (Laue et al.,
2002). We have noted that there is no reason for the sand to accelerate towards
the inside surface of the drum—it will continue to travel at its velocity of delivery
from the nozzle or disc with a trajectory slightly distorted by earth’s gravity (and
by air resistance inside the drum). Reproducibility and repeatability of the sand
fabric are important. The detailed arrangement of sand particles will influence
the eventual response of the soil—especially for low levels of deformation—so
that the sand particle structures created by such a spraying technique (expedient
though it is) will differ from those obtained by simultaneous deposition across
the entire model cross-section.

If it is necessary to shape the surface of the sand model once it has been
prepared then this can best be done with some tool operating within the spinning
drum (Figs 6.13, 6.16, 6.17). If it is, however, necessary to stop the centrifuge in
order to proceed to a subsequent stage of model preparation, then some strength
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Figure 6.16: Diagrammatic section through drum centrifuge at ETH Zurich
(Springman et al., 2001)

can be developed by raising and lowering the water table in the soil layer round
the circumference of the drum, first more or less saturating and then leaving the
sand in a slightly damp state with surface tension between the sand particles
sustaining suction which then provides an effective confining pressure.

6.5 Geotechnical processes

The possibilities of modelling geotechnical processes on a centrifuge are limited
only by the ingenuity of centrifuge users. The sorts of things that we might wish
to do include: formation of cut slopes; creation of embankments; installation
and loading of shallow or deep foundations; construction of retaining structures;
formation of tunnels; and so on. Ideally we want to do as much as possible while
the centrifuge is ‘in flight’ but this will not always be feasible because of the
need to set in place and commission adequate instrumentation to monitor the
subsequent performance of our systems.

In the drum there is the possibility of using tools to manipulate the model.
These tools can either be held stationary in space and used, for example, to
‘machine’ the profile of the model—and literally create a continuous cut slope,
for example—or be rotated synchronously with the drum so that robotic opera-
tions can be performed at specific locations on the test bed—driving individual
piles or loading a single footing (Figs 6.13, 6.16, 6.17).

We are trying to follow the stages of a real construction process as closely as
possible, even if we are not trying to model a particular prototype. Often we will
need to create a stable geotechnical system and then perturb it in some way—
perhaps to bring it to failure. For example, we might want to study the effects



Figure 6.17: Pair of actuators mounted on the tool table of drum centrifuge at
ETH Zurich (Springman et al., 2001)
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Figure 6.18: Model of propped retaining wall in overconsolidated clay with
ground movements controlled using heave-reducing piles (inspired by McNamara
and Taylor, 2002).

of using heave-reducing piles to limit the ground movements occurring behind
an excavation (Fig 6.18, McNamara and Taylor, 2002). There are a number of
stages involved in this modelling which should, as far as possible, match the
stages of prototype construction. We need to start with the overconsolidated
ground in pore pressure equilibrium—we will have to make decisions about the
nature of the ‘geological’ history to impose. We have somehow to introduce the
cantilever wall, and the heave-reducing piles, and the props and then to create
the excavation. It will inevitably be necessary to make compromises.

An embankment can be prepared on the surface of the soil (which has been
preconsolidated on the centrifuge) either at 1g by direct placement of a shaped
pile of model fill or, preferably, at full speed by some process of controlled
deposition from hoppers or nozzles over the model soil surface (noting again the
non-ideal nature of the trajectory that the model fill will traverse between being
released and coming to rest on the soil surface). The shapes of the resulting
piles of model fill tend not to follow regular profiles (Fig 6.19) but so long as we
can see what is happening then the actual shapes can be reproduced in parallel
numerical modelling.

A surface footing is probably the simplest geotechnical system to model
on the centrifuge. All that is required is some hydraulic or electro-mechanical
device to lower the footing to the surface of the soil layer and then proceed to
load it or cause penetration of the soil. Devices such as the LCPC robot (Fig
6.20) are evidently capable of this and other manoeuvres. If the footing is not
intended to be quite at the surface of the soil then some initial preparation and
positioning may be necessary at 1g before the centrifuge is rotating, leaving the
loading stage to take place at the intended g level and stress level.



Figure 6.19: Preparation of model slope or embankment by deposition of sand
fill in flight from hoppers mounted in model strong box

Figure 6.20: On-board centrifuge robot at LCPC, Nantes (Derkx et al., 1998)
(1: support beams; 2, 3: linear guide rails; 4, 5: sliders; 6, 7: brushless motors
for x and y translation; 8: z axis translation by screw/nut system and brushless
motor; 9: rotating robot arm controlled by ring gear and DC motor; 10: tool
holder with built-in video camera; 11: three tool magazines; 13: proximity
sensors used to identify tools)
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Other geotechnical processes may require more compromises—some of which
are more acceptable than others. Installation of individual model piles can be
achieved using an on-board robot, by driving or steady jacking. The method
of installation turns out to be rather important. The effect of development of
lateral pressure on model piles installed in different ways is shown in Fig 6.21a.
The dramatic difference in subsequent resistance (axial or lateral) of piles driven
at 1g and at multiple gravities can be understood by considering the stress paths
of typical elements around the pile (Fig 6.21c). The paths are shown in terms of
a plane strain mean stress s′ = (σ′v + σ′h)/2 and a shear stress t = (σ′v − σ′h)/2,
where σ′v and σ′h are vertical and horizontal effective stresses respectively which
are assumed to be, near enough, principal stresses. The driving of a pile will
tend to increase the horizontal stress, probably without much drainage in a clay
(we neglect the interface effects in the very disturbed zone immediately adjacent
to the pile). The horizontal stress may possibly increase even above the vertical
stress so that t falls below zero (BC at 1g, PQ at ng in Fig 6.21c). If this
occurs at low stress level (BC at 1g in Fig 6.21c), then subsequent consolidation
(CD) will seek to reestablish a generally one-dimensional compression regime
and the stresses may end up close to the Ko line. If pore pressure equilibration
is required after pile installation at high stress level, however, (QR at ng in Fig
6.21c) then the total horizontal stresses may perhaps not change significantly
and the soil will be left with in-situ radial stresses, before loading of the pile
takes place, greater than the vertical stresses.

A similar effect is reported by Ng et al. (1998) in modelling sand compaction
piles installed in soft clay at 1g or at multiple gravity. The technology that
has had to be developed for in-flight installation of sand piles is rather more
elaborate: first, a steel casing is jacked into the model ground; then sand is
injected from a hopper using a hydraulically driven screw (Fig 6.22); the casing is
steadily withdrawn as the sand is injected. This is fiddly but feasible: obviously
it is desirable to do as much as possible under the multiple gravity environment.

Retaining structures are (simplistically) required either to support ground
as excavation occurs in front of them, or to support new fill progressively placed
behind them. Evidently the latter construction process might be modelled in the
same way as the construction of an embankment by depositing material in flight
behind a model wall. But in reality compaction of each layer would be required
and the slightly uncontrolled nature of such a deposition process has usually
led centrifuge modellers to prepare the fill—carefully—at 1g and then to load it
by bringing the centrifuge to the desired acceleration—and then perhaps apply
some surcharge or footing loading as an additional perturbation behind the wall
(Fig 6.23). Although the general direction of the stress changes may not be
too different, in detail there may be some difference between the desirable and
the modelled stress paths (Fig 6.23b). In the context of the kinematic nature
of soil stiffness (§2.5.3) (and the kinematic hardening models briefly introduced
in section §3.5), however, the direction of the stress path immediately before
the application of the footing load may be almost completely opposite (inset
in Fig 6.23b) and this would have a major effect on the initial stiffness of the
footing. These conclusions will certainly be dependent on the flexibility of the
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Figure 6.22: In-flight installation of sand compaction piles (after Ng et al., 1998)
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Figure 6.23: (a) Retaining wall supporting layers of backfill; (b) comparison of
stress paths for typical element in backfill

wall which may permit much greater lateral deformation (and departure from
a simple Ko stress path) as a result of compaction loads applied at prototype
stress levels than would occur using typical 1g model preparation procedures.

Excavation in front of a pre-installed wall once again poses robotic challenges
(Gaudin et al., 2002). The problem is simultaneously to remove soil-like hori-
zontal stresses and vertical stresses—and, desirably, to do this in stages leaving
real soil below each excavation level (Fig 6.24a). The ratio of horizontal and
vertical effective stresses before excavation (Ko) will depend on the soil type and
the consolidation history of the soil. In a sandy soil it might be as low as 0.3, in
a stiff clay as high as 3. Practically, the easiest way to apply a varying load over
a deforming surface is to use fluid pressure (Fig 6.24b). The unit weight of soil
is greater than the unit weight of water so one strategy is to use a heavy fluid
such as an aqueous solution of zinc chloride. In a fluid, horizontal and vertical
stresses are of course always the same at any level so an assumption might be
made that it is more important to maintain the correct horizontal stresses on the
pre-installed wall than to maintain the correct vertical stresses on the ground
remaining in front of the wall. (Alternatively, McNamara and Taylor (2002)
use a combination of heavy fluid with air pressure at the base of the eventually
excavated soil in order to be able to provide separate control of horizontal and
vertical stresses.) There will anyway be some uncertainty about the horizon-
tal stress state that would remain after the installation of a prototype wall: a
driven wall will increase lateral stresses; a concrete diaphragm wall poured un-
der bentonite in a pre-cut trench will permit reduction in lateral stresses—so
that the hydrostatic (Ko = 1) initial condition imposed by the fluid pressure
might not be unreasonable. The detail of the stress paths sketched in Fig 6.24
can be disputed: the important message is to ponder the differences between
prototype and model stress paths and to understand how those differences may
affect the eventual geotechnical system response.

The modelling of tunnelling leads to a similar problem which may be slightly
reduced if the diameter D of the tunnel is small by comparison with its depth C
from the ground surface so that the gravitational variation of stress in the soil
from crown to soffit of the tunnel is not great. Classic centrifuge tests by Mair
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Figure 6.24: (a) Excavation in stages in front of pre-installed wall (APQRS); (b)
‘excavation’ by removal of fluid pressure (ABCDEFG); (c) comparison of stress
paths for typical element in soil ([prototype: AP: consolidation; PQ: overcon-
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(1g); BC: overconsolidation (1g); CD: installation of wall (1g); DE: excavation
and replacement by heavy fluid (1g); EF: centrifuge consolidation (1g → ng);
FG: drainage of heavy fluid]).
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(1979) show normalised collapse conditions for long tunnels in soft clay tested in
plane strain models(Fig 6.25a), compared with simple plasticity analyses (§7.3)
(Fig 6.25b). Collapse was modelled by progressively reducing the pressure in
a fluid filled bag. The occurrence of collapse is shown in terms of the tunnel
support pressure σTc normalised with undrained strength cu as a function of
tunnel geometry C/D. The spread of theoretical upper and lower bound results
is modest and the data sit nicely in-between.

The three-dimensional problem of collapse of a partially unsupported tunnel
heading was modelled using a preformed half-cylindrical tunnel (with a stiff
brass model tunnel lining) with fluid pressure supporting the tunnel face and a
length P of unlined perimeter (Fig 6.25d). These three-dimensional centrifuge
tests have been interpreted using a non-dimensional stability number NT :

NT =
nρg(C + D/2)− σTc

cu
(6.9)

comparing the difference between the tunnel support pressure σTc at collapse
and the mean vertical stress across the tunnel calculated from the soil den-
sity ρ, in a model being subjected to an acceleration ng on a centrifuge, with
the undrained strength cu. Tunnel heading collapse is capable of theoretical
plasticity analysis for the two extremes of fully lined (P/D = 0) and fully un-
lined tunnels (P/D = ∞). Centrifuge model tests permit interpolation between
these extremes, (Fig 6.25e), providing a valuable example of the integration of
theoretical and physical modelling which provides reassuring support for both.

The fluid pressure which applies the same normal pressure on all parts of
the unlined tunnel heading is now a very approximate replacement of the actual
in-situ stress state which has different normal stresses in vertical, axial and
transverse directions, and shear stresses on inclined surfaces. Robotic techniques
are now available to achieve a more realistic modelling of the soil removal and
lining placement (for example, Imamura et al., 1998).

Surface settlements over a collapsing two-dimensional tunnel (Fig 6.25c)
show that essentially the same profile of settlement is obtained at different
model scales provided that the geometry of the collapsing tunnels is the same.

The capabilities of an on-board robot are to some extent limited by the
proportion of the centrifuge payload that can be sacrificed for hardware as op-
posed to soil. Different approaches to the problem of simulating earthquake
loading on a centrifuge have confronted this problem in different ways. On a
1g earthquake simulator—a shaking table—actuators are used to control all six
translation and rotation movements. On a centrifuge, in general, researchers
have limited themselves to one—horizontal—axis of shaking, relying on stiff
bearings to prevent other uncontrolled parasitic modes of oscillation. Testing
at 1g has shown how important it is to control—or at least monitor—all six
degrees of freedom (even if some of the motions are intended to be zero) so that
the detail of the motion to which a model has been subjected can be completely
and correctly known. There may also be limitations on the types of simulated
seismic motion that can be applied. It may be much easier to generate more
or less sinusoidal motion—through conversion of rotary to linear motion—than
the rather random excitation that characterises a typical earthquake. The Cam-
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Figure 6.25: (a) Two-dimensional centrifuge model of tunnel collapse; (b) fluid
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Figure 6.26: ‘Stored angular momentum’ model earthquake actuator (after Mad-
abhushi et al., 1998)

bridge ‘stored angular momentum’ shaker (Fig 6.26) applies bursts of somewhat
sinusoidal shaking to a single axis of excitation; the centrifuge at Hong Kong
University of Science and Technology has a two axis shaking table mounted with
actuators controlling the two (model) horizontal degrees of freedom (Fig 6.27).
The VELACS project, which compared capabilities for physical and numerical
modelling of liquefaction events caused by seismic loading, showed how impor-
tant are the details of model preparation and the exact replication of imposed
model shaking if reasonably similar results are to be obtained at different testing
locations (Arulanandan et al., 1994).

At the other extreme, Allersma (1998) shows how the melting of a block of
ice can be used to produce loading of centrifuge models extremely economically
(if slightly uncontrollably) and with minimal penalty in terms of use of payload
capacity. For example, a prestressed spring restrained by a block of ice can form
the loading system for the pull-out of a buried anchor (Fig 6.28). Obviously such
imaginative devices are ideal for small centrifuges which are to be made readily
available for student projects with limited technical support.

6.6 Pore fluid

We discovered in section §5.3.9 that there were separate rules governing the
scaling of time for diffusion processes, such as consolidation or migration of
pollutants, and dynamic processes, such as the generation of pore pressures
during earthquakes. Where these time scales conflict it is necessary to take
special action. The problem is likely to be most obvious in fine sands where
the need to model correctly the degree of dissipation that can occur during a
seismic event becomes important because this will have a major influence on the
likelihood of liquefaction occurring. The usual way of satisfying the similarity
requirements is to modify the viscosity of the pore fluid by adding glycerol to
the pore water or by using silicone oil. By this means it is certainly possible to
alter the permeability of the soil by a factor of 100. There may be some concern
that the use of such a pore fluid may influence the mechanical properties of



Figure 6.27: On-board earthquake actuator for centrifuge at Hong Kong Uni-
versity of Science and Technology (see also Fig 6.10) (photograph reproduced
by kind permission of CWW Ng).

anchor

spring

ice

Figure 6.28: Use of melting block of ice to control pull-out loading of a buried
anchor (after Allersma, 1998)
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the soil itself by affecting the interparticle mechanics or changing the surface
chemistry of clay particles.

There are a number of requirements that influence the choice of pore fluid
for dynamic centrifuge modelling:

• a Newtonian fluid;

• same compressibility as water;

• chemically polar for use with all particle shapes and sizes;

• correct scaling of surface tension;

• non-toxic and environmentally suitable;

• made from readily obtainable constituents;

• easily accurately mixed for reliability and repeatability;

• stable with time; and

• non-corrosive.

The Delft Geotechnics pore fluid (Allard and Schenkenveld, 1994) has been
presented as one candidate—a water based solution of undeclared chemistry—
which satisfies all these requirements, and demonstrably produces unaltered
mechanical response. It is shown that its viscosity can be varied over three
orders of magnitude by varying the concentration of the mixture, while the
density varies by only < ±2%.

6.7 Site investigation

Whatever method is used to prepare the soil layers for subsequent perturbation
on the centrifuge it is helpful to have some techniques that can be used to
study the in-situ properties of the soil at the augmented acceleration levels at
which they are to be employed. Such techniques can be used to explore spatial
variability across a model as well as profiles with depth. Techniques that have
been used at prototype scale can be adapted for use at small scale. Thus Garnier
(2001, 2002) describes the use of miniature cone penetrometer, vane and even
pressuremeter in centrifuge models.

The cone penetrometer is widely used for site investigation and site charac-
terisation and for construction control at full scale (§1.2.3). There are limits to
the miniaturisation of model cones for centrifuge application: for example, the
diameter needs to be large in relation to the particle size (for example, d50) in
order to obtain reliable results; and the penetrometer needs to be strong enough
not to buckle as it is pushed in. Gui et al. (1998) suggest a limit Dcone > 20d50

and also note that it takes a penetration of about 5Dcone to mobilise cone resis-
tance so that the precise detection of strength changes will be slightly smeared.
(However, Foray et al. (1998) find that for model piles Dpile > 200d50 is needed
to avoid particle scale effects at the interface between pile and soil.) Centrifuge
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Figure 6.29: Piezocone penetrometer for centrifuge site investigation (after Es-
quivel and Ko, 1994)

tests may be performed at different levels of excitation—one might as well use a
single probing device in all models so that the scaled ‘prototype’ penetrometers
are of different sizes. A miniature cone penetrometer with external diameter
8 mm is described by Almeida and Parry (1984). Scaled up (at 100g, say) such
a cone is perhaps more like a small model pile. This device measured, at the top
of the penetrometer, the separate loads on the tip and the shaft—somewhat like
a standard full size cone (of diameter 35 mm). Esquivel and Ko (1994) describe
a miniature piezocone (Fig 6.29) of diameter 12.7 mm, using two load cells, the
tip resistance being measured just behind the point of the cone, and with a pore
pressure transducer also being incorporated.

Miniature vane tests require a combination of penetration and rotation con-
trol and have the same applicabilty as a full size vane—though again it will not
be feasible to think of scaling down a standard field vane by the linear scale of
the centrifuge model.

The analytical intepretation of the output of any penetration device requires
some assumed mechanism of deformation around the device—the tip of the
cone or the blades of the vane. Theoretical analysis of cone penetration draws
an analogy with the creation of a spherical or cylindrical cavity in the soil.
This expansion process depends on both the undrained strength cu and the
shear stiffness G of the soil through a rigidity factor IR = G/cu—and therefore
depends on effective stress level and history of overconsolidation. Interpretation
of cone tests to give a profile of strength requires accompanying assumptions.
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Figure 6.30: Sketch of T-bar penetrometer for centrifuge site investigation (after
Stewart and Randolph, 1991)

Plastic flow around a cylindrical object is, however, capable of close theo-
retical analysis and, exploiting this, the T-bar (Fig 6.30) has been developed by
Stewart and Randolph (1991) as a device which can be pushed or pulled through
a clay layer to record the profile of resistance and hence undrained strength. All
is never ideal: even for this cylindrical object the interpretation depends on the
surface roughness. However, an average strength factor Nt ≈ 10.5 is proposed to
convert force P per unit length of a T-bar of diameter D to undrained strength
cu:

P

cuD
= Nt (6.10)

and this factor is independent of stress level and history of overconsolidation.
This T-bar too will average the strength of the soil over a distance of some
30-50 mm from the penetrometer.

Geophysical techniques are used in the field not only to give general profil-
ing of soil layers but also to give information about shear wave velocities and
hence shear stiffnesses. Shear wave velocity can only be deduced by measur-
ing travel time over a known distance so it gives a smeared out average soil
property between transmitter and receiver (§3.2.6). Miniature piezoceramic
devices—‘bender elements’—are quite widely used for measurement of shear
wave velocities in laboratory element tests and the same technology can be
used to record shear wave velocities and, perhaps more importantly, changes
in shear wave velocities, in model tests. Bender elements are formed from two
pieces of piezoceramic (Fig 6.31) glued together, separated by a metal sheet.
When subjected to appropriately chosen electrical excitation one side tends to
become longer, the other side shorter with the result that the combined element
bends and transmits a shear motion to the soil in which it is embedded. A sim-
ilar element, used in passive mode as a receiver, generates voltages when it is
deformed by the arriving shear wave. (By varying the connections is it possible
to use the same element to send and receive shear and compression waves (Lings
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Figure 6.31: Bender element for laboratory geophysical studies: (a) mounted
in triaxial end platen; (b) construction of element (after Lings and Greening,
2001)

and Greening, 2001).) In laboratory element tests such geophysical techniques
can now be used to build an extensive picture of the evolving elastic anisotropy
of the soil. It is quite likely that there will be continuing developments in their
application to model tests.

6.8 Instrumentation

In full-scale geotechnical systems we might wish to monitor pore pressures,
displacements, contact stresses, and structural resultants (such as bending mo-
ments) and in dynamic situations, accelerations. We will want to measure these
things in our centrifuge models too. The two constraints that are encountered
are the need to be able to operate in a high ambient acceleration field and the
need for miniaturisation if the observations are to be regarded as plausibly point
values.

Pore pressures are typically measured with Druck transducers (Fig 6.32)—
6.35 mm diameter—which use a silicone diaphragm as a differential pressure
sensitive element. A porous stone is provided to separate the diaphragm from
the soil and, as in any piezometer, this porous stone needs to be saturated
before use and to be kept saturated during use. Where the scale of detail of a
geotechnical system is small—one could imagine modelling sand drains which,
in a prototype are at 1.5 m centres, at a scale of 1/100, or sand compaction piles
of model diameter 20 mm at 40 mm centres (Lee, 2002)—the precise location
of the pore pressure transducer between the drains may be rather important—
or, turning this restriction round, the readings of pore pressure change and
rates of dissipation need to be interpreted in the knowledge that the region over
which the pressures are measured has a size which may be of a similar order of
magnitude to the critical dimensions of the model.
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Figure 6.32: Druck pore pressure transducer (adapted from Taylor (1995) and
König et al. (1994))

pressure 

sensitive area

leads

10.2mm
1.02mm

5.08mm

epoxy

guard 

ring

Figure 6.33: Miniature contact stress transducer (after Lee et al., 2002)

Contact stresses are difficult to measure reliably at any scale—primarily
because of the effect that a stress transducer of stiffness different from the
boundary within which it is embedded has on the local stress field. Contact
stress transducers have been devised with miniature strain-gauged elements.
Garnier (2001) describes very stiff miniature cells which have been used with
model hopper flow tests which deflect less than 1 µm under a normal stress of
100 kPa. The total stress cell shown by Lee et al. (2002) is shown in Fig 6.33.
Strain gauging of structural elements—piles, flexible walls, tunnel linings—may
be more reliable and it may be possible to deduce interface stresses from gradi-
ents of bending moment or axial force. However, differentiation of experimental
observations always introduces errors. The use of tactile pressure sensitive mats
is described by Springman et al. (2002). These can measure local stresses over a
grid of 1936 contact points over an area 56 mm× 56 mm. The sensitivity is not
particularly good (range/256) and calibration is not straightforward but this is
evidently a promising emerging technology.

Displacements at discrete points on a model can be measured with LVDTs
(linear variable differential transformers) which use a core attached to the model
moving relative to a fixed coil. If used to measure settlement of the soil surface,
the core, accelerated on the centrifuge, behaves like a surface penetrometer and
needs to be provided with a contact pad to spread the loading and reduce the
contact pressure and possible penetration (Fig 6.34).

Non-contact laser techniques can be used to monitor displacements across
surface profiles: the device has to be driven along a known course at a finite
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Figure 6.35: Close-range photogrammetry for recording three-dimensional sur-
face displacements (inspired by Taylor et al., 1998)

speed so these measurements are most useful for recording displacement patterns
under rather steady state conditions. Close range photogrammetry (Figs 6.35,
6.36) can be used to give a three-dimensional instantaneous view of the surface
displacements using two or three cameras mounted above the surface of the
model. The procedure is essentially similar to that used in mapping from aerial
photography except that the cameras are fixed and it is the actual movement of
the ground surface that leads to differences in successive photographic images.

Plane models can be viewed through a lateral glass panel. Discrete mark-
ers can be placed in the lateral face of the model as it is being prepared and
then monitored by flash photography while the centrifuge is in flight (Fig 6.37
and Fig 6.35). Measurement of the positions of these markers on successive
photographs using automatic image analysis techniques can be used to deduce
fields of strain increment during the model test. Any measurement of displace-



302 6. Centrifuge modelling

Figure 6.36: Three-dimensional surface displacements over tunnel heading de-
termined using close-range photogrammetry (from Taylor et al., 1998)

ments seen through the transparent side of a plane model may be influenced
by friction between the soil and the side boundary. Marker bands of coloured
sand can be used to give visual evidence of formation of shear bands and also
for general qualitative evidence of magnitudes of settlement (Fig 6.37).

Alternatively, if the soil used in the model has a clearly visible texture—or it
is possible to apply some texture to the visible surface (Take and Bolton, 2002)—
then close range digital photography can be used with subsequent Particle Image
Velocimetry (PIV) to record the changing appearance of the fabric. An accuracy
of 1/15000 of the field of view is estimated by White and Bolton (2002) with
typical displacement precisions 4-15 µm depending on the size of the patch of
observed fabric whose displacement is being followed. White and Bolton quote
a typical patch being followed with dimensions 2-4 mm, with image analysis
techniques being used to detect movements with a precision of 1/15 pixel, using
a digital camera with pixel resolution 1760 × 1168. Fabric photography can
also indicate other effects such as soil particle rotation and breakage which will
not be detected by monitoring of individual markers (Fig 6.38). The great
advantage of using such digital photographic techniques is that information
concerning a very large number of points in the plane section of the model can
be obtained extremely rapidly and analysed automatically with an objectivity
that eliminates the human factor involved in many other techniques. We are
essentially obtaining field rather than point information.

Some techniques that are appropriate to single gravity models can also be
used, after a test, for centrifuge models. Radiography can be used to detect the
location, after the test, of threads of bismuth or lead paste injected before the
test. This can be helpful in detecting the position of failure surfaces within the
soil (Fig 6.39) although it is of course not necessarily possible to determine at
what stage during testing on the centrifuge these discontinuities actually devel-
oped. A similar result can be obtained by inserting coloured spaghetti into clay



Figure 6.37: Observation of individual markers and marker bands of coloured
sand in two-dimensional plane models of footing (from Bakir et al., 1994)

Figure 6.38: Close range digital photography used to detect displacements and
particle rotations around a driven pile in sand (White and Bolton, 2002).
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Figure 6.39: Radiographic observation of bismuth threads to detect location of
failure surfaces under embankment on soft clay, after completion of centrifuge
model test (Bassett and Craig, 1988).

models: the pasta takes up moisture from the clay and, thus softened, follows
the movements of the clay without impediment (see, for example, Tamate and
Takahashi, 2000). The spaghetti have to be located after the completion of the
centrifuge test using careful exhumation techniques. It is obviously impossible
to separate displacements which occurred while the model was being tested at
full centrifuge acceleration and those which have developed during the slowing
of the centrifuge to a halt.

An exhumation technique is also used by Muir Wood, Hu and Nash (2000) to
detect the deformed shape of model stone columns (similar to sand compaction
piles) in soft clay after a loading test on a model footing at single gravity (Fig
6.40). The sand in the model column/pile is carefully sucked out and plaster of
Paris (gypsum) poured in around a wire armature. Removal of the surrounding
clay then reveals the deformed shapes of the columns complete with internal
bulging and shear planes.

6.9 Modelling and testing

When Andrew Schofield began promoting the use of geotechnical centrifuges in
the west in the 1960s he had a vision of centrifuge modelling becoming a natural
and inevitable tool in geotechnical design. Craig (1985)—who had, in his use
of the Rowe centrifuge at Manchester, used centrifuge modelling in support
of design of actual prototypes such as major embankment dams, foundations
of offshore structures, and the Oosterschelde storm surge barrier—ended by
writing: If centrifuge work is to continue, it should have a positive role beyond
phenomenological studies and the development of design rules by parametric
variation in idealised, non-specific models. Lee (2002) talks of the philosophy of
modelling versus testing—modelling leading to predictions, testing leading to
validation.

In practice, centrifuge modelling has probably been used more for study of
generic problems than for reproduction of the response of particular prototypes.
We have seen some of the possible reasons for this already: scale, boundaries,
and processes.

Small features which may have a significant effect on system response—the
presence of sand lenses, for example—cannot be directly modelled at small scale.



Figure 6.40: Exhumation to discover deformed shape of model stone columns
(after Muir Wood et al., 2000)
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Key features of soil fabric or of soil behaviour (such as the formation of patterns
of localised deformation or the concentration of displacement into a shear band
(Muir Wood, 2002)) with a characteristic length that is small by comparison
with typical problem dimensions at prototype scale may be of the same order
of magnitude as the scaled problem dimensions if prototype soil is used in the
small model.

As in any modelling—numerical or physical—boundaries have to be intro-
duced with characteristics (complete absence of friction, for example) and loca-
tions which are appropriate to but will not unduly influence the system response
that is being studied. Advantage can be taken of symmetry to insert a smooth
centre-line boundary and study half the problem. Usually it will be desirable to
make the active part of the geotechnical system—the foundation, wall, embank-
ment, tunnel—as large as possible: this is where gradients of displacement will
be greatest. However, there needs to be space beyond to the outer boundaries of
the (usually rigid) container so that the active parts do not feel too constrained.

Inevitable compromises have to be made in reproducing geotechnical pro-
cesses. Robotic possibilities are steadily increasing but the benefit of improved
modelling of some details of construction, or of geological history has to be
weighed against the cost of greater on-board complexity (and associated risk of
malfunction)—and loss of pay-load capacity for the geotechnical elements of the
model.

What centrifuge modelling does supremely well is to reveal mechanisms of
geotechnical behaviour at prototype stress levels. Such behaviour can be re-
vealed in problems covering a range of scales extending right up to neotectonics
and mountain orogeny (Jeng et al., 1998). The art of successful geotechnical
centrifuge modelling is to ensure that the simplicities of the modelling do not dis-
tort these mechanisms. As many as possible of the likely important effects must
be included. A centrifuge model is a closely controlled boundary value problem,
conducted with real soils incorporating all their constitutive vagaries—many
of which are hidden from the numerical or constitutive modeller. Data from a
well-designed centrifuge model can thus be used to validate numerical modelling
which, validated, can be used to extrapolate to closer modelling of prototype
details. You should have knowledge and close control over the preparation and
history of the soils (supported by element testing and constitutive modelling)
and exactly how they have been treated in the centrifuge modelling—including
the time scales and acceleration histories. All these—possibly non-ideal—details
can be incorporated in parallel numerical modelling.

It is as true for centrifuge modelling as for any other type of geotechnical
modelling that you should always start out with a prediction of what you ex-
pect to happen. If the observation of the model manages to surprise and to
confound these prior expectations, then reflection is required to develop deeper
understanding and improve the next predictions (Fig 6.41). Indeed, a good
model test is precisely one which surprises—this is the way in which scientific
understanding advances—and we should try to design our model tests with this
in mind1. Scientific conjectures cannot be proved (absence of evidence so far

1Although it is usually hoped that modelling intended to support prototype design decisions
will not surprise.
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Figure 6.41: Reflective practice cycle

which conflicts with a conjecture does not indicate that such evidence must al-
ways be absent), but they can be refuted. Rival hypotheses can be sifted using
carefully chosen testing.

6.10 Closure

Looking at the proceedings of the conferences on centrifuge modelling that have
taken place every few years over the past couple of decades one is struck by
the way that this technique has reached a maturity in this period. Centrifuge
modelling is now regarded as a legitimate tool to support geotechnical research
or design. Papers seem less concerned with descriptions of centrifuge hardware,
more concerned with novelties in process modelling and observation or quite sim-
ply with the presentation of geotechnical phenomena. Indeed the most recent
conference (Phillips et al., 2002) is deliberately devoted to ‘physical modelling’
rather than specifically to centrifuge modelling to emphasise the general accep-
tance of the centrifuge as one of a number of techniques of physical modelling
and not one that requires special attention and justification.

Kimura (2000) charts the growth in centrifuge usage in Japan which is per-
haps the only country where it has been adopted as a matter of routine in the
way that Andrew Schofield had hoped. From 3 centrifuges in 1980, Japan had
some 32 beam centrifuges and 5 drum centrifuges by 1998. The number is now
certainly higher. More interesting than the number is their distribution: of the
37 centrifuges only 50% were in universities, 25% were in national research in-
stitutes and the remaining 25% in private industry, 19% in general contractors.
These include some extremely large machines.

One may debate the merits of different centrifuge sizes. Evidently the larger
the model the less the concern about the accuracy of representation of detail, the
less the concern about the effects of particle size, or the larger the geotechnical
prototypes that can be modelled. Evidently too the infrastructure required to
keep large machines operational and in full usage is extensive. There is obviously
a role for small machines that can be safely operated by individual researchers
with little technical support. The more widely that such machines can calmly
penetrate the world of undergraduate teaching the greater the likelihood that
the potential of centrifuge modelling will become generally understood and ac-



308 6. Centrifuge modelling

cepted even by sceptical practising engineers and the greater the chance of the
acceptance of the vigorous refutation by Schofield (2000) of Terzaghi’s assertion
of the ‘utter futility’ of attempts to rely on the results of small-scale geotechnical
models.



7

Theoretical modelling

7.1 Introduction

There is often advantage in being able to obtain rapid theoretical solutions to
analyses of the behaviour of geotechnical systems without having to resort to the
full complexity of numerical modelling. It has been emphasised several times,
in the context both of numerical modelling and of physical modelling, that it
should always be possible to obtain supporting ‘back-of-the-envelope’ estimates
of response to give reassurance that the results of the numerical or physical
modelling are secure and that the governing phenomena are understood. These
estimates may not be particularly precise but should be of the correct order of
magnitude. Simple calculations can also be used to perform rapid parametric
studies in order to reveal the most influential parameters and hence make more
efficient the subsequent detailed numerical or physical modelling.

In this chapter we will describe some of the tools that are available to sup-
port and perform such theoretical modelling. Some of these—such as the elastic
stress distributions and the exact results of simple consolidation problems—are
capable of exact theoretical closed-form analysis and can be used to provide a
direct check on the implementation and programming of algorithms required for
finite element or finite difference numerical modelling. Some of the other exam-
ples included in this chapter actually require some numerical strategy for their
solution so that, as a check on full numerical analysis, with all its concomitant
approximations, it appears that we are merely substituting another approxi-
mate numerical analysis. However, for the simple theoretical models that we
are considering here the numerical solution algorithm, if one is required, will
usually itself be relatively simple to implement and rather evident to the user.
Moreover, it is likely that the numerical procedure will not be the same as that
involved in the full finite element or finite difference analysis (at least the sub-
routines will be newly prepared) so that there will be a degree of independence
in the comparisons that are made.

309
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Figure 7.1: Linear elastic stress-strain relationship

7.2 Elastic stress distributions

Two of the examples of empirical modelling that were introduced in Chapter
1 (§1.2.2, §1.2.3) made more or less explicit reference to a requirement to esti-
mate the stress distribution in the ground resulting from a loaded footing. If
the ground can be considered to be isotropic and homogeneous and elastic and
linear (Fig 7.1) (these are not insignificant assumptions), then combination of
equations of equilibrium, kinematic compatibility (definition of strain in terms
of gradients of displacements), and an elastic constitutive law (Hooke’s law)
leads to a set of partial differential equations which is capable of exact explicit
solution for certain sets of boundary conditions and which is capable of numer-
ical solution for more general boundary conditions. If a particular problem can
be approximated by an idealised problem for which the boundary conditions
match those of a standard elastic solution then the stress state and deformation
pattern can be directly stated.

A particular advantage of assuming linear elastic soil response is that stress
resultants deduced as effects of different applied loadings can be superimposed.
A particularly useful building block for geotechnical problems in the present
context is the stress state produced by a vertical point load P acting at the
surface of a semi-infinite elastic half space (Fig 7.2): this is the Boussinesq
problem. The resulting stresses, referred to cylindrical coordinates, are

σz =
3Pz3

2πR5
(7.1)

σr = − P

2πR2

[
−3r2z

R3
+

(1− 2ν)R
R + z

]
(7.2)

σθ = − (1− 2ν)P
2πR2

[
z

R
− R

R + z

]
(7.3)

τrz =
3Prz2

2πR5
(7.4)

where R =
√

r2 + z2 as shown in Fig 7.2 and ν is Poisson’s ratio.
Any other vertical surface loading can be considered as a series of vertical

pressures acting on infinitesimal areas (in other words, a series of equivalent
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Figure 7.3: Line load on surface of elastic half-space

point loads) and the combined effect can be obtained by integration. Exact
closed form integration is possible for certain convenient regular geometries of
the loaded area; numerical integration is required for more irregular geometries.

Some convenient building block results are given here. For a line load of
intensity p per unit length on the surface of the infinite half space (Fig 7.3) the
resulting stress field is deduced from integration of the stress resultants for the
point load and is radial from the line of application of the load1. The major
principal stress is

σ1 = σr =
2pz

πr2
(7.5)

The minor principal stress is
σ3 = σθ = 0 (7.6)

The intermediate principal stress in the direction parallel to the applied load is

σ2 = σy = ν
2pz

πr2
(7.7)

1Note the coordinate system defined in Fig 7.3.
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Figure 7.4: (a) Uniform strip load; (b) contours of maximum shear stress; (c)
vertical and in-plane horizontal stresses beneath centre-line

The line load can then be integrated to give the stresses beneath a uniformly
loaded strip (Fig 7.4) with load of intensity ζ per unit area. These are most
conveniently defined in terms of auxiliary angles shown in Fig 7.4a. Referred to
rectangular Cartesian axes they are

σz =
ζ

π
[α + sin α cos(α + 2δ)] (7.8)

σx =
ζ

π
[α− sinα cos(α + 2δ)] (7.9)

σy = 2να
ζ

π
(7.10)

τxz =
ζ

π
sin α sin(α + 2δ) (7.11)
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The major and minor principal stresses are given by

σ1 =
ζ

π
[α + sin α] (7.12)

σ3 =
ζ

π
[α− sin α] (7.13)

Loci of constant principal stress and of maximum shear stress (dependent only
on α) are circles passing through the edges of the loaded area (Fig 7.4b). The
greatest value of maximum shear stress, equal to ζ/π, occurs for α = π/2, thus
tracing a semicircle through the ends of the loaded area (Fig 7.4b). The vertical
and horizontal in-plane stresses on the centreline of the strip are shown in Fig
7.4c.

Under conditions of axial symmetry, the stresses for the point load can be
integrated to give the stresses on the centreline of a ring loading and thence
integrated again to give the stresses on the centreline under a uniformly loaded
circular area of radius a (Fig 7.5) with intensity of loading ζ per unit area. The
stress resultants in cylindrical coordinates are

σz = ζ

{
1−

[
1 +

(a

z

)2
]− 3

2
}

(7.14)

σr = σθ =
ζ

2

{
(1 + 2ν)− 2 (1 + ν)

[
1 +

(a

z

)2
]− 1

2

+
[
1 +

(a

z

)2
]− 3

2
}

(7.15)

The variations of these vertical and horizontal (radial) stresses on the centreline
of the loaded area are shown in Fig 7.5b.



314 7. Theoretical modelling

As the problem being analysed becomes more complicated so the calculations
of the stresses and strains become more intricate. Fortunately, a comprehensive
compendium of elastic solutions for problems of relevance in geotechnical engi-
neering has been produced by Poulos and Davis (1974), scouring the literature
for solutions usually obtained by numerical integration of the equations and
presented in the form of tabulated results. If the elastic material description
is thought to be plausible and if the boundary conditions can be made to fit
a standard form then the solution for the distribution of stresses and displace-
ments is immediately available and no further numerical analysis is required. A
huge computational economy is possible. Results are available for finite layers,
multiple layers, horizontal surface loads, internal loads within the soil mass,
rigid and flexible loaded areas of different shapes, etc.

It is of interest to note, as might be expected from the dimensional analysis
of section §5.2.5, that the stiffness of the material plays no part in the stress
distributions for a homogeneous linear elastic material that have been presented
here. Further, for a line or strip loading, which are both plane strain loadings,
the value of Poisson’s ratio has no influence on the stresses in the plane per-
pendicular to the long direction of the load and influences only the out-of-plane
stress. For the circular loaded area the value of Poisson’s ratio does not affect
the vertical stress. The variation of vertical stress reveals the combination of
vertical equilibrium with load spreading beneath the loaded area: the stress
spreads out more rapidly beneath the circular load than beneath the strip load.
Poisson’s ratio controls the lateral push generated by the vertical load. Use of
an elastic analysis to estimate vertical stresses as part of an empirical procedure
for calculation of settlement (§1.2.2, §1.2.3) has a certain logic: these stresses
are not affected by the value of Poisson’s ratio. We can expect the details of
constitutive modelling (for example, the occurrence of plasticity) to have a much
greater effect on the lateral stresses.

7.3 Plastic failure analysis

At the other extreme from the elastic model we look at some of the calculations
that can be made using a perfectly plastic material model (Fig 7.6). It does not
matter whether the material is rigid before it reaches the condition of perfect
plasticity or whether it behaves elastically: if we imagine that our geotechnical
system is in the process of failing then the strains that will be occurring are
sufficiently large to dwarf any prefailure elastic strains. The independence of
plastic collapse loads both from any elastic properties and from any particular
state of initial stress is thus intuitively correct - and it can also be proved
theoretically (see, for example, Calladine, 1985).

All the examples considered here are plane strain problems. In all cases it
will be assumed that the out-of-plane normal stress is the intermediate principal
stress so that limiting stress states are controlled entirely by the in-plane major
and minor principal stresses.
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Figure 7.6: (a) Rigid-perfectly plastic stress-strain response; (b) elastic-perfectly
plastic stress-strain response

7.3.1 Bound theorems

Our exploration of plastic collapse loads of geotechnical systems is aided by the
two bound theorems of plasticity which again are intuitively correct but can be
proved subject to the condition that the plastic material obeys an associated
flow rule—so that strain increments are always aligned in the direction of the
outward normal to the yield surface at the current stress state (Calladine, 1985).

Collapse is concerned with deformations continuing indefinitely in order to
form a failure mechanism. Our search for appropriate failure mechanisms—
combining information about kinematics with the yield criterion for the soil—
endeavours to discover the mechanism that produces the lowest collapse load.
The upper bound theorem says that the soil will always be cleverer than we
are in spotting the easiest mechanism by which to fail so that our estimates of
collapse loads made by studying mechanisms of failure will in general be unsafe.

Elements of soil within a geotechnical system may yield—which, for the
perfectly plastic materials considered in this section, means fail—without the
entire system failing. As further loads are applied the stresses must redistribute
somewhat from their elastic pattern in order to make best use of the available
strength of the material. The lower bound theorem says that any system of in-
ternal stresses which is in equilibrium with the applied loads and which nowhere
violates the yield condition for the soil will lead to a lower bound estimate of
the collapse load for the system. The soil will always be cleverer than we are in
finding ways in which to redistribute the stresses. Estimates of collapse loads
obtained by seeking admissible internal stress fields will be safe.

7.3.2 Structural example

The plastic analysis of steel structures makes use of these bound theorems to
home in on more or less exact estimates of collapse loads. For simple structures
exact results can usually be obtained with coincident upper and lower bound
values—admissible systems of internal moments corresponding to kinematically
acceptable mechanisms of collapse. For more complicated structures we may
well have to make do with a gap between our best upper and lower bounds.

For moment collapse of steel beams the yield criterion is one-dimensional
(Fig 7.7): the moment cannot have a magnitude greater than Mp, the full
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Figure 7.7: Yield criterion for steel beam in bending and associated plastic
rotations

plastic moment of the beam:

−Mp ≤ M ≤ +Mp (7.16)

and the plastic deformations are associated with the plastic moments (Fig 7.7)
in the sense that if M = +Mp then the plastic rotations θ must be positive and
if M = −Mp then the plastic rotations θ must be negative (Fig 7.7). This is
usually so obviously necessary that we do not bother to check that it is so for
any assumed mechanism.

Consider a beam of length ` built in at both ends and subjected to a uni-
formly distributed total load W (Fig 7.8). Collapse occurs with hinges at the
centre and at the two ends (yield first occurs at the ends). Sketching the dis-
tribution of moments (Fig 7.8b) gives a lower bound estimate of the collapse
load:

W = 16
Mp

`
(7.17)

(The free moment diagram indicates the bending moments in the beam under
its actual loading but with the end fixities released, the nett moments are the
difference between these free moments and the moments imposed by the end
constraints.) Studying the mechanism of collapse, we equate the work done by
the descending load and the work absorbed by plastic rotation in the hinges
(Fig 7.8c) and obtain the same result. We conclude that we have in fact found
the exact collapse load for the beam.

Next consider a beam of length ` built in at one end and simply supported
at the other end and again subjected to a uniformly distributed total load W
(Fig 7.9). We might guess that this would fail with the same mechanism (Fig
7.9c), with a central hinge. Consideration of the work balance then gives an
upper bound to the collapse load:

W = 12
Mp

`
(7.18)
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Figure 7.8: (a) Beam built in at both ends; (b) internal moments at collapse;
(c) mechanism of collapse
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Figure 7.9: (a) Beam built in at one end; (b) statically admissible distribution
of internal moments; (c) collapse mechanism with central hinge; (d) most crit-
ical collapse mechanism and corresponding distribution of internal moments at
collapse
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Figure 7.10: Mohr’s circle of stress and pole construction

A simple statically admissible distribution of internal moments with the root
moment equal to Mp and to the maximum free moment in the beam W`/8 (Fig
7.9b) gives a lower bound but certainly safe estimate of the collapse load:

W = 8
Mp

`
(7.19)

We are left with a rather wide gap between the upper and lower bounds on the
collapse load, but the lower bound is indeed safe.

In fact, if we study the general class of mechanism with one hinge somewhere
along the beam and optimise this mechanism to find the lowest upper bound
(Fig 7.9d), then we find that this lowest collapse load occurs when the hinge is
at (

√
2− 1)` = 0.41` from the simply supported end and:

W = 2
(
3 + 2

√
2
) Mp

`
= 11.66

Mp

`
(7.20)

We can find a corresponding statically admissible system of internal moments
(Fig 7.9d) and once again obtain coincident upper and lower bounds for the
collapse load for which we now deduce that we have an exact value.

7.3.3 Continuum problems—Mohr’s circle

For continuum problems we replace the limiting moment in a structural element
by a limiting shear stress in a continuum element. We replace the plastic hinge
in a structural element by a sliding surface in a continuum element. We may
expect that it will be more difficult to find exactly matching upper and lower
bounds except for the simplest of systems.

Many of the plastic stress fields for two-dimensional problems can be most
readily explored with reference to the geometry of Mohr’s circle of stress. The
pole construction is particularly helpful (Fig 7.10). Mohr’s circle shows all the
combinations of shear stress and normal stress for planes having different orien-
tations through a particular point within the material. Suppose that we know
the stress state σ, τ on one plane which makes an angle θ with the horizontal.
We locate this stress point on the Mohr circle and draw a line through this point
making an angle θ with the horizontal. The point where this line intersects the
circle again is called the pole P . We can find the stresses on any other plane by



7.3. Plastic failure analysis 319

τ

+cu

-cu

σ

strain increments normal to yield locus

Figure 7.11: Cohesive soil: strength independent of stress level; normality of
plastic strain increments

drawing a line through P parallel to that plane. In particular we can discover
the orientations of the principal planes by drawing lines from P to the points
of intersection of the Mohr circle with the normal stress axis (Fig 7.10).

Note that in this chapter we will take compression stresses as positive, fol-
lowing the usual soil mechanics convention. With compression positive we have
to take counter-clockwise shear stresses as positive in plotting and interpreting
Mohr’s circles.

7.3.4 Bearing capacity of cohesive soil

A purely cohesive soil has strength independent of stress level (Fig 7.11). The
maximum diameter of any Mohr circle which represents soil which is just reach-
ing the yield/failure condition is 2cu. This material describes the undrained
failure of clay: normality implies that plastic shearing occurs without change in
volume, there is no plastic strain component linked with the normal stress σ.

Stress fields: lower bounds

In building up statically admissible stress fields we will usually start by dividing
the soil into zones of uniform stress state separated by strong stress discontinu-
ities or stress jumps. There are some expressions that we can derive to describe
the relationship between the stress conditions on each side of a discontinuity
which will be useful in helping us to develop candidate stress fields. Equilib-
rium tells us (Fig 7.12a) that the stresses on the plane of the discontinuity must
be the same on each side of the discontinuity. However, the stresses on planes
orthogonal to the discontinuity will be different on each side. We assume that
there is a limiting stress state on each side of the discontinuity so that both
Mohr circles have diameter 2cu and that they intersect at a point corresponding
to the plane of the discontinuity. We assume that the discontinuity is horizontal
(the relative orientations of the discontinuity and the Mohr circles are arbitrary
but choosing this orientation simplifies the geometry) and can therefore discover
the location of the poles of the circles for each side of the discontinuity (PA and
PB) by drawing a horizontal line through the point of intersection (Fig 7.12b).
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Figure 7.12: Cohesive soil: (a) stress discontinuity; (b) corresponding Mohr’s
circles of stress; (c) orientation of major principal stress
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Figure 7.13: Bearing capacity of cohesive soil: single discontinuity

If the shear stress mobilised on the discontinuity is τd then we can define an
angle χ (Fig 7.12b):

sin χ =
τd

cu
(7.21)

so that χ can vary between 0 and π/2 and indicates the ‘strength’ of the dis-
continuity. The jump in mean stress across the discontinuity is

∆s = sB − sA = 2cu cosχ (7.22)

Study of the geometry of the two circles (Fig 7.12b) and the orientation of the
discontinuity (Fig 7.12c) shows that the jump in direction of the major principal
stress is

∆θ =
π

2
− χ (7.23)

Let us suppose that we are trying to find the greatest value of the footing
stress σa that can be placed on the surface of soil carrying a general surcharge
σb (Fig 7.13a). Let us start by considering a very simple stress field with a
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Figure 7.14: Bearing capacity of cohesive soil: two discontinuities

single vertical discontinuity (Fig 7.13a). The major principal stress is vertical
under the footing and horizontal under the surcharge so that from (7.23) χ = 0
and the two Mohr circles touch on the normal stress axis (Fig 7.13b). Although
we can deduce the bearing capacity directly from the Mohr circles it is helpful
to build it up from consideration of the shift in centre of the Mohr circles (7.22)
and from the position of the boundary stresses, σa and σb, in relation to the
centre of each circle. Then we can write:

σa − σb = cu + ∆s + cu = cu + 2cu + cu = 4cu (7.24)

We can repeat this process using two discontinuities. It seems reasonable
to suppose that we will wish to obtain equal rotations of major principal stress
across each discontinuity and this enables us to deduce that χ = π/4 for each
discontinuity and that they should be symmetrically disposed with angle 3π/8
to the horizontal (Fig 7.14a). The estimate of bearing capacity now becomes

σa − σb = cu + 4cu cos
π

4
+ cu = 2

(
1 +

√
2
)

cu = 4.83cu (7.25)

We can repeat this for any number of stress discontinuities. The more dis-
continuities we have, the smaller the jump in direction of major principal stress
across each one and the smoother the overall stress field will become. For n dis-
continuities χ = (π/2)(n− 1)/n and this angle tends to π/2 as n increases (Fig
7.15a). The outer discontinuities make an angle π/2− χ/2 with the horizontal
and this angle tends to π/4 as n increases. The bearing capacity is given by

σa − σb = 2cu

{
1 + n cos

[
π

2
(n− 1)

n

]}
(7.26)

The bearing capacity is also clearly tending towards some asymptotic value (Fig
7.15b)—as would be expected because we are steadily improving our estimate
of the lower bound on the collapse load.

We can calculate this asymptote from study of equation (7.26) but it is
easier simply to discover what happens when the jump in stress state across each



322 7. Theoretical modelling

2χ/π

number of stress 

discontinuities

number of stress 

discontinuities

a. b.

1 6 11 16
0

0.5

1

1 6 11 16

0.75

0.80

0.85

0.90

0.95

1.00

(σa-σb)

(2+π)cu

Figure 7.15: (a) Variation of angles in stress field and (b) variation of corre-
sponding bearing capacity as number of discontinuities increases
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discontinuity becomes infinitesimally small. With χ = π/2−δϑ the infinitesimal
jump in mean stress (7.22) becomes

δs = 2cu sin δϑ ≈ 2cuδϑ (7.27)

If we have an infinite number of discontinuities making up a total rotation of
major principal stress ∆ϑ then the overall increase in mean stress is

∆s = 2cu∆ϑ (7.28)

and we have a continuous fan zone of angle ∆ϑ. Such fan zones form a basic
building block in constructing admissible stress fields for cohesive soils.

For our bearing capacity problem the total fan angle has to be ∆ϑ = π/2
(Fig 7.16) and the bearing capacity is calculated to be:

σa − σb = cu + 2cu
π

2
+ cu = (2 + π) cu = 5.14cu (7.29)
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Figure 7.17: Bearing capacity of cohesive soil: semicircular failure mechanism

Mechanisms: upper bounds

We have optimised our class of lower bound equilibrium stress fields2. Next we
should approach the problem from the other end and look for possible collapse
mechanisms. This upper bound approach requires us to look at the balance
of work done by moving loads and the energy absorbed by the deforming soil.
Our background knowledge of the use of slip circles in analysis of geotechnical
collapse (for example, in studying the stability of slopes) suggests that we might
start by investigating the possibility of using circular failure surfaces for this
bearing capacity problem too. Circular mechanisms are certainly kinematically
compatible, since relative movement between adjacent blocks occurs with no
separation or volume change.

The simplest mechanism will be one that includes a semicircular rigidly
sliding block beneath the loaded area (Fig 7.17). If this block is given a small
rotation ω then the work balance, matching the work done by the descending
load σa with the work absorbed in sliding on the interface, and the work done
in lifting the surcharge stress σb, is:

σaB

(
Bω

2

)
= cuπB2ω + σbB

(
Bω

2

)
(7.30)

giving
σa − σb = 2πcu (7.31)

In fact we can improve this upper bound on the failure load by considering
a more general circular failure mechanism in which the angle subtended by the
failing block at the centre of the circle is 2β (Fig 7.18a). The work equation
now becomes:

(σa − σb) B2

2
ω = cu2β

(
B

sin β

)2

ω (7.32)

2Though we cannot be certain that there are no other classes of possible stress fields that
we should investigate.
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Figure 7.18: Bearing capacity of cohesive soil: (a) circular arc failure mechanism;
(b) variation of bearing capacity with angle β

or
σa − σb =

4cuβ

sin2 β
(7.33)

We can now vary β and find the value of β which minimises the value of
(σa − σb) /cu. The variation of (σa − σb) /cu with β is shown in Fig 7.18b.
The minimum value occurs when:

tan β = 2β (7.34)

which has a solution β ≈ 1.16c = 66.8◦ and corresponding value σa − σb =
5.52cu.

As an aside, this approach using circular mechanisms can be applied to the
estimation of the bearing capacity of a soil with undrained strength which varies
linearly with depth from a value co at the surface (Fig 7.19a):

cu = co(1 + kz) (7.35)

For a loaded area of width B, the bearing capacity is:

(σa − σb)
co

=
4

sin2 β
[β + kB (1− β cot β)] (7.36)

This can be minimised (numerically) to find a dependence of (σa − σb) /co on
kB as shown in Fig 7.19b. The variation of the depth of the failure mechanism
is shown in Fig 7.19c.

An alternative class of failure mechanisms makes use of rigid blocks sliding
on planar failure surfaces. The mechanism may look unrealistic—it is clear that
it will not be possible for large displacements to occur without problems at the
corners—but for infinitesimal movements there can be no objection. Again,
kinematic compatibility is ensured if sliding occurs between the blocks with no
developing separation. The first mechanism, with two sliding blocks, is shown in
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Figure 7.20: Bearing capacity of cohesive soil: (a) mechanism with two sliding
blocks; (b) corresponding displacement diagram (a and p indicate displacements
of blocks A and P respectively relative to origin 0)

Fig 7.20a. We will adopt the simple initial assumption that the blocks are both
45◦ triangles, though we could evidently check that this geometry did indeed
give us the lowest upper bound.

The energy balance requires us to consider relative displacements on any
sliding surface: we can construct a displacement diagram for the infinitesimal
displacements as shown in Fig 7.20b. The ‘active’ block A can only move down
in a direction at π/4 to the horizontal and the ‘passive’ block P must move up
in a direction at π/4 to the horizontal. The interface between the two blocks
is vertical so that relative displacements must occur in a vertical direction.
The loaded area of width BA moves down by an amount given by the vertical
component of displacement δvA of block A, and the surcharged area of width
BP moves up by an amount given by the vertical component of displacement
δvP of block P . In general, with uniform cohesion throughout the soil, the
energy balance requires that

σaBAδvA − σbBP δvP =
n∑

i=1

cu∆`iδvi (7.37)

where the mechanism consists of n interfaces of lengths ∆`i between rigid blocks
displacing relatively by δvi. We can conveniently tabulate the contributions to
this energy balance (Table 7.1): the footing width is B(= BA = BP ) and the
vertical component of footing displacement is δv. The energy balance then gives:

(σa − σb)Bδv = 6cuBδv (7.38)

or
σa − σb = 6cu (7.39)

A mechanism involving three sliding blocks is shown in Fig 7.21a. These
blocks have been chosen with equal angles of π/3 but again these angles could
be optimised to produce the lowest estimate of the collapse load for such a three



Table 7.1: Bearing capacity: two sliding blocks (Fig 7.20)

sliding relative
sliding length displacement energy
surface ∆`i δvi dissipated

BC B
√

2 δv

√
2 2cuBδv

DC B 2δv 2cuBδv

CE B
√

2 δv

√
2 2cuBδv

Total energy dissipated 6cuBδv
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Figure 7.21: Bearing capacity of cohesive soil: (a) mechanism with three sliding
blocks; (b) corresponding displacement diagram (a, i and p indicate displace-
ments of blocks A, I and P respectively relative to origin 0)
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Table 7.2: Bearing capacity: three sliding blocks (Fig 7.21)

sliding relative
sliding length displacement energy
surface ∆`i δvi dissipated

BC B 2δv/
√

3 2cuBδv/
√

3
DC B 2δv/

√
3 2cuBδv/

√
3

CE B 2δv/
√

3 2cuBδv/
√

3
DE B 2δv/

√
3 2cuBδv/

√
3

EF B 2δv/
√

3 2cuBδv/
√

3
Total energy dissipated 10cuBδv/

√
3
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Figure 7.22: Bearing capacity of cohesive soil: (a) mechanism with large number
of sliding blocks; (b) corresponding displacement diagram

block mechanism. The displacement diagram is shown in Fig 7.21b. The energy
absorbed in the sliding between the blocks is tabulated in Table 7.2. The energy
balance then gives:

σa − σb =
(
10/

√
3
)

cu = 5.77cu (7.40)

While this process can of course be repeated for increasing numbers of slid-
ing blocks disposed in optimised orientations it is easier to jump directly to
a large number of blocks sliding as shown in Fig 7.22. We imagine large 45◦

blocks—an ‘active’ block A, and a ‘passive’ block P—at each end, sliding down
and up respectively at 45◦ to the horizontal, and then a large number of in-
finitesimally thin triangular blocks, each one sliding on what has now become
an essentially circular boundary with the rigid undeforming region beyond. It
is important to note that kinematic compatibility requires that each triangu-
lar block should translate, not rotate (rotation would not be compatible with
the sliding of the active and passive blocks) and therefore that there is relative
sliding motion on each of the radial interfaces between the blocks as well as on
the circumferential boundary. The displacement diagram is shown in Fig 7.22b.
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Table 7.3: Bearing capacity: large number of sliding blocks (Fig 7.22)

sliding relative
sliding length displacement energy
surface ∆`i δvi dissipated

BC B/
√

2 δv

√
2 cuBδv

circumferential sliding Bδθ/
√

2 δv

√
2

∫ π/2

0
cuBδvdθ

radial sliding B/
√

2 δv

√
2δθ

∫ π/2

o
cuBδvdθ

EF B/
√

2 δv

√
2 cuBδv

Total energy dissipated (2 + π) cuBδv

For a footing of width B the radius of the ‘fan’ of sliding blocks is B/
√

2. For
a footing displacement with vertical component δv the sliding displacement on
the circumferential boundary is everywhere δv

√
2 while the sliding displacement

on each radial interface is δv

√
2δθ where δθ is the angle each block subtends at

the centre of the fan. The elements of the energy dissipated in the sliding blocks
are compiled in Table 7.3. Then the energy balance tells us that

σa − σb = (2 + π) cu (7.41)

and we discover (serendipitously?) that we have obtained coincident upper and
lower bounds to our estimates of the bearing capacity of the cohesive soil. This
single value must therefore be the exact and correct value of the collapse load.

There is an intuitive plausibility about this result since the final optimised
stress field has obvious resemblance to the optmised mechanism. However, in
fact, to be completely certain of the validity of this result, we should also demon-
strate that the stress field can be extended into the whole of the soil while simul-
taneously satisfying equilibrium and never violating the yield/failure condition
anywhere. In fact of course we expect that the soil will only be at failure just
on the boundary of the failing region and we may well have some freedom in
the way we complete the stress field. For this bearing capacity problem the
completion of the stress field is not particularly difficult. For other problems it
may be harder formally to demonstrate this completion.

Bearing capacity with inclined loading

Having seen how the building blocks of uniform stress state and fan zones of
infinitesimal discontinuities of stress can be used we can rapidly produce results
for some other simple configurations. Suppose that the applied loading is ap-
plied at an angle δ to the vertical so that it imposes shear stresses τa as well as
normal stresses σa (Fig 7.23a), with τa/σa = tan δ. How does the presence of
shear stresses affect the bearing capacity? To answer this question we have to
introduce an auxiliary angle ∆ in Mohr’s circle of stress (Fig 7.23b) to charac-
terise the degree of mobilisation of shear strength on the horizontal boundary
plane :

sin∆ =
τa

cu
(7.42)
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Figure 7.23: (a) Bearing capacity of cohesive soil with inclined loading; (b)
Mohr circles; (c) variation of bearing capacity with inclination of load (Note
that σa is the normal component of the applied stress)

We discover from the geometry of Mohr’s circle that the major principal stress
under the loaded area makes an angle ∆/2 to the vertical and therefore that
the angle of the fan of stress discontinuities must be π/2−∆/2. Proceeding as
before, the change in mean stress from the passive region under the surcharge to
the ‘active’ region under the footing is 2cu (π/2−∆/2) and the bearing capacity
can be found:

σa − σb = [1 + (π −∆) + cos∆]cu (7.43)

For the situation where there is no surcharge3, we can present the result in terms
of the variation of bearing capacity σa/cu with angle δ of the applied loading
(Fig 7.23c) noting that this angle δ is not the same as the angle of the major
principal stress to the vertical (Fig 7.23a, b). Fig 7.23c has been drawn with
the bearing capacity scaled with the bearing capacity for purely vertical loading
to emphasise the reduction caused by the application of shear stresses.

In the limit, when full shear strength is mobilised on the horizontal surface,
∆ = π/2, δ = cot−1(1 + π/2) = 21.25◦ and

σa =
(
1 +

π

2

)
cu (7.44)

so that the bearing capacity is exactly halved by comparison with that calculated
for purely vertical loading. We can understand the effect of spinning the wheels

3In the presence of surcharge, σb 6= 0 the value of δ depends on the value of σb.
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Figure 7.25: Bearing capacity of unsupported excavation

of a car sitting on soft ground: applying traction (shear stress) to the wheels
merely encourages bearing failure and the car sinks further in.

7.3.5 Wall retaining cohesive soil

It is simple to extend the solution for the bearing capacity of a footing on the
surface of a horizontal bed of soil to the problem of a footing on the edge of
a slope (Fig 7.24), provided the soil is weightless. If the soil has self weight
then the solution becomes somewhat more analytically challenging: Schofield
and Wroth (1968) show one result; more extensive presentation of the required
analytical armoury is given by Sokolovskii (1965). Without self weight, the
angle β of the slope (Fig 7.24) merely reduces the angle of the fan of stress
discontinuities so that the bearing capacity becomes, for a slope free of shear
stress:

σa = (2 + π − 2β) cu (7.45)

where the angle β can be positive (Fig 7.24a) or negative (Fig 7.24b). One
special case is obtained when β = −π/2 (Fig 7.24c) and the bearing capacity of
a strip load at the base of an excavation is calculated as 2 (1 + π) cu.

Another specical case is found for β = π/2 (Fig 7.25): the bearing capacity of
an unsupported excavation is 2cu. Alternatively we can deduce that the active
pressure required to support a smooth retaining wall subjected to a surcharge
σa (Fig 7.26) is σh = σa−2cu. Recall again that we are ignoring the self-weight
of the soil. However, for this particular case, because there is essentially a single
Mohr circle describing the stress state behind the wall, we can add a stress γz
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Figure 7.26: Cohesive soil: pressure on retaining wall

to horizontal and vertical stresses at all depths z below the horizontal surface
without affecting the size of the Mohr circles and hence without violating the
yield/failure criterion. Then at any depth in the limit:

σh = σa + γz ± 2cu (7.46)

where the negative sign corresponds to active collapse of the wall with vertical
stresses greater than horizontal stresses (Fig 7.26b) and the positive sign to
passive collapse (Fig 7.26c). Tension cracks can thus extend to a depth zc =
2cu/γ (assuming that the soil cannot sustain any tensile total stresses).

We can—for weightless soil—extend the analysis for the active collapse of a
rough wall on which shear stresses as well as normal stresses are developed (Fig
7.27). As before we introduce an auxiliary angle ∆ to indicate the mobilisation
of available cohesion on the vertical surface (Fig 7.27b). The major principal
stress then has angle ∆/2 to the vertical just behind the wall and we must
introduce a fan of stress discontinuities having the same angle (Fig 7.27a). If
the inclined stress on the wall makes an angle δ to the horizontal (the normal
to the wall) and has horizontal (normal) component σb, then

σb tan δ = τw = cu sin∆ (7.47)

where τw is the shear stress mobilised on the back of the wall. Then from
consideration of the stress changes through the fan and the Mohr circles for the
regions immediately behind the wall and under the surcharge σa

σb + cu cos∆ + 2cu∆/2 + cu = σa (7.48)

or
σa − σb

cu
= 1 + cos∆ + ∆ (7.49)

There is again a limiting value for ∆ = π/2

σa − σb

cu
= 1 + π/2 (7.50)

The variation of (σa − σb)/cu with ∆ = sin−1(τw/cu) is shown in (Fig 7.27c).
The angle ∆ is defined directly in terms of the shear stress τw (Fig 7.27c):
whereas the value of angle of inclination of the wall stress δ always depends on
the value of σb (7.47) (Fig 7.27b).



σa

σb

σa

a.

c.

b.

σ

τδ

δ
∆

pole
A

A
B

B

σ1A

σ1B

∆/2
sB

sA
σb/cos δ

2.0

2.2

2.4

2.6

0.0 0.2 0.4 0.6 0.8 1.0
0

0.5

1

τw/cu

τw/cu

2∆/π

(σa-σb)/cu
(σa-σb)/cu

Figure 7.27: Cohesive soil: ‘active’ pressure on rough wall



334 7. Theoretical modelling

τ

σ

φ

strain increments 

normal to yield locus

Figure 7.28: Strength of frictional soil; strain increments implied by associated
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7.3.6 Bearing capacity of frictional soil

We next consider frictional soil in which the strength depends on the stress
level (Fig 7.28). These analyses will be of relevance to drained behaviour of
soils. As a purely frictional material the soil has no strength unless there is
some non-zero mean stress holding the soil together. We will discover that,
whereas the contributions to bearing capacity of cohesive soil are essentially
additive, contributions to bearing capacity of frictional soil are multiplicative.
Because of the utter dependence of strength on stress the existence of self-weight
of the soil has a major effect on plasticity calculations. We will ignore it here.
The mathematical consequences of including self weight in such calculations are
explored by Sokolovskii (1965).

Stress fields: lower bounds

We can proceed as for the cohesive soil, looking at the consequences of intro-
ducing a strong discontinuity of stress state in the soil between two regions in
which the soil is at yield/failure. The two Mohr circles are shown in Fig 7.29a
and the stresses in the physical plane are shown in Fig 7.29b. The available
friction angle of the soil is φ; the angle of friction mobilised on the plane of
the discontinuity is φd. We introduce an auxiliary angle χ which indicates the
degree of mobilisation of the available friction on the plane of the discontinuity:

sin χ =
sin φd

sin φ
(7.51)

By constructing the poles and considering the geometry of the two Mohr
circles we find that the rotation of direction of major principal stress that occurs
across the discontinuity is π/2−χ. The ratio of the mean stresses at the centres
of the two Mohr circles can be found by calculating the shear stress on the
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Figure 7.29: Stress discontinuity in frictional soil: (a) Mohr’s circles of stress;
(b) orientation of major principal stress

discontinuity from the geometry of each circle.

sB sin φ sin (χ + φd) = sA sinφ sin (χ− φd) (7.52)

sA

sB
=

sin (χ + φd)
sin (χ− φd)

(7.53)

This ratio has the limiting value for χ = 0:

sA

sB
=

1 + sin φ

1− sin φ
(7.54)

which can of course be confirmed by the geometry of the Mohr circles. At the
other extreme, for χ = π/2− δθ,

sA − sB

sA + sB
≈ δs

2s
≈ tanφδθ (7.55)

Since we are ignoring the self-weight of the soil the only way in which any
strength can be generated in the soil is by having some finite surcharge (σb) on
the area beyond the footing (Fig 7.30a). We start by considering the possible
stress fields with one single stress discontinuity (Fig 7.30). The jump in direction
of major principal stress across the discontinuity is then π/2 and the auxiliary
angle is χ = 0. We can build up the expression for the bearing capacity as a
product of three terms:

σa

σb
=

σa

sA

sA

sP

sP

σb
= (1 + sin φ)

1 + sin φ

1− sin φ

1
1− sin φ

=
(

1 + sin φ

1− sin φ

)2

(7.56)

For φ = 30◦ this gives σa/σb = 9.
With two discontinuities (Fig 7.31) we may suppose that it will be advanta-

geous to have an equal jump in direction of major principal stress, of π/4, across
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Figure 7.32: Bearing capacity of frictional soil: fan of infinitesimal stress dis-
continuities

each of them. Then χ = π/4 and the mobilised friction on the discontinuities is
given by sin φd = sin φ/

√
2. Comparison with Fig 7.29 shows that we have to

place the discontinuities at angles 3π/8±φd/2 to the horizontal (Fig 7.31). We
can calculate the bearing capacity in stages again:

σa

σb
=

σa

sA

sA

sC

sC

sP

sP

σb
= (1 + sin φ)

[
sin(χ + φd)
sin(χ− φd)

]2 1
1− sin φ

(7.57)

For φ = 30◦ this gives σa/σb = 14.72.
Although this process could be continued, steadily adding additional discon-

tinuities, the algebra becomes somewhat tedious—and, since we may suspect
that the optimum result will be obtained with an infinite number of discontinu-
ities, we might as well go there directly. An infinite number of discontinuities
implies that χ ≈ π/2 and φd ≈ φ and hence, from Fig 7.29, that the limiting
discontinuities must make angles π/4±φ/2 with the horizontal (Fig 7.32). The
angle of the fan of discontinuities is π/2 so that integration of (7.55) gives:

∫ sP

sA

ds

s
=

∫ π/2

0

2 tan φdθ (7.58)

ln (sP /sA) = π tan φ (7.59)

whence we can calculate the bearing capacity:

σa

σb
=

σa

sA

sA

sP

sP

σb
=

1 + sin φ

1− sin φ
eπ tan φ (7.60)

For φ = 30◦ this gives σa/σb = 18.40.

Mechanisms: upper bounds

We recall that the bound theorems of plasticity require associated plastic flow,
that is that the strain increment vectors must be normal to the yield surface.



338 7. Theoretical modelling

σa σb

ω
φ

r

θ

B

Figure 7.33: Bearing capacity of frictional soil: logarithmic spiral failure mech-
anism

That imposed no problem for the cohesive soil for which undrained failure was
expected to occur at constant volume and be a purely shearing process. For
a frictional material we have a difficulty: we have seen in sections §2.6, §3.3.4,
§3.4.1 that in general soils show angles of dilation which are significantly lower
than angles of friction. However, we are constrained in seeking true upper
bounds to maintain the condition of normality for the frictional soil (Fig 7.28).
This requires us to ensure that any mechanisms that we propose generate rela-
tive motion at an angle of dilation equal to the angle of friction on any sliding
surface. However, there is another factor which in some ways eases our calcu-
lations: we noted in §3.3.4 that for an associated flow frictional material there
was no energy dissipated in frictional shearing. Thus, so long as our mecha-
nisms are kinematically admissible, we do not need to concern ourselves with
internal dissipation. In fact we have only to match the work done by our footing
load descending with the work done against the rising surcharge pressure. The
geometry of the failure mechanism is thus crucial.

A circular failure mechanism is clearly not kinematically acceptable: the
equivalent for the frictional soil is a logarithmic spiral (Fig 7.33) rotating about
the edge of the footing of width B. This has equation

r = Beθ tan φ (7.61)

where r and θ are defined in Fig 7.33. The length of the region over which the
surcharge is lifted is therefore Beπ tan φ. For a small rotation ω of the logarithmic
spiral the energy balance gives:

σaB
Bω

2
= σbBeπ tan φ Beπ tan φω

2
(7.62)

and hence
σa

σb
= e2π tan φ (7.63)

For φ = 30◦ this gives σa/σb = 37.62.
Building up mechanisms with planar sliding surfaces is a bit fiddly: we can

go directly to an infinite number of infinitesimal triangular sliding blocks (Fig
7.34) separating rigid triangular blocks with sides making angles π/4 ± φ/2 to
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Figure 7.34: Bearing capacity of frictional soil: (a) mechanism with large num-
ber of sliding blocks; (b) corresponding displacement diagram (points a and p
indicate displacements of blocks A and P relative to fixed point 0)

the horizontal as shown. The displacement diagram for this mechanism is shown
in Fig 7.34b: it can be checked that this will guarantee that every sliding surface
(recall that each triangle is translating not rotating) dilates at angle φ. From
this we can deduce that, for a vertical component of displacement of the footing
δv, the vertical component of displacement of the surcharge is

δv tan(π/4 + φ/2)e(π/2) tan φ (7.64)

Geometry of the mechanism shows that the length of the region over which the
surcharge is lifted is

B tan(π/4 + φ/2)e(π/2) tan φ (7.65)

Our energy balance then tells us that

σa

σb
= tan2(π/4 + φ/2)eπ tan φ =

1 + sin φ

1− sin φ
eπ tan φ (7.66)

and we have obtained coincident upper and lower bounds for the bearing capac-
ity, albeit using a somewhat unrealistic material model. This ratio of stresses
is the bearing capacity factor Nq for the frictional material and the expression
that we have found is precisely that generally accepted for geotechnical design
calculations (see, for example, Lancellotta, 1987).

Bearing capacity: inclined loading

If the applied footing load is inclined then we have to proceed in rather the same
way as for the cohesive soil, introducing an auxiliary angle χ to characterise the
friction mobilised by the applied load on the horizontal surface (Fig 7.35). For
a load with inclination δ:

sin χ =
sin δ

sin φ
(7.67)

and the major principal stress in the soil beneath the footing makes an angle
(χ + δ)/2 with the vertical. Approaching the problem from the lower bound
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direction, seeking admissible stress fields within the soil, we deduce that we can
modify the optimum stress field for the vertical footing load by reducing the
angle of the fan of infinitesimal discontinuities by this same amount. Then, as
usual, we can calculate:

σa

σb
=

σa

sA

sA

sP

sP

σb
= [1 + sin φ cos(χ + δ)] e(π−χ−δ) tan φ 1

1− sinφ
(7.68)

with the limiting value
σa

σb
= (1 + sin φ) e(π/2−φ) tan φ (7.69)

for δ = φ and χ = π/2. The variation of the ratio σa/σb with δ is shown in Fig
7.35c for φ = 30◦.

Retaining wall

For a smooth wall the stress field is straightforward (Fig 7.36): we have a
single Mohr circle to describe the stress state and obtain the Rankine active
and passive limiting values:

σh

σa
=

1∓ sin φ

1± sin φ
(7.70)

In fact for this simple situation, as we well know, the result can be interpreted
also for a soil with self-weight as an indicator of the limiting ratio of horizontal
and vertical stresses in the soil.
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Figure 7.37: Rough wall retaining frictional soil: single state of stress requires
inclined backfill

When the wall is rough the simple Rankine approach breaks down unless
we start modifying the geometry of the wall. A single Mohr circle can only be
sustained for heavy soil if the backfill behind the wall slopes at the same angle
as the angle of mobilised friction on the back of a vertical wall (Fig 7.37)4.
Alternatively, if the backfill is horizontal then the back of the rough wall must
be inclined. These seem excessive constraints.

For weightless soil we can find a solution for the stress on the wall by in-
troducing a fan of infinitesimal stress discontinuities separating one stress state
immediately behind the wall and another stress state beneath the surcharged
horizontal surface (Fig 7.38). We need an auxiliary angle χ to characterise the
mobilisation of friction (through a wall friction angle δ) on the vertical surface
(Fig 7.38b).

sin χ =
sin δ

sin φ
(7.71)

Then the major principal stress for the ‘active’ case, with the soil moving down
relative to the wall (this defines the direction of the shear stress), makes an
angle (χ− δ)/2 to the vertical and this becomes the required angle of the fan of

4The same angle of friction is mobilised on all planes parallel to the slope as is mobilised
on the back of the wall. All stresses are zero at the free surface, and the Mohr circle is there
degenerate.
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stress discontinuities. As usual, we can inspect the geometry of the Mohr circles
to deduce the ratio of horizontal wall pressure to surcharge stress.

σh

σa
=

σh

sB

sB

sA

sA

σa
= [1− sin φ cos(χ− δ)] e−(χ−δ) tan φ 1

1 + sin φ
(7.72)

with limiting value
σh

σa
= (1− sin φ) e−(π/2−φ) tan φ (7.73)

The variation of σh/σa with δ is shown in Fig 7.38c for φ = 30◦.
The same procedure can be followed in reverse for a rough wall being pushed

into the soil, developing passive pressures (Fig 7.39). The soil now moves up
relative to the wall. The auxiliary angle χ is defined as before, and the angle of
the fan of stress discontinuities is (χ + δ)/2. Now

σh

σa
=

σh

sB

sB

sA

sA

σa
= [1 + sin φ cos(χ + δ)] e(χ+δ) tan φ 1

1− sin φ
(7.74)

with limiting value
σh

σa
= (1 + sin φ) e(π/2+φ) tan φ (7.75)

The variation of σh/σa with δ is shown in Fig 7.39c for φ = 30◦.
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Figure 7.40: One-dimensional consolidation

7.4 One-dimensional consolidation

Consolidation is a transient process of unsteady flow in which there is coupling
between flow and volume change as the soil gradually adjusts to a new effective
stress regime. It is simplest to develop the consolidation equation for conditions
of one-dimensional flow and deformation (Fig 7.40) (§4.2.1, §4.8, §5.2.3).

The equation for vertical flow with permeability kz in the vertical direction
tells us that the velocity of flow vz is linked with gradient of pore pressure u
and the rate of change of volumetric strain (which is the same as the vertical
strain):

−∂vz

∂z
=

kz

γw

∂2u

∂z2
= −∂εz

∂t
(7.76)

where the negative sign is required because the volumetric strain for any element
of the porous medium, which for the one-dimensional situation is equal to the
vertical strain εz, is assumed to be positive in compression.

Vertical strain develops because of a change in vertical effective stress: the
assumed one-dimensional deformation means that this is the only independent
contribution to deformation that we need to consider. Let us suppose that
the soil has a one-dimensional stiffness Eoed (which could be measured in an
oedometer). Vertical strain is linked to change in vertical effective stress δσ′z
(also positive in compression) and hence, from the principle of effective stress,
to the difference between changes in vertical total stress δσz and pore pressure
δu:

δεz =
δσ′z
Eoed

=
δσz − δu

Eoed
(7.77)

Then, combining (7.76) and (7.77)

kz

γw

∂2u

∂z2
= − 1

Eoed

(
∂σz

∂t
− ∂u

∂t

)
(7.78)

We substitute
cv =

kzEoed

γw
(7.79)
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in order to define the coefficient of consolidation, cv, which has dimensions of(
length2/time

)
. The one-dimensional consolidation equation becomes

cv
∂2u

∂z2
=

∂u

∂t
− ∂σz

∂t
(7.80)

and, for the particular situation where the total stress σz remains constant
during the transient change of pore pressure,

cv
∂2u

∂z2
=

∂u

∂t
(7.81)

which is the standard diffusion equation governing any gradient driven flow.
Exactly similar equations can be written to describe transient diffusion of heat or
concentration. Solutions developed for different physical situations are therefore
directly interchangeable.

This one-dimensional consolidation equation is a linear equation which can
be made non-dimensional by writing

U = u/ui (7.82)

Z = z/H (7.83)

T =
cvt

H2
(7.84)

where ui is a reference pore pressure, H is a characteristic length, and T emerges
as a dimensionless time factor. The equation then becomes

∂2U

∂Z2
=

∂U

∂T
(7.85)

The assumptions that underpin this equation are material characteristics:
incompressible pore fluid, incompressible soil particles, flow of pore fluid gov-
erned by Darcy’s law, constant stiffness Eoed during the consolidation process;
and boundary conditions: one dimensional deformation and flow. There is also
an implicit assumption that the deformations that occur are sufficiently small
that the geometry of the soil element for which the equation is derived does
not change and the volume of this element for which flow and deformation are
considered is referred always to an initial configuration which does not move in
space. For soft clay soils, with high void ratios and low values of stiffness Eoed

the change in geometry incurred during consolidation may be substantial—but
the assumption of constant Eoed and permeability kz during the consolidation
process may also then become untenable.

Let us develop three aspects of the solution of the consolidation equation
(7.85). We will consider the simple case of a layer of soil for which the vertical
stress has been increased rapidly over an area of large lateral extent, for example
by placing fill on the ground surface (Fig 7.41). Since the fill has been placed
rapidly at normalised time T = 0, there is everywhere an initial excess pore
pressure ui above the static equilibrium value. In other words for T = 0, U = 1
for all Z. The overlying soil is assumed to be fully drained so that the problem
is driven by the reduction of U to zero at Z = 0.
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Figure 7.41: One-dimensional consolidation resulting from surcharging of soil
layer underlain by impermeable rock

a. Semi-infinite layer

Initially there is a propagation process as the sensation of the reduction of pore
pressure at the surface progressively spreads into the body of the clay. The
problem is the same as that of suddenly changing the temperature at one end
of a long conducting bar for which Carslaw and Jaeger (1959) show that the
solution can be written

U = erf
(

Z

2
√

T

)
(7.86)

where erf(x) is the error function

erf(x) =
2√
π

∫ x

0

e−t2 dt (7.87)

which is tabulated in Carslaw and Jaeger and other standard texts. The varia-
tion of this normalised pore water pressure U is shown in Fig 7.42a. The error
function is within 1% of 1 for values of the argument greater than about 2.
From (7.86) therefore we can deduce that the normalised depth Zp to which the
consolidation front has penetrated at any time T is given by

Zp ≈ 4
√

T (7.88)

It is normally more useful to describe the progress of consolidation through
the developing settlement at the surface of the consolidating soil. A reference
settlement is required: the settlement of a finite layer of characteristic thickness
H (Z = 1) in which the pore pressure falls from ui (U = 1) to zero and the
effective stress increases by a corresponding amount. The reference settlement
is then

ρo =
uiH

Eoed
(7.89)

Settlement of the layer occurs because the soil is becoming more compressed as
water is squeezed out at the surface of the layer. The rate at which water leaves
the soil is governed, through Darcy’s law, by the pore pressure gradient at the
surface of the layer. From (7.86) (and Carslaw and Jaeger) this is

ui

H

(
∂U

∂Z

)

Z=0

=
ui

H

1√
πT

(7.90)
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Figure 7.42: One-dimensional consolidation: (a) dimensionless variation of pore
pressure with depth; (b) dimensionless variation of degree of consolidation with
time

The rate of volume change of the layer, which is the rate of settlement, is then

dρ

dt
=

kz

γw

ui

H

(
∂U

∂Z

)

Z=0

=
kzui

γw

1√
πcvt

(7.91)

and the total settlement to time t, as a proportion of the settlement of this
reference layer, is

RT =
ρ

ρo
=

kzui

γw

Eoed

uiH

∫ t

0

1√
πcvt

dt =

√
4T

π
(7.92)

and this is plotted in Fig 7.42b: the degree of consolidation varies with the
square root of time5.

Evidently this analysis will be valid also for a finite clay layer, of thickness
Z = 1, provided the distance that the consolidation front has penetrated is
less than the thickness of the layer or, approximately, from (7.88) T < 1/16 or
t < H2/16cv.

b. Finite layer

The second case to be considered is in a sense the most realistic and for this
reason leads to the most complex solution. A finite layer of compressible soil
of thickness H is underlain by impermeable rock (Fig 7.41). The pore pressure
throughout the layer is initially equal to ui (U = 1 at t = T = 0). The governing
partial differential equation can be solved using standard techniques to give a

5Note that U is a local variable describing the normalised pore pressure whereas RT is a
system variable describing the overall settlement of a particular consolidating system.
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general Fourier series solution:

U =
4
π

∞∑
m=0

{
1

2m + 1
e−π2(2m+1)2 T

4 sin
[π

2
(2m + 1)Z

]}
(7.93)

where m is an integer. The degree of consolidation at time T is given by

RT = 1− 8
π2

∞∑
m=0

[
1

(2m + 1)2
e−π2(2m+1)2 T

4

]
(7.94)

This Fourier series solution considers the entire clay layer throughout the
analysis and is not really concerned with the propagation of disturbances into
the layer from a boundary. It can be used to generate a family of isochrones
showing the spatial variation of pore pressure at different times (Fig 7.43a). We
observe that it is only during an initial phase that there is an agreement with
the form of the general isochrone for the infinite layer that was shown in Fig
7.42a: but the Fourier series solution requires a very large number of terms to
be evaluated in order to produce an accurate representation of this stage of the
analysis because the series solution struggles to match the physical constraints.

As time goes by, however, the first harmonic becomes dominant (Fig 7.43a)
and it is sufficient to consider just the first term of the Fourier series

U =
4
π

sin
πZ

2
e−π2 T

4 (7.95)
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and

RT = 1− 8
π2

e−π2 T
4 (7.96)

This latter relationship is also plotted in Fig 7.43b together with the exact result
(7.94). The first harmonic approximation is obviously in error for low values of
T (it suggests that RT = 0.189 for T = 0) but is extremely close for T greater
than about 0.1.

Thus, in addition to the exact Fourier series solution, which may be cum-
bersome to use, we have found two solutions which are quite accurate within
certain ranges of the problem and which are much simpler to work with. For
small times the theory for an infinite layer is appropriate ((7.86), (7.92)); for
large times the finite layer theory with a single harmonic to describe the spatial
variation of pore pressure is sufficient ((7.95), (7.96)). We learn that we can
choose our solution technique and modelling simplification to be appropriate to
the problem under consideration.

7.4.1 Parabolic isochrones

The observation that the isochrones have a characteristic shape both in the
initial stage of consolidation (Fig 7.42a, eq (7.86)) and in the later stages (Fig
7.43a, eq (7.95)) suggests an alternative approximate approach to the analysis
of the consolidation problem which preserves the overall physics of the problem
while using simpler mathematical functions.

Let us assume that at all times the pore pressure isochrones have a common
geometric shape. We could in principal assume any shape—we have seen that
a sine function might be very suitable for the later stages of the problem—
but it turns out that the mathematics become particularly simple if we assume
that the isochrones are parabolic (Schofield and Wroth, 1968). The analysis
then proceeds in two stages—in a sense, linking the infinite layer and the single
harmonic solutions.

The pore pressure is assumed to vary parabolically with distance from the
drainage boundary (Fig 7.44). The effective stresses are given by the difference
between the applied total stress and this pore pressure so that volume change
of the clay is linked with the area above the parabolic isochrone through the
one-dimensional stiffness Eoed. The rate at which water flows out of the clay
is controlled by the slope of the parabolic isochrone at the drainage boundary.
The problem then reduces to a simple differential equation, deduced from the
geometry of the parabola, linking the rate of change of volume of the soil with
the rate at which water flows out of the soil.

There are two stages to the analysis of consolidation using parabolic iso-
chrones: after the pore pressure falls to zero at the drainage boundary the effect
of this drainage propagates steadily into the clay (stage 1: Fig 7.44a, c). The
maximum pore pressure is equal to the applied total stress. Once the drainage
‘shock’ has reached the opposite side of the clay (assumed to be an impermeable
surface—which could be a plane of symmetry in a doubly drained block of soil)
the pore pressure at this impermeable boundary steadily reduces (stage 2: Fig
7.44b, c).
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Figure 7.44: One-dimensional consolidation: parabolic isochrones: (a) stage 1:
propagation of boundary drainage into layer; (b) stage 2: fall in pore pressure
at undrained boundary; (c) isochrones for combined solution

During the first stage, the effect of the reduction of the pore pressure at the
top boundary is allowed to propagate into the clay. The parabolic isochrone is
always tangential to the line U = 1 (Fig 7.44a). We use our physical under-
standing of the overall consolidation process to derive the governing equation for
the current location λH of the consolidation front. Just as for the calculation
of the degree of consolidation for the finite layer analysis, the volume change of
the clay, and hence the settlement of the clay, result from the change in effective
stress

ρ =
Hui

Eoed

∫ λ

0

(1− U) dZ (7.97)

From the geometry of a parabola this can be directly written

ρ =
Hui

Eoed

λ

3
(7.98)

and the rate of change of settlement is therefore

dρ

dt
=

Hui

3Eoed

dλ

dt
(7.99)

From conservation of mass this rate of settlement must be equal to the rate
at which water is leaving the top surface of the clay, which is given by Darcy’s
law applied to the exit gradient of the parabolic isochrone:

dρ

dt
=

kz

γw

2ui

Hλ
(7.100)
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Equating (7.99) and (7.100), solving the differential equation, and substituting
for T we find

λ =
√

12T (7.101)

which is directly comparable with the approximate expression (7.88), and

RT =

√
4T

3
(7.102)

which is remarkably close to the exact expression (7.92) for the infinite layer:
it is also plotted in Fig 7.43b. This first stage of consolidation continues until
λ = 1 (and RT = 1/3) at T = 1/12.

Then a second regime takes over (Fig 7.44b, c). The geometry of the parabola
remains the same but now it is the pore pressure UH at the base of the layer
where the isochrone is always vertical (implying zero flow at an impermeable
boundary) that varies with time. Now the single sinusoidal harmonic of the
Fourier series solution has been replaced by a single parabolic curved isochrone.
The physical reasoning is exactly the same as before leading to the governing
equation

dUH

dT
= −3UH (7.103)

with the solution
UH = e−3(T− 1

12 ) (7.104)

and
RT = 1− 2

3
e−3(T− 1

12 ) (7.105)

This variation of degree of consolidation with time is included in Fig 7.43b.
We conclude that we can capture the essence of the consolidation problem

either by using an exact analysis and recognising the different regimes of re-
sponse, or by standing one step back from the exact equation and adopting a
simpler mathematical description which is still strongly physically based but
which looks at the physics of the whole system rather than of the individual
components: the overall physical process can then be followed rather clearly.

These stratagems that are adopted to ease the solution are of course quite
separate from the assumptions that underlie the consolidation theory itself.

7.4.2 General power law approximate solution

Parabolic isochrones were chosen by Schofield and Wroth because of their geo-
metric simplicity and because they match well the exact solution of (7.85). Let
us explore the use of a general power law variation of pore pressure:

U = 1− (1− Z

λ
)n (7.106)

or

u = ui

[
1−

(
`− z

`

)n]
(7.107)
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During the first stage of consolidation (Fig 7.44), U is scaled by a pore pressure
ui equal to the applied total stress σv and ` = λH is the distance into the clay
to which the drainage front has propagated. During the second stage (Fig 7.44),
ui is the pore pressure at the distant impermeable boundary (= UHσv) and ` is
equal to H, the full drainage path length or thickness of the clay. For all values
of n > 1 the form of (7.107) preserves the physical requirement to have zero
slope at z = ` where there is no flow and zero value at z = 0 where there is free
drainage. The parabolic isochrones are given by n = 2.

During the first stage the solution of the mass balance equation gives:

λ =

√
2n(n + 1)cvt

H2
=

√
2n(n + 1)T (7.108)

where T = cvt/H2 is the usual normalised non-dimensional time. The degree
of consolidation RT , defined as the ratio of current average effective stress to
eventual average effective stress (or the proportion of long term volume change
that has occurred in the clay) is:

RT =
1

n + 1
λ =

√
2n

n + 1
T (7.109)

These equations apply until λ = 1 and T = 1/[2n(n + 1)].
During the second stage it is the central pore pressure ui that is changing.

The solution is:
ui

σv
= UH = e−[(n+1)T−1/2n] (7.110)

and the degree of consolidation is given by:

RT = 1− n

n + 1
ui

σv
= 1− n

n + 1
e−[(n+1)T−1/2n] (7.111)

The effect of n on the rate of consolidation is shown in Fig 7.45. The higher
n the faster the flow from the sample and the faster the consolidation. Closest
agreement with the exact theoretical solution is in fact obtained with n = 1.5.

7.4.3 Pore pressures for stability analysis of embankment
on soft clay

When embankments are constructed over soft deposits of cohesive soils, it is
short term stability during construction that usually governs the rate of con-
struction: in the long term, pore pressure dissipation leads to beneficial transfer
of load to effective stress in the soft soils and hence increased strength.

Stability analyses can be performed using any one of very many commercial
packages and can be assessed in terms of either total or effective stresses. In
terms of total stresses, the current profile of undrained strength of the soil is
required: to determine the stability at different stages during construction the
extent of the transfer of embankment load to undrained strength is needed. It
might be proposed that once the vertical effective stress exceeds the preconsol-
idation pressure a further increase in vertical effective stress of ∆σ′v produces a
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Figure 7.45: Effect of exponent n on rate of consolidation

consequent increase in undrained strength of about 0.2∆σ′v (Muir Wood, 1990).
Some means of estimating the increase in vertical effective stress is therefore
required.

In terms of effective stresses, the strength properties do not change during
construction (assuming that the construction process and subsequent consoli-
dation do not produce any significant change in the fabric or cementation of
the soil): it is the current distribution of pore pressure through the soft soil
that controls the stability. Some means of estimating this distribution of pore
pressure is required. We are not concerned here with the relative merits of total
and effective stress analyses, nor with analysis of stability of embankments on
soft clays. The intention is to explore rather simple ways in which the degree of
consolidation and hence pore pressure generation and effective stress develop-
ment in a soft clay foundation can be estimated for an embankment which is not
simply wished into place in zero time but for which some drainage is expected
and indeed required to occur during construction in order to ensure stability at
all stages. The procedure that is developed could be very easily extended to
stage construction in which phases of embankment construction are separated
by rest periods in which consolidation occurs.

Up to now we have assumed that the total applied vertical stress σv is
constant during consolidation. However, if we are concerned to estimate the
pore pressures that develop under an embankment during construction then the
vertical stress must be allowed to vary. We will assume that the construction
rate is sufficiently slow that the clay is at all times in its ‘stage two’ state with
the isochrone having reached the distant impermeable boundary (Fig 7.44b).
The governing equation now becomes:

n

n + 1
dui

dt
+

ncv

H2
ui =

dσv

dt
= ξ (7.112)
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Figure 7.46: One-dimensional consolidation with increasing load

It will be assumed that the rate of increase of vertical stress ξ is maintained
constant. Since in general the final height of the embankment—and final value
of vertical stress σc—will be fixed, it will be convenient to work in terms of a
construction time tc:

tc =
σc

ξ
(7.113)

and corresponding dimensionless construction time:

Tc =
cvσc

ξH2
(7.114)

The solution for the pore pressure uc at the end of construction is then:

uc

σc
=

1
nTc

[
1− e−(n+1)Tc

]
(7.115)

with corresponding degree of consolidation

RT = 1− n

n + 1
uc

σc
(7.116)

Take as an example construction of an embankment of height 8 m of fill
with unit weight 22 kN/m3 (so that σc = 176 kPa) on a layer of soft clay of
thickness H = 8 m and with coefficient of consolidation cv = 10−7 m2/s. The
value of n is taken as 2 corresponding to parabolic isochrones. The variation
of maximum pore pressure and degree of consolidation with construction time
(shown in weeks) is shown in Fig 7.46. For any construction time less than
about 42 weeks the maximum pore pressure will be equal to the applied total
stress (the full total pressure applied by the embankment) and equation (7.112)
is no longer appropriate. The degree of consolidation at the end of construction
in this case is very low (less than 15%) and the remaining pore pressures—
which will tend to reduce stability—high. If it were estimated, from separate
slope stability analyses, that an average degree of consolidation of 70-80% (say)
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Figure 7.47: Radius of influence rm of drains in triangular array

were required in order to bring the stability to an acceptable level then this
would imply construction times of between 450 and 750 weeks which would be
unlikely to be acceptable for typical road construction projects. (Of course the
excess pore pressures will be lower and the effective stresses will be greater near
the drainage boundary at the surface of the clay so that the effective degree
of consolidation for shallow failure mechanisms will be locally higher than that
implied by Fig 7.46.)

The one-dimensional analysis is not able to accommodate the variation of
vertical stress that occurs under the side slopes of the embankment but serves
to indicate that for these values of geometric and soil parameters it is likely
that some other measures will be required in order to speed up construction.
An obvious way of doing this is to provide an array of vertical drains under the
embankment.

Assume that a triangular array of vertical drains has been installed. Each
drain is working perfectly and radial drainage to drains dominates over vertical
flow. The drains are of radius ro and the radius of influence of each drain is
rm (Fig 7.47). Typical semi-empirical rules (Leroueil et al., 1985) suggest that
for a triangular array of vertical drains at spacing s the radius of influence for
calculation of progress of consolidation should be rm ≈ 1.05s. The total vertical
stress σv on the clay is uniform over the region of influence of each drain but it is
assumed that the drainage is so effective that pore pressures in each cell around
a particular drain are not influenced by the pore pressures around neighbouring
drains.

The analysis assumes that the deformation of the soil is one-dimensional,
with only vertical movement, but that drainage occurs radially to the vertical
drains. This is obviously an approximation: more detailed analyses of related
problems are reported by Al-Tabbaa and Muir Wood (1991).

The consolidation is governed by radial flow to the drain. As in §7.4.2 we
consider a power law relationship for the spatial variation of excess pore pressure
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with radius and again consider the two stages of consolidation: in the first, the
drainage ‘shock’ propagates into the clay from the drain; in the second, the pore
pressure at the distant impermeable boundary progressively reduces. The pore
pressure is now given by:

(
u

ui

)
= 1−

(
λrm − r

λrm − ro

)n

(7.117)

where r is the radius. In the first stage ui is equal to the total stress σv and λ
increases steadily from ro/rm to 1; in the second stage ui is the pore pressure
at the impermeable boundary and λ = 1.

For this problem it is convenient to define a dimensionless time Tr:

Tr =
cvt

r2
m

(7.118)

Then, for the first stage, the solution is given with λ as linking variable:

Tr =
[(λrm/ro)− 1]2 [4(λrm/ro) + (3n + 2)]

6n(n + 1)(n + 2) (rm/ro)
2 (7.119)

and degree of consolidation

RT =
2 [(λrm/ro)− 1] [(n + 1) + (λrm/ro)]

(n + 1)(n + 2) [(rm/ro)2 − 1]
(7.120)

During the second stage, the solution is given with ui/σv as the linking
variable:

ui

σv
= exp

{
− 2(n + 1)(n + 2)Tr

[1− (ro/rm)]2 [(n + 1) + (n + 3)(rm/ro)]

}
(7.121)
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RT = 1− ui

σv

n [(n + 1) + (n + 3)(rm/ro)]
(n + 1)(n + 2) [1 + (rm/ro)]

(7.122)

The complete solution is shown in Fig 7.48 for different values of the exponent n
for rm/ro = 10.5—this value being taken as relevant to typical field applications
with drain spacing of 1 m on a triangular grid (Leroueil et al., 1985).

Whereas the use of parabolic isochrones (n = 2) has been found to be satis-
factory for the one-dimensional situation, for the radial flow situation it might
be expected that it would fail to acknowledge the variation of flow area with
radius. It is expected that the concentration of flow towards the drain will lead
to higher radial pore pressure gradients close to the drain, implying that the
ideal value of n will be greater than 2.

To choose a value of n, a full analysis of consolidation with radial flow is
in principle required. However, formulae exist from which degree of consolida-
tion around vertical drains can be calculated. Barron’s formula (Barron (1947)
quoted by Leroueil et al. (1985)) indicates that:

RT = 1− e−2Tr/F (7.123)

where F is a function of drain geometry given by:

F =
ln (rm/ro)

1− (ro/rm)2
− 1

4

[
3− (ro/rm)2

]
(7.124)

This expression for degree of consolidation RT can be used to optimise the
selection of the exponent n for our power law expression for radial pore pressure
variation. It is found that, for rm/ro = 10.5 the optimum value of n is about 6.5
(Fig 7.48). Over the range of values of rm/ro between 10 and 30 a reasonable
estimate of the value of n to make expressions (7.120) and (7.122) conform to
expression (7.123) is given by:

n ≈ 4 +
rm

4ro
(7.125)

Having chosen a value of the exponent n to give a good fit to the theoret-
ical variation of degree of consolidation under a constant applied load we can
repeat the analysis for varying applied load in just the same way as for the
one-dimensional situation. The solution—assuming that the pore pressure at
the impermeable distant boundary is always less than the applied vertical total
stress σc and that the embankment loading σc has been applied in time tc—is
given by

uc

σc
=

1
βTrc

[
1− e−αTrc

]
(7.126)

where the dimensionless construction time is

Trc =
cvtc
r2
m

(7.127)

and

α =
2(n + 1)(n + 2)

[1− (ro/rm)]2 [(n + 1) + (n + 3)(rm/ro)]
(7.128)
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Figure 7.50: Variation of embankment loading with distance from toe

β =
2n

[1− (ro/rm)]2 [(rm/ro) + 1]
(7.129)

The degree of consolidation at the end of construction is given by (7.122) with
ui and σv replaced by uc and σc respectively.

Results are shown in Fig 7.49 for the embankment loading considered previ-
ously, assuming that the coefficient of consolidation for radial flow is the same
as for vertical flow (this will usually be conservative) and assuming drain radius
ro = 0.05 m and radius of influence rm given by rm/ro = 10.5. Degrees of
consolidation between 70 and 80% can now be obtained for construction times
between 10 and 16 weeks.

Because of our assumption about local action of the drains we can now
go further and calculate spatial variation of excess pore pressures under the
sloping edge of the embankment. These pore pressures will be constant with
depth but will vary with horizontal position. The local applied embankment
load is assumed to vary linearly with distance from the toe of the embankment,
with a maximum embankment height of 8 m and side slopes 1:2.5 (Fig 7.50).
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Figure 7.51: Variation of pore pressure with position at different times during
construction
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Figure 7.52: Variation of pore pressure with time, during construction, at dif-
ferent distances from toe of embankment

For a total construction time of 16 weeks the time taken for the embankment
load to reach its maximum value will also vary linearly with position. For each
vertical section, the pore pressure uc when the local maximum load is reached
can be calculated from (7.126). As construction of the embankment continues,
no further load is applied to this section and the pore pressure decays according
to an adaptation of (7.121) which can be written:

ui

uc
= e−α(Tr−Trc) (7.130)

where the dimensionless time Trc is the time at which the local maximum load
was applied.

Fig 7.51 shows the variation of pore pressure with position for a total con-
struction time of 16 weeks. The effect of the drains in dissipating the pore
pressure towards the edge of the embankment is apparent. Clearly this will
have a beneficial effect on the stability of the embankment and it is these excess
pore pressures that could be used as input to effective stress stability analyses.
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The variation with time of the pore pressure at different locations under
the edge of the embankment is shown in Fig 7.52: the pore pressure generation
curve is the same at all locations but the pore pressures in the clay nearer the
edge of the embankment start to dissipate as soon as no further load is being
applied.

An analysis has been presented of the generation and dissipation of pore
pressures during the construction of an embankment on soft clay. A power law
relationship for spatial variation of pore pressures leads to simple expressions for
the pore pressures which could be incorporated into stability analyses to provide
charts for site control of rates of construction. The value of the exponent which
must be used in the power law for analysis of consolidation with radial flow is
higher than that required for one-dimensional flow where parabolic isochrones
have been found to be adequate.

This analysis pulls in simplifying mathematical statements, that have been
found to be useful for other consolidation problems, and provides an example of
the adaptation of an existing modelling tool for a new application. More detail
is given by Muir Wood (1999a).

7.5 Macroelement models

Numerical modelling using a full finite element or finite difference analysis may
be ultimately necessary but may be a heavy-handed way of seeking insight into
some aspects of a problem of geotechnical behaviour. Theoretical modelling may
only be possible for rather restricted problems. Macroelement modelling may
be a helpful intermediate way of introducing some realistic geotechnical non-
linearity in order, for example, to compare different constitutive possibilities
or perhaps just to provide a rapid ‘order-of-magnitude’ estimate of response
against which the results of more extensive numerical modelling—or physical
modelling—can be compared. Equally, physical or numerical modelling may
itself provide clues concerning mechanisms of system response which may sug-
gest ways in which simple macroelement models might be devised. It will be
seen that this has indeed been the route for the development of some of the
macroelement models outlined here.

7.5.1 Box model

In section §3.9 it was shown that, in selecting values of soil parameters for dif-
ferent soil models, there is usually more than one way of describing the same set
of experimental data. Here we will show consequences of that lack of uniqueness
when applied to a simple boundary value problem, especially when the stress
and strain paths followed in the boundary value problem diverge from the stress
and strain path followed in the laboratory test from which the soil parameters
were determined.

The boundary value problem that we will use will be a very simple ‘box
model’ (see also Nordal, 1983). This model consists of two square elements A
(active) and P (passive) separated by a smooth vertical interface and contained
within a rigid smooth box (Fig 7.53). The variables are therefore:
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• the vertical stress on element A: σa;

• the vertical strain for element A: εa;

• the vertical stress on element P : a surcharge σc;

• the vertical strain for element P : εc;

• the horizontal strains for element A and element P (these are equal and
opposite): εb;

• and the horizontal stress across the interface between the two elements A
and P : σb.

The imposed boundary conditions are these:

• plane strain: δεy = 0, where y is the out of plane direction;

• constant surcharge on element P : δσc = 0; and

• increasing vertical compression strain imposed on element A: δεa > 0.

Given these boundary conditions the changes in all other variables are dependent
on δεa through the constitutive response of the soil elements.

Several constitutive models were presented in Chapter 3 in terms of stiff-
ness relationships linking strain changes (the assumed independent variables)
with resulting stress changes (the assumed dependent variables). For the two
elements we can therefore define stiffness matrices DA and DP and then write
down expressions linking changes in strains and changes in stresses for our box
model:

δσa = DA11δεa + DA12δεb (7.131)

δσb = DA21δεa + DA22δεb (7.132)

δσc = DP11δεc −DP12δεb = 0 (7.133)

δσb = DP21δεc −DP22δεb (7.134)

.
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These equations can be solved to give explicit expressions for all the strain
and stress increments in terms of δεa (the independent variable) and the com-
ponents of the two stiffness matrices:

δσa

δεa
=

DA11DP12DP21 + DP11DA12DA21 −DA11DP11 (DA22 + DP22)
DP12DP21 −DP11 (DA22 + DP22)

(7.135)

δεb

δεa
=

DP11DA21

DP12DP21 −DP11 (DA22 + DP22)
(7.136)

δσb

δεa
=

DA21 (DP12DP21 −DP11DP22)
DP12DP21 −DP11 (DA22 + DP22)

(7.137)

δεc

δεa
=

DP12DA21

DP12DP21 −DP11 (DA22 + DP22)
(7.138)

For an elastic material, the values of the components of the stiffness ma-
trix, DA11 , etc., are constant and the stress and strain increments are at all
times directly proportional. Once we have an elastic-plastic description of soil
behaviour we know that the stiffness depends on the direction of the strain in-
crement (which may or may not be causing yielding) and will, for a hardening
model, vary nonlinearly with stress state.

For the present box model a simple explicit solution procedure has been
adopted because this can be readily implemented. The loading is divided into
increments of strain δεa. For each step the strain, and hence stress, increments
that would occur if the strain increments were imposed purely elastically (using
the current elastic stiffness properties) are calculated. If these new stresses lie
within the present yield locus for either element then only the elastic parts of
the components of the corresponding stiffness matrix are used in subsequent
calculations. If these new stresses lie outwith the present yield locus for either
element then the corresponding stiffness matrix contains both elastic and plastic
components. Appropriate elastic or elastic-plastic stiffness matrices are used to
calculate new stresses and strains. The process is repeated for the next step.

Such an explicit procedure works well provided the constitutive response is
not too nonlinear. Each time the stiffness is calculated using the current stresses
and used to predict future stresses the stiffnesses may be very different and the
stiffnesses may actually vary significantly over the increment. A smaller step
size can help to overcome nonlinear effects to some extent but a more subtle
numerical scheme would in some way introduce an average stiffness for the
increment.

We concentrated, in our presentation of soil models in Chapter 3, on the
axisymmetric stress and strain conditions which can be reached in a conventional
triaxial apparatus. We are now working in plane strain and need to modify our
expressions slightly. For triaxial states of stress we worked in terms of mean
stress p′ and deviator or distortional stress q. Under plane strain conditions
we can define somewhat similar stress variables which include only the stresses
in the plane of shearing: a mean stress s′ = (σ′1 + σ′3)/2 = (σ′v + σ′h)/2 and
a shear stress t = (σ′1 − σ′3)/2 = (σ′v − σ′h)/2 where σ′1 and σ′3 are major and
minor principal stresses. For the special case of our elements A and P , where
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the principal axes do not rotate, it is convenient to assign them to vertical and
horizontal stresses σ′v and σ′h respectively, allowing a richer plotting of positive
and negative values of shear stress t. The corresponding work conjugate strain
increment quantities are volumetric strain δεp = δεv + δεh and shear strain
δγ = δεv − δεh.

Given stress:strain relationships expressed in terms of mean stress, shear
stress, volumetric strain and shear strain we can convert them to relation-
ships expressed in terms of normal stresses and strains—as required for our
box model—using the transformations

(
δεp

δγ

)
=

(
1 1
1 −1

)(
δεv

δεh

)
(7.139)

(
δσ′v
δσ′h

)
=

(
1 1
1 −1

)(
δs′

δt

)
(7.140)

Then, if we have a relationship
(

δs′

δt

)
=

(
∆11 ∆12

∆21 ∆22

)(
δεp

δγ

)
(7.141)

this becomes
(

δσ′v
δσ′h

)
=

(
[∆11 + ∆12 + ∆21 + ∆22] [∆11 −∆12 + ∆21 −∆22]
[∆11 + ∆12 −∆21 −∆22] [∆11 −∆12 −∆21 + ∆22]

)(
δεv

δεh

)
(7.142)

Elastic soil model

To generate the elastic stiffness matrix—which will of course be required anyway
in order to calculate the elastic-plastic stiffness matrices for elastic-plastic soil
models—we need to introduce the plane strain constraint in order to calculate
the out of plane stress increment δσ′y. Writing Hooke’s law for the zero strain
increment in the out-of-plane direction gives

δσ′y = 2νδs′ (7.143)

In terms of normal stresses and strains, the elastic stiffness relationship is then
(

δσ′v
δσ′h

)
=

E

(1− 2ν)(1 + ν)

(
1− ν ν

ν 1− ν

)(
δεv

δεh

)
=

(
K + 4G/3 K − 2G/3
K − 2G/3 K + 4G/3

)(
δεv

δεh

)
(7.144)

so that if the soil behaviour is elastic

D11 = D22 = K + 4G/3 (7.145)

and
D12 = D21 = K − 2G/3 (7.146)
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for both active and passive elements.
In terms of mean stress and shear stress and corresponding strains the elastic

stiffness relationship is
(

δs′

δt

)
=

(
K + G/3 0

0 G

)(
δεp

δγ

)
(7.147)

demonstrating clearly the decoupling of volumetric and distortional effects.
Comparing this with the equivalent expression for axisymmetric stress and strain
quantities (

δp′

δq

)
=

(
K 0
0 3G

)(
δεp

δεq

)
(7.148)

we can propose that transformation from axial symmetry to plane strain will
require the use of a pseudo-bulk modulus K∗ = K + G/3 in place of bulk
modulus K and the use of G in place of 3G.

The relationships for the box model can then be deduced

δσa

δεa
=

2E(1− ν)
(1 + ν)(2− 4ν + ν2)

(7.149)

δεb

δεa
=

−ν(1− ν)
(2− 4ν + ν2)

(7.150)

δσb

δεa
=

νE

(1 + ν)(2− 4ν + ν2)
(7.151)

δεc

δεa
=

−ν2

(2− 4ν + ν2)
(7.152)

Elastic-perfectly plastic Mohr-Coulomb soil model

For a soil with frictional strength given by an angle of friction φ and with yielding
(failure) accompanied by plastic dilation controlled by an angle of dilation ψ it
can be shown that the limiting stress ratios in terms of our plane strain stress
variables are m for active failure and −m for passive failure

t

s′
= ±m = ± sin φ (7.153)

and the corresponding plastic strain increment ratio, which again changes sign
for active and passive conditions, is

− δεp
p

δγp
= ±m∗ = ± sin ψ (7.154)

Through these angles we can readily rewrite the elastic-plastic stiffness rela-
tionship, previously deduced for axisymmetric conditions (§3.3.4), for our plane
strain variables

(
δs′

δt

)
=

[(
K∗ 0
0 G

)
− 1

(mm∗K∗ + G)

(
mm∗K∗2 ∓m∗GK∗

∓mGK∗ G2

)](
δεp

δγ

)

(7.155)
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Elastic-hardening plastic Mohr-Coulomb soil model

Once again we can move between the equations for the axisymmetric model
(§3.4.1) and the equations for the plane strain model using angles of friction
and using expressions similar to (7.153) to link plane strain stress ratios with
angles of friction. The plasticity part of the hardening model was defined in
terms of: peak angle of friction φp; critical state angle of friction φcv; strain
parameter a.

Let us introduce the symbol ζ = t/s′ to indicate the plane strain stress ratio.
Then the peak stress ratio becomes ζp = sin φp and the critical state stress ratio
is m = sin φcv.

Writing ζy for the yield value of ζ, and assuming that the value of a deduced
from triaxial tests remains valid for plane strain conditions, the elastic-plastic
stiffness relationship becomes

(
δs′

δt

)
=




(
K∗ 0
0 G

)
−

( −K∗2ζy(m− ζy) ±GK∗(m− ζy)
∓GK∗ζy G2

)

G−K∗ζy(m− ζy) + s(ζp − ζy)2/(aζp)




(
δεp

δγ

)
(7.156)

Cam clay

For Cam clay (§3.4.2), under conditions of axial symmetry, the bulk modulus
is found to be dependent on mean stress and specific volume according to the
relationship (3.141)

K =
vp′

κ
(7.157)

For our plane strain analyses, we can write

K∗ =
vs′

κ
+

G

3
(7.158)

If we define the model through an elliptical yield locus in the s′ : t effective
stress plane with geometry defined by a soil parameter m given by m = sin φcv,
and assume associated plastic flow, then the form of the elastic-plastic stiff-
ness matrix can be deduced directly from the corresponding matrix for axial
symmetry (3.164), replacing mean stress p′ by plane strain mean stress s′ and
deviator stress q by shear stress t. For compactness it is convenient to introduce
combined variables

µ1 = 2s′ − s′o (7.159)

µ2 =
t

m2
(7.160)
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Then the stiffness relationship becomes

(
δs′

δt

)
=




(
K∗ 0
0 G

)
−

(
(µ1K

∗)2 2µ1µ2GK∗

2µ1µ2GK∗ (2µ2G)2

)

K∗µ2
1 + 4Gµ2

2 + vs′s′oµ1/(λ− κ)




(
δεp

δγ

)

(7.161)
The use of a very small strain increment becomes especially important with

Cam clay. The critical state condition acts as an attractor to which the state of
the soil tends at very large strain. However, if the strain increment is too large
it is possible (with the very simple explicit integration scheme adopted here) for
the state apparently to hop inadmissibly across the critical state. This becomes
very obvious when the results are inspected.

Model calibration

We proceed to compare the box model responses of the three elastic-plastic
models. Calibration in this exercise becomes a synthetic process of matching
the three models for a notional plane strain compression test on normally con-
solidated soil. This matching is achieved by trial and error in terms of the
relationships between shear stress t and shear strain γ and between volumetric
strain εp and shear strain γ. The results are shown in Fig 7.54.

Obviously the elastic-perfectly plastic model (MC) can only provide a very
approximate match to the steady nonlinearity of the response—matching the
final stress state and a general average initial stiffness. This model is given a
small negative angle of dilation so that the continuing plastic compression of
the soil can be somewhat incorporated. The hardening Mohr-Coulomb model
(MCH) and the Cam clay model (CC) are both able to present rather equivalent
degrees of nonlinearity. The Mohr-Coulomb model has a hyperbolic hardening
relationship. The Cam clay model has a more elaborate internal structure.
In order to give a reasonable match in the early stages of the test it proves
necessary to give the Mohr-Coulomb model a slightly higher angle of friction.
This will have subsequent consequences for the response of the box model. The
soil parameters chosen for the three models are listed in Table 7.4.

Box model performance

The comparison of the response of the three models for the simple two element
box model is shown in Fig 7.55 for an initial value of Ko = 1 and in Fig 7.56
for an initial value of Ko = 0.6. In each figure the response is shown at two
scales in order to show both the overall path to ultimate failure (Figs 7.55a, b
and 7.56a, b) and the initial stages of loading (Figs 7.55c, d and 7.56c, d).

For all three soil models the ultimate footing stress can be calculated (Figs
7.55a and 7.56a): each of the models has a frictional strength so that the limiting
stress ratio in each element is given by the passive pressure coefficient. The
theoretical value of the ultimate footing stress should be

σa

σc
= K2

p =
(

1 + sin φ

1− sin φ

)2

(7.162)
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Table 7.4: Soil parameters

Mohr-Coulomb
bulk modulus K 600 kPa
Poisson’s ratio ν 0.3
angle of shearing resistance φ 30◦

angle of dilation ψ −0.5◦

Hardening Mohr-Coulomb
bulk modulus K 1500 kPa
Poisson’s ratio ν 0.1
hyperbolic hardening parameter a 0.09
peak friction angle φp 32◦

critical state friction angle φcv 31◦

Cam clay
elastic volumetric response κ 0.05
Poisson’s ratio ν 0.15
plastic volumetric response λ 0.25
critical state friction angle φcv 30◦

initial specific volume vo 2.0

It is now clear that the penalty for choosing a slightly high value of friction
angle for the hardening Mohr-Coulomb model is that the ultimate footing stress
is correspondingly larger. For φ = 30◦ the ratio of footing stress to surcharge
stress is 9; for φ = 32◦ the ratio is 10.6. Cam clay tends more rapidly than the
hyperbolic Mohr-Coulomb model towards the limiting stress. There is of course
nothing sacrosanct about the hyperbolic hardening law.

For the isotropically normally consolidated initial conditions, both hardening
models generate plastic strains in both elements immediately footing loading
begins. Cam clay is slightly less stiff on average over the first stages of loading
but it is perhaps surprising that the difference between the two models is not
greater (Figs 7.55a, c).

For the soil with initial Ko = 0.6, the Mohr-Coulomb model has an extensive
region of elastic response for the passive element—it is assumed that yielding
does not occur until the same angle of friction is mobilised (or same stress
ratio reached) under passive conditions. The higher stiffness for this model is
much more apparent (7.56a, c). The stress paths for the active element diverge
somewhat initially before converging again at failure (Figs 7.56b, d). The stress
paths for the passive element are all identical: the vertical stress is constant and
the horizontal stress has to maintain equilibrium with the active element.

So far as the overall load settlement response of the footing is concerned
even the perfectly plastic Mohr-Coulomb model produces quite a reasonable
match with the nonlinear models in terms of average stiffness and ultimate load
(but this is of course built into the model). The two nonlinear models give very
similar internal responses (inter-element stress and element strain paths).
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This particular box model provides a simple example of the use of a readily
constructed numerical tool which can be used to compare different constitutive
models. It is particularly useful as a pedagogic tool to explore and demonstrate
differences in constitutive response. For the models considered here the frictional
strength appears to dominate the response and may distract us from being aware
of the major differences in initial stiffness.

Responses have only been shown for a couple of consolidation histories and
initial stress conditions. Evidently if the models were asked to perform in a
heavily overconsolidated initial state then they would behave very differently—
but of course it would then be appropriate to calibrate the soil parameters for
this alternative initial history. Models should be calibrated over as wide a range
as possible of the actual stress paths which will influence the overall system
response (§3.8).

7.5.2 Wall model

Inspired by displacement observations reported by Bransby and Milligan (1975)
from model retaining wall tests at single gravity in sand and from their own
observations in centrifuge tests on model diaphragm walls in clay, Bolton and
Powrie (1988) have proposed a simple macroelement that can describe the mo-
bilisation of shearing resistance adjacent to a displacing wall.

For a wall rotating about its toe, Bransby and Milligan show that the strains
behind the wall roughly follow the pattern shown in Fig 7.57a. Uniform strains
occur within the triangle delimited by the wall AB and by the line BC at slope
π/4 + ψ/2 to the horizontal, where ψ is the angle of dilation. All displacements
within the triangle ABC occur in a direction at an angle ψ to BC as shown,
with the magnitude of displacements increasing linearly with distance from BC.
Line BC is a line of zero extension along which the direct strain increment is
zero. The principal strain increments are vertical and horizontal: the Mohr
circle of strain increment is shown in Fig 7.57b. For a wall rotation of δθ the
uniform maximum shear strain increment within the triangle ABC is:

δγ = 2δθ sec ψ (7.163)

which, for typical angles of dilation below about 25◦, Bolton and Powrie suggest
can be generally approximated to

δγ ≈ 2δθ (7.164)

which of course is now independent of angle of dilation.
Bolton and Powrie then suggest that, since all the actual value of ψ does is to

define the limit of the deforming triangle ABC, we can concentrate, in develop-
ing displacement mechanisms around moving walls, on 45◦ triangles of uniform
strain, with corresponding constant volume Mohr circle of strain increment and
equal and opposite principal direct strains. For a wall rotating about its toe (the
Bransby and Milligan problem) the resulting displacement mechanism is shown
in Fig 7.58a and the corresponding Mohr circle of strain increment is shown
in Fig 7.58b. For a wall rotating about its top Bolton and Powrie suggest the
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Figure 7.57: Typical schematic strain field in sand behind stiff wall rotating
about its toe (after Bransby and Milligan, 1975; Bolton and Powrie, 1988)

combination of a rigidly rotating triangle and a shearing triangle as shown in
Fig 7.58c. These two mechanisms can be combined for a translating wall (Fig
7.58d) and kinematic compatibility can be used to deduce the mechanism of
displacements around an embedded wall rotating about its top (Fig 7.58e) or
about any other point O on its length (Fig 7.58f), where a little circulatory
mechanism of deforming triangles is required around the toe of the wall. Where
the mechanism includes triangles with two different strain levels at a particular
depth (for example, the embedded wall of Fig 7.58e), Bolton and Powrie suggest
that the larger of the two strains should be used in subsequent calculation.

Though the patterns may look complicated, all they are really doing is defin-
ing a strain at each level and on each side of the wall which will allow us to
estimate the mobilised shearing resistance and hence the coefficient of earth
pressure and hence the earth pressure itself at that level. This is essentially the
free earth support interpretation of equilibrium of the wall. Evidently such a
procedure will not work well for flexible walls in which some arching of stresses
may take place (§8.7): a procedure that works purely with earth pressure coeffi-
cients as a multiplier on directly calculated vertical stresses makes no allowance
for interaction of the soil at different levels. Equally this procedure makes no
allowance for the fact that below some depth a flexible wall may actually not
deflect at all.

As an illustration of the application of this macroelement model we will take
the simple case of an embedded rigid wall propped at its top, with excavation
proceeding progressively in front of the wall (Fig 7.59) for which the displace-
ment mechanism is shown in Fig 7.58e: for an increment of wall rotation δθ the
appropriate strain increments behind the wall (the active region) are equal to
2δθ and in front of the wall (the passive region) equal to 2δθ/(1−α) where αH
is the depth of excavation in front of the wall of overall height H. We imagine
that we have a hyperbolic relationship between shear strain and mobilised angle
of shearing resistance (Fig 7.60)

φmob = φi + (φmax − φi)
γ

b + γ
(7.165)

where φmax is the maximum value of angle of shearing resistance reached at large
strain and b is a constitutive parameter controlling the hyperbolic relationship.
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Figure 7.60: Hyperbolic link between mobilised shearing resistance and shear
strain for active and passive soil

We give ourselves the possibility of some initial anisotropic stress state (φi 6= 0,
with different horizontal and vertical stresses in the soil) which will then imply
different links between mobilisation of shearing resistance and shear strain on
each side of the wall, with negative mobilised angles being assigned to the passive
condition σh > σv (Fig 7.60b). We will ignore wall friction. (Bolton and Powrie
suggest that this can be accommodated by adjusting the limiting value of earth
pressure coefficient towards which the soil tends as strain increases, in line with
typical design practice.)

Equilibrium of the wall requires, taking moments about the prop (Fig 7.59):

Ka

Kp
=

1
2
(1− α)2(α + 2) (7.166)

where the current values of active and passive pressure coefficients Ka and
Kp depend on the currently mobilised angles of shearing resistance φmob,a and
φmob,p for the active and passive regions in the usual way:

Ka =
1− sin φmob,a

1 + sin φmob,a
; Kp =

1− sin φmob,p

1 + sin φmob,p
(7.167)
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recalling that we are defining negative values of φmob as appropriate to the
passive region in front of the wall (Fig 7.60).

Tracking of the process of wall rotation as the excavation proceeds then
requires the satisfaction of (7.166) with the correct ratio of strains in opposite
directions from the initial condition (Fig 7.58e). We know that in the limit,
the active and passive pressure coefficients will correspond to those calculated
from the available frictional strength of the soil and that the maximum depth
of excavation can be thus calculated. The required prop force can be calculated
from horizontal equilibrium of the wall in nondimensional form:

2F

γH2
= Ka −Kp(1− α)2 (7.168)

If we assume a maximum angle of shearing resistance of 30◦, then the limiting
values of Ka and Kp are 1/3 and 3 respectively and, in the limit, α = 0.714 and
we can evidently not pursue our calculation beyond this depth of excavation in
front of the wall. The dimensionless prop force (7.168) is shown as a function
of dimensionless excavation depth α and thence of wall rotation in Fig 7.61 for
different initial stress conditions (φi > 0 implying Ko < 1, φi = 0 implying Ko =
1, and φi < 0 implying Ko > 1). The units of rotation are arbitrary: rotation
is essentially scaled with the constitutive parameter b (7.165). All the curves
tend asymptotically to the ultimate state corresponding to full mobilisation of
available shearing resistance on both sides of the wall: 2F/γH2 = 0.0879. The
rotation tends to infinity as the excavation depth approaches the limiting value.
There is a more or less gentle peak in the strut force on the way. This is
linked with the different rates of mobilisation of friction on each side of the wall
and, more particularly, with the progressively diverging moment arms for the
active and passive forces. It appears to be harder to prevent movement than to
prevent collapse. Of course, it may be regarded as unrealistic to assume uniform
mobilisation of earth pressure coefficient over the full height of the wall even for
very small depths of excavation (values of α close to 0)—this is an assumption
of this particular macroelement model. Allowance for wall flexibility is beyond
the scope of this simple procedure (but is discussed within the more general
theme of soil-structure interaction in section §8.7). Alternative models for the
mobilisation of friction, (Fig 7.60), could easily be incorporated.

7.5.3 Footing model

In introducing elastic-plastic constitutive models of soil behaviour (§3.3) an anal-
ogy was drawn with the plastic collapse of a steel portal frame in which there
is an interaction between the effects of two independent components of load
(vertical and horizontal) to cause plastic collapse of the frame. While bearing
capacity of footings is primarily focussed on the limiting vertical loads that the
footings can sustain, geotechnical engineers are familiar with the introduction
of modifying factors to allow for the inclination or eccentricity of the load—in
other words to allow for the presence of horizontal and moment loading in addi-
tion to the vertical load (Fig 7.62). The need from the 1970s onward to design
offshore foundations which were liable to be subjected to horizontal and mo-
ment loads which were significant by comparison with the vertical loads led to
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Figure 7.62: Footing under combined vertical V , horizontal H and moment M
load: (a) H and M supporting; (b) H and M opposing

extensive experimental study of the response of footings under combined load-
ings and, from these experimental studies, macroelement models of foundation
response have emerged which bear many similarities to the elastic-hardening
plastic constitutive models for soil elements of section §3.4.

There have been a number of parallel studies of this problem: some of the
key contributions have been made by Nova and Montrasio (1991), Paolucci,
(1997), Gottardi, Houlsby and Butterfield (1999), Martin and Houlsby (2001)
and Cremer et al. (2001). A slightly simplified macroelement model will be
described here—it will be clear how this can be modified and extended to reflect
more detail of the characteristics of the observed mechanical response.

The four key elements of an elastic-plastic constitutive model are:

• the elastic properties;

• a yield function;

• a flow rule or plastic potential; and

• a plastic hardening rule.

As for an elemental model it is essential that the load components and corre-
sponding displacement components should be properly work-conjugate. For a
strip footing of width B there is some advantage in defining the force vector F
in a dimensionally consistent form:

F =




V
H

M/B


 (7.169)

with corresponding displacements:

u =




w
u

Bθ


 (7.170)
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Systematic probing of the interaction between V , H and M for strip and
circular (spud-can) footings on sand has defined the shape of the yield surface
(Butterfield and Gottardi, 1994). To first order, the H/Vmax, V/Vmax and
M/BVmax, V/Vmax sections are parabolic and the H/Vmax, M/BVmax section
is elliptical (Fig 7.63). However, consideration of the nature of the loading
should leave us unsurprised that this elliptical section is not symmetric about
either the H or the M/B axes: the limiting foundation capacity will depend
on whether the horizontal load and moment support or oppose each other (Fig
7.62a, b). The overall yield surface is shown in Fig 7.64 and is described by the
equation:

f (V, H, M) =
(

H

th

)2

+
(

M

Btm

)2

−2CMH

Bthtm
−

[
V

Vmax
(Vmax − V )

]2

= 0 (7.171)

where th, tm and C are material parameters which, for Butterfield and Got-
tardi’s configuration have the values 0.52, 0.35 and 0.22 respectively.

The inclusion of Vmax in (7.171) immediately suggests a route by which
‘plastic’ hardening of the foundation can be introduced. Limiting values of
each load component (V , H and M) are expected to be proportional to the
maximum vertical load that the foundation has experienced and this load can
play the role of a hardening parameter in developing the elastic-plastic model of
the foundation. Nova and Montrasio (1991) propose a simple exponential link
between Vmax and the plastic component of foundation settlement wp:

Vmax

Vult
= 1− e−λwp/Vult (7.172)

where λ controls the initial vertical plastic stiffness of the foundation and Vult

represents an ultimate limiting vertical load. There is a very obvious similarity
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between the roles played by maximum vertical load and plastic settlement in this
macroelement model and the size of the yield surface p′o and plastic volumetric
strain in the Cam clay model (§3.4.2).

In order to discover the nature of the flow rule from experimental observa-
tions it is necessary to have some model for the elastic displacements so that
elastic and plastic displacements can be properly separated:

F = Ku (7.173)

K =




Kvv 0 0
0 Khh 0
0 0 Kθθ


 (7.174)

where the off-diagonal terms are probably close to zero for surface or shallow
foundations but alternative assumptions could be readily incorporated.

While there is then general agreement that an assumption of associated flow
is not satisfactory for describing the plastic displacement increments—the ver-
tical displacements are certainly incorrect—there seems to be less agreement
about the shape of the plastic potential surfaces from which the flow rule might
be deduced. The simple parabolic sections and resulting three-dimensional sur-
face shown in Figs 7.63a, b and 7.64 imply a vertex where the yield surface
crosses the V axis whereas we expect that for vertical loads close to Vmax the
displacement will be more or less a pure settlement even in the presence of small
horizontal loads or moments. For very low values of V/Vmax normality to the
yield surface seems to imply excessive vertical heave of the footing. Cremer et
al. (2001) propose an elliptical plastic potential centred on the origin: sections
through this are included in Fig 7.63a, b.

With all these ingredients in place we can write the overall elastic-plastic
stiffness relationship for the foundation macroelement in exactly the same way
as for the elastic-plastic single element (§3.4, (3.109)):

δF =


K −

K ∂g

∂F
∂f

∂F
T
K

∂f

∂F
T
K ∂g

∂F + H


 δu = Kepδu (7.175)

where the hardening component H is given by:

H = − ∂f

∂Vmax

∂Vmax

∂u

T ∂g

∂F
(7.176)

and this macroelement can then be used to compute foundation response under
static or dynamic loads.

Once the direct similarity with constitutive models for single soil elements
is appreciated then it becomes straightforward to extend the simple model pre-
sented here to follow more closely the behaviour seen in physical models of
foundations or in numerical modelling performed using accepted soil models.
For example, it can be expected that footings will show hysteretic response in
cycles of unloading and reloading. Elements of kinematic hardening and bound-
ing surface plasticity can be introduced using exactly the same mathematical
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structures and geometrical procedures (Cremer et al., 2001). Cremer et al. also
introduce the possibility of ‘uplift’ into the foundation response so that the foun-
dation is able to lose contact with the soil over part of its width. This requires
certain additional modelling assumptions but still forms a theoretically compact
macroelement model.

This is a macroelement approach linked very strongly with the physical
modelling which has inspired the various ingredients of the elastic-plastic model.
‘It is well known that an alternative model of the foundation behaviour obtained
by the finite element method, with suitable nonlinear constitutive laws and special
contact elements, requires a high degree of modelling competence and is time
consuming. The macroelement provides a practical and efficient tool, which
may replace efficiently, in a first approach, a costly finite element soil model, and
which ensures the accurate integration of the effect of soil-structure interaction.’
(Cremer et al., 2001) It lends itself naturally to application in dynamic analysis
where the numerical intricacies of full finite element analysis become greater.
A dynamic macroelement provides the possibility of rapidly exploring effects of
different classes of input motion in addition to variation of the more obviously
geotechnical parameters (see, for example, Paolucci, 1997).

7.5.4 Extended Newmark sliding block model

Given a need to design a geotechnical system to withstand earthquake loading
one route which could be followed would be to assess the maximum possible
acceleration that could ever occur at the location of the geotechnical structure
and then ensure that the failure mode corresponding to this acceleration could
not occur. This is a sort of ultimate limit state approach to seismic design which
takes no account either of the fact that the maximum acceleration only occurs
for a very brief time within an overall earthquake acceleration time history or
of the fact that in general it is uneconomic to design any structure to show no
movement and that some movement can usually be tolerated. The amount of
movement that is to be tolerated might well be linked with an assessment of the
likely return period of the earthquake. A macroelement approach such as that
described in the previous section is ideally suited to estimation of foundation
displacements occurring as a result of the application of a real or synthetic time
history of acceleration. Newmark’s (1965) sliding block approach represents a
slightly rougher way of achieving the same goal. We will ignore vertical ground
acceleration for simplicity though the procedure can fairly easily be extended
to include vertical as well as horizontal ground input motions.

Let us suppose that we can calculate for our geotechnical system—an em-
bankment dam, slope, retaining structure, or foundation—the horizontal base
acceleration level khg whose permanent application will cause the system to
fail along a certain mechanism of failure (Fig 7.65a). The application of such
an acceleration is equivalent to the rotation and scaling of the gravitational
acceleration (Fig 7.65b, c): rotation by an angle tan−1 kh, scaling by a fac-
tor

√
1 + k2

h. If an actual acceleration history falls entirely below khg then it
is assumed that there will be no permanent displacement because the critical
mechanism is never activated. If the acceleration history contains episodes of
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Figure 7.65: (a) Geotechnical system subjected to horizontal acceleration; (c)
equivalent system with rotated and scaled gravity as computed in (b)

acceleration greater than khg then Newmark’s procedure allows us to estimate
the permanent relative displacement of the identified failure mechanism that
will ensue.

The acceleration khg represents the largest horizontal acceleration that can
be transmitted from the ground to the geotechnical structure. Consider the
acceleration time history shown in Fig 7.66a. As soon as the input acceleration
exceeds khg the structure and the ground must separate: the structure moves
with this limiting value of acceleration and a corresponding steadily increasing
velocity (Fig 7.66b). Evidently the difference in velocities of the ground and
the structure leads to the build up of a permanent relative displacement or
slip (Fig 7.66c, d). This slippage continues until the structure and ground are
able to reattach which occurs when the velocities match once more (Fig 7.66b):
until then the structure continues to slip relative to the ground even though
the ground acceleration is below the critical value khg. There are thus two
conditions for slip to occur: if ag > khg or vs > vg then as = khg where ag, as

and vg, vs are accelerations and velocities of the ground (the input motion) and
the structure respectively. It is then a simple numerical matter of integrating
the velocities to discover the different displacements of ground and structure
and hence the permanent relative movement. Note that inertia does not enter
this calculation: all necessary considerations of strength and mass have already
been used to calculate the limiting acceleration khg.

An example for a more or less realistic time history is shown in Fig 7.67
where, for sake of illustration, the geotechnical system being analysed is assumed
to be a gravity wall (Fig 7.65). The capping of the wall acceleration at khg is
evident (Fig 7.67c). The difference between the displacements of the ground
and the wall (Figs 7.67b, d) leads to relative slip (Fig 7.70).

It is assumed that this permanent movement is occurring because of relative
displacement within the soil on some definite failure mechanism. For many soils
we expect that such relative shear displacement will be linked with a falling
interface strength (Fig 7.68). If we can estimate the link between interface
strength and displacement then we can build this into the calculation of slip.
The simplest assumption will be that the failure mechanism does not change and
that the loss of strength associated with relative displacement merely reduces
the limiting acceleration, so that kh falls with increasing slip. The calculation
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Figure 7.68: Degradation of available strength of granular soils with relative
displacement (inspired by Koseki et al., 1998)

is hardly more complicated if this strength variation is included. Figs 7.69 and
7.70 show the result of using an exponential decay of strength and the increased
slip that would result.

If we are concerned about the performance of our geotechnical structure
against some allowable permanent displacement then this loss of strength with
relative displacement should in no way concern us provided that the overall
displacement is still acceptable. Zanganeh and Popescu (2002) describe the
analysis of the movement of a long submarine slope where the loss of strength
is linked with build up of pore pressure. On the other hand, Koseki et al.
(1998) show how such a procedure can be combined with an assessment of the
likelihood of development of new mechanisms, recognising that as the soil softens
the initially chosen mechanism may no longer be the most critical.

7.6 Closure

We have gathered together in this chapter a number of examples of problems
for which theoretical analysis and essentially exact response can be obtained.
If a real geotechnical problem is stripped to its essentials then it too may be
capable of similarly exact analysis: this is the key to geotechnical modelling.
Evidently we need to retain sufficient geotechnical—and boundary—realism for
our theoretical model to appear plausible but even in a severely simplified state
such an analytical result may be helpful in confirming at least the order of
magnitude of response seen in more elaborate—and more time consuming—
physical or numerical modelling.
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Figure 7.69: Time histories of (a), (c) acceleration and (b), (d) displacement
for ground (input) (a), (b) and wall (c), (d): effect of degrading strength on
dynamic response
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8

Soil-structure interaction

8.1 Introduction

It was argued in section §5.4, based on considerations of dimensional analysis,
that physical modelling of geotechnical problems that included structural ele-
ments had to take account of and attempt to preserve relative stiffnesses between
prototype and model. In this chapter we will investigate the analysis of a num-
ber of geotechnical problems which involve interaction of soil with structural
elements.

Where the structural elements are infinitely stiff (rigid) or infinitely flexible
then analysis is simplified. The interesting problems of soil-structure interaction
arise for intermediate stiffnesses and analysis quickly shows, as expected, that it
is relative stiffness of structural material and the ground that is important rather
than the absolute stiffnesses of either component. Analysis of soil-structure
interaction is most straightforward when the soil and the structure can both be
considered as elastic: the first examples considered here fall into this category.
Where soil nonlinearity or plasticity—or nonlinearity of the structural material
or of the interface between the soil and the structure—cannot be ignored it is
usually necessary to adopt some powerful numerical modelling tool. However,
some examples which are capable of theoretical analysis are also included.

8.2 Elastic analyses

8.2.1 Beam on elastic foundation

A first example of soil-structure interaction which lends itself to exact analysis
is the beam on an elastic foundation (Fig 8.1) under a central point load P
(Winterkorn and Fang, 1975). The foundation is assumed to consist of an
infinite number of independent linear Winkler springs so that at each point on
the beam the pressure resisting settlement y is directly proportional to that
settlement through a spring constant k and for a beam of width B the force per
unit length of beam resulting from the settlement is kB. The beam has flexural
rigidity EI and the origin of the position coordinate x is taken at the centre of

387
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P

x

y

Figure 8.1: Beam on elastic foundation

the beam. The equation of flexural equilibrium of the beam is then:

EI
d4y

dx4
= −kBy (8.1)

for which the general solution is

y = eµx (A1 cos µx + A2 sin µx) + e−µx (A3 cosµx + A4 sin µx) (8.2)

or alternatively

y = (B1 cosh µx + B2 sinhµx) (B3 cos µx + B4 sin µx) (8.3)

where
µ4 =

kB

4EI
(8.4)

and where A1, A2, A3, A4 or B1, B2, B3, B4 must be determined from the
boundary conditions of a particular problem.

For an extremely ‘long’ beam—we will need to assess what ‘long’ actually
means—the boundary conditions are:

• slope dy/dx = 0 at x = 0 from symmetry

• moment M = EId2y/dx2 → 0 as x →∞
• shear force F = EId3y/dx3 = P/2 at x = 0

• shear force F = EId3y/dx3 → 0 as x →∞
These give the solution in the section of the beam for positive x, the boundary
conditions for negative x are the same but with the sign of the shear force at
the origin reversed, from symmetry. The first form of the solution (8.2) is the
more convenient with the final result:

y =
Pµ

2kB
e−µx (cos µx + sin µx) (8.5)

and this profile of deflections, together with the corresponding variations of slope
(normalised with Pµ2/kB), bending moment (normalised with P/4µ) and shear
force (normalised with P/2), is plotted in Fig 8.2 as a function of the normalised
position on the beam µx.
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Figure 8.3: Beam of length 2` on elastic foundation

We note various features of this solution. The beam lifts up over part of its
length—our simple Winkler spring foundation has to be able to take tension as
well as compression. Elastic materials can sense the effects of perturbations over
great distances—the solution continues to ripple gently even for large values of
µx. However, we discover that once µx is greater than about 6 then the moment
and shear force remain below 0.5% of their peak values. We might take this
as the definition of a ‘long’ beam and observe that this definition of ‘long’ is a
function both of the stiffness properties of the beam and the stiffness properties
of the ground: relative and not absolute values are important.

For a short beam of length 2` (Fig 8.3) the boundary conditions for 0 < x < `
are:

• slope dy/dx = 0 at x = 0 from symmetry

• moment M = EId2y/dx2 = 0 at x = `

• shear force F = EId3y/dx3 = P/2 at x = 0

• shear force F = EId3y/dx3 = 0 at x = `

(Again, equivalent conditions can be produced for −` < x < 0.) The second
form of the solution (8.3) is now the more convenient with the final result:

2kB`y

P
= µ` [(cosh µx sin µx−

sinhµx cos µx) + (α cosh µx cos µx− β sinhµx sin µx)]

where

α =
cosh2 µ` + cos2 µ`

cosh µ` sinhµ` + cos µ` sin µ`
(8.6)

and

β =
sinh2 µ` + sin2 µ`

cosh µ` sinh µ` + cos µ` sin µ`
(8.7)

The quantity P/2kB` is the settlement of a load P uniformly distributed over
the total length 2` of the beam of width B and resisted by the Winkler springs
of stiffness k: 2kB`y/P thus normalises the profile of settlement of the beam
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Figure 8.4: Beam on elastic foundation: influence of relative pile stiffness µ`:
(a) normalised displacements and (b) normalised moments

with this reference settlement. If we normalise the position coordinate x us-
ing a dimensionless variable ξ = x/` then we see that µ only enters the solu-
tion in the dimensionless combination µ`. This (or perhaps more conveniently
µ4`4 = kB`4/4EI) is the controlling scaling parameter for this problem. Typ-
ical distributions of deflection and moment are shown in Fig 8.4 for different
values of µ`: low values correspond to stiff beams and soft soil; high values
correspond to soft beams and stiff soil. For an infinitely stiff beam (µ` = 0) the
load P is resisted by a uniform reaction along the length of the beam and the
central moment is then P`/4. Moments are therefore shown in normalised form
as 4M/P`.

The range of responses of the beam can be presented in terms of the maxi-
mum (central) bending moment on the one hand and the differential settlement
between the centre of the beam (under the load) and the free end on the other
(Fig 8.5). The central moment is given by:

Mmax

P`/4
=

1
µ`

sinh2 µ` + sin2 µ`

cosµ` sin µ` + sinh µ` cosh µ`
(8.8)
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Figure 8.5: Central moment and differential settlement for beam on elastic
foundation as function of relative beam stiffness µ`

For stiff beams (low values of µ`) the differential settlement is evidently negligi-
ble. However, as the beam becomes relatively more flexible the central moment
reduces—in fact it tends to zero—and the differential settlement continues to
increase1. We begin to see a key result of soil-structure interaction: there is a
trade-off between structural stiffness (which usually implies cost) and deforma-
tions. If we can, realistically, accommodate displacement of our structure then
we may be able to economise on stiffness.

The concept of coefficient of subgrade reaction is intuitively attractive but
theoretically questionable because it assumes that the foundation can behave
as a series of quite independent springs and that the behaviour of one spring
has no influence on the stiffness of an adjacent spring. We know the soil to be
continuous so that this independence of local stiffness is clearly an idealisation.
The problem confronts us directly when we try to estimate values of coefficient of
subgrade reaction from more fundamental constitutive quantities such as shear
modulus or bulk modulus. Though we might try an appeal to standard elasticity
solutions for foundations on the surface of an elastic half-space we find that those
stiffnesses are dependent on the dimensions of the foundation (for example, for
a rigid circular footing of radius a the vertical stiffness is 4Ga/(1−ν) where ν is
Poisson’s ratio) (§3.2.3, §8.2.4) (Terzaghi, 1955). However, for the special case
in which the soil is undrained (so that Poisson’s ratio ν = 0.5) and the shear
stiffness G varies linearly with depth z below the ground surface:

G = λz (8.9)

Gibson (1967) shows that the soil behaves exactly like a bed of Winkler springs
with coefficient of subgrade reaction k = 2λ.2

1Because the beam is supported on a set of completely independent springs, as the stiffness
of the beam tends to zero the differential settlement tends to infinity. The Winkler spring
foundation breaks down as a representation of real soil at this extreme.

2A beam on a Winkler foundation subjected to a uniformly distributed load settles uni-
formly independent of the relative stiffness of soil and beam.



8.2. Elastic analyses 393

z

P

y

Figure 8.6: Laterally loaded pile in elastic soil

8.2.2 Pile under lateral loading

A pile of width B in an elastic soil loaded by a lateral force P at ground surface
can be analysed in exactly the same way as the beam on an elastic foundation
if the lateral pressure is assumed to be directly proportional to the relative
movement of the pile and the soil according to a coefficient of horizontal subgrade
reaction k (Fig 8.6). The governing equation (8.1) is exactly the same, as are
the general forms of the solution (8.2), (8.3): the horizontal x coordinate for
the beam is replaced by a z coordinate measured down the pile from the ground
surface (Fig 8.6). The boundary conditions are slightly different.

For the infinitely long pile the boundary conditions are:

• moment M = EId2y/dz2 = 0 at z = 0

• moment M = EId2y/dz2 → 0 as z →∞
• shear force F = EId3y/dz3 = P at z = 0

• shear force F = EId3y/dz3 → 0 as z →∞
and the solution is

y =
2Pµ

kB
e−µz cosµz (8.10)

The variation of deflection, slope, moment and shear force down the pile are
shown in Fig 8.7. The pile develops an undulating deflected form as the load
is transferred down the pile: not much of significance happens below about
z ≈ 6/µ.

For the short pile the boundary conditions are:

• moment EId2y/dz2 = 0 at z = 0

• moment EId2y/dz2 = 0 at z = `
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Figure 8.7: Infinite laterally loaded pile in elastic soil: normalised displacement
y, slope dy/dx, moment M and shear force F

• shear force EId3y/dz3 = P at z = 0

• shear force EId3y/dz3 = 0 at z = `

and the solution is

kB`y

2P
=

µ`

sin2 µ`− sinh2 µ`
×

[
sinh2 µ` sinhµz cosµz + sin2 µ` coshµz sinµz+

(sin µ` cosµ`− sinhµ` cosh µ`) cosh µz cos µz] (8.11)

We deduce that the dimensionless parameter that controls the behaviour
of the pile is µ` or µ4`4 = kB`4/4EI which is clearly a function of relative
stiffness of pile and soil (compare §5.4.2). Typical normalised displacements
and moments for values of µ` between 1 and 4 are shown in Fig 8.8: for a stiff
pile (low values of µ`) the pile hardly bends at all but kicks backwards in order
to generate the moment to resist the applied load. For more flexible piles the
lateral deflection of the top of the pile increases and the flexure of the pile also
increases.

8.2.3 Pile under axial loading

If an elastic pile is being loaded axially in an elastic soil then an exact closed form
solution for the load distribution within the pile and the settlement distribution
down the pile can be obtained, with the aid of one simple assumption. The load
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z
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w

Figure 8.9: Axially loaded pile in elastic soil

in the pile is transmitted to the ground both by shaft friction down the length
of the pile and by end bearing at the toe of the pile. We suppose the pile to be
circular in cross-section: this is not a necessary requirement but we will have
to have some knowledge of the sectional shape (perimeter and cross-sectional
area).

At a depth z down the pile (Fig 8.9), the pile has a settlement w relative to
the soil at a great distance from the pile. The shear stress τ that develops at the
interface between the pile and the soil will be dependent on the stiffness of the
soil and on the strains that develop within the soil around the pile. Dimensional
analysis suggests that τ should depend on the shear stiffness of the soil G, w,
and the radius ro of the pile through an expression of the form:

τ

G
= k

w

ro
(8.12)

A semi-analytical approach (Fleming et al., 1985) suggests that k ≈ 1/4: mak-
ing this assumption unlocks the analytical possibilities for this problem. This
assumption is equivalent to assuming that the pile can only be ‘felt’ to a dis-
tance that is some fixed multiple of the radius of the pile. Strictly, in an elastic
material, the pile will be ‘felt’ at infinite radii. However, we are making a gross
simplification in treating the soil as a linear elastic material with a constant
shear modulus G. In fact we know that the stiffness of soils falls with strain
amplitude (eg Fig 2.38) and we can expect the actual shear stiffness to be much
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Figure 8.10: Equilibrium of section of axially loaded pile in elastic soil

lower near to the pile than it will be at great distance from the pile. The as-
sumption that the pile load transfer is only felt to a limited radius is thus a
convenient but pragmatic compromise.

We can now write down an equation for the equilibrium of a section of the
pile at which the local axial load is P (Fig 8.10):

dP

dz
= −2πroτ = −π

2
Gw (8.13)

The pile is assumed to be behaving elastically so that we can write down an
equation governing the elastic axial compression of the pile, introducing the
Young’s modulus Ep of the pile:

dw

dz
= − P

πr2
oEp

(8.14)

Hence, combining (8.13) and (8.14) we find the general governing equation for
the axially loaded pile:

d2w

dz2
=

Gw

2Epr2
o

(8.15)

which has the general solution:

w = A1eηz + A2e−ηz (8.16)

where

η =
1
ro

√
G

2Ep
(8.17)

The boundary condition which must be satisfied for all piles is:

Pz=0 = πr2
oEp

(
dw

dz

)

z=0

= Pt (8.18)

where Pt is the load applied at the top of the pile.
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If the pile is very long (and we will once again discover that ‘long’ is a
relative term) then as z → ∞, w → 0. Consequently, in (8.16), A1 = 0 and
A2 = (Pt/πro)

√
(2/EpG) so that the variation of load down the pile is:

P

Pt
= e−ηz (8.19)

If we were to introduce an effective length `100 at which the axial load in the
pile had dropped to 1% of its top value, P/Pt = 0.01, then this would imply
η`100 = ln 100, `100/ro = ln 100

√
2Ep/G. For slender piles in stiff soil very little

load reaches the base of the pile.
For example, take Ep = 25 GPa for concrete, and assume that the shear

modulus of the soil is G = 200cu, where the undrained strength cu = 200 kPa
corresponding to a firm clay, and ro = 0.25 m. Then Ep/G = 625 and for the
load to fall to 1% of the surface value `100/ro = 115 corresponding to an effective
length `100 ≈ 29 m.

However, if the pile is short, with finite length ` then we expect there to be
some load remaining at the base of the pile and we have to impose a boundary
condition which ensures compatibility of the base load and the base settlement
of the pile. For example, for z = `, the load Pb and settlement wb might be
related through the settlement characteristics of an elastic pile base (§3.2.3,
§8.2.4):

wb =
Pb (1− νb)

4rbGb
(8.20)

where νb and Gb are the elastic properties of the ground beneath the pile base of
radius rb (which may be different from ro for an under-reamed pile). This is the
standard expression for the settlement of a rigid circular plate on the surface of
an elastic material.

The complete solution of the differential equation for the pile settlement is
more cumbersome but still tractable:

A1 =
Pt

2πr2
oEpη

(ξ − 1) (1− tanh η`)
1 + ξ tanh η`

(8.21)

A2 =
Pt

2πr2
oEpη

(ξ + 1) (1 + tanh η`)
1 + ξ tanh η`

(8.22)

where

ξ =
(1− νb)πr2

oEpη

4rbGb
(8.23)

The settlement wt at the top of pile, at z = 0, which is required to estimate
overall pile stiffness, is:

wt =
Pt

πr2
oEpη

(ξ + tanh η`)
(1 + ξ tanh η`)

(8.24)

and the load variation down the pile is given by:

P

Pt
=

(ξ + 1) (1 + tanh η`) e−ηz − (ξ − 1) (1− tanh η`) eηz

2 (1 + ξ tanh η`)
(8.25)
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Figure 8.11: Axially loaded pile in elastic soil: distributions of axial load and
axial displacement

(Fleming et al. present a slightly modified version of this result which allows
for a linear variation of shear stiffness of the soil down the length of the pile.)

We note that the key parameter in the solution, η (8.17), is a function of
the ratio of the stiffnesses of the soil and the pile. In fact η always appears
in the solution in combination with a distance down the pile so that in fact
η` = (`/ro)

√
G/2Ep is the appropriate dimensionless group which controls the

overall response of a pile of length ` (compare §5.4.5). In addition we have
managed to characterise the entire performance of the pile (8.25) in terms of
dimensionless groups for load and position P/Pt and z/`, and for appropriate
combinations of material and geometric properties η` and ξ. The result is thus
of completely general applicability. Some typical results are shown in Fig 8.11.
For a short pile (low values of η`) the base of the pile takes a significant load—
and develops a correspondingly significant settlement. For a longer pile little
load reaches the base of the pile.

As an example consider a pile of length ` =25 m, and radius ro =0.3 m
made of concrete with Young’s modulus Ep =25 GPa in soil with shear stiffness
G =25MPa and Poisson’s ratio ν =0.2. The pile is not under-reamed and the
soil beneath the toe of the pile has the same elastic properties. We calculate
ξ = 14.05 and η` = 1.862, tanh η` = 0.953 and then, from (8.24), that the axial
stiffness of the pile is Pt/wt = 505 MN/m.

8.2.4 Piled raft

Piled rafts (Fig 8.12) allow the load to be spread over a relatively stiff raft but
then transferred to the ground partly by the raft contact and partly through
transfer to a group of vertical piles. They provide an example of structure-
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Figure 8.12: Piled raft

soil-structure interaction. The response of the piles and the interaction of the
piles within the group may be influenced by the presence of the raft. Exact
analysis requires three-dimensional consideration of interaction of the raft with
the ground and hence with the individual piles. However, some simplification of
the analysis is possible if we adopt a macroelement approach treating the raft
as a single unit, and replacing the piles by an elastic spring with incorporation
of elastic interaction effects deduced from numerical analysis (Randolph, 1986).

Simplification is then possible by separating and superposing the behaviour
of the raft and of the pile group (Fleming et al., 1985). Such superposition
requires that the response of all elements of the foundation system should be
behaving elastically. Let us suppose that we can define the stiffness of the pile
group kp = Pp/wp, where Pp and wp are the load carried by the pile group and
the settlement of the pile group respectively. We define a corresponding raft
stiffness kr = Pr/wr, where Pr and wr are the load carried by the raft and the
settlement of the raft. The combined statement of the interaction between pile
group and raft then becomes:

(
wp

wr

)
=

(
1/kp αpr/kr

αrp/kp 1/kr

)(
Pp

Pr

)
(8.26)

where the off-diagonal terms indicate the interaction between raft and pile
group. For elastic behaviour of all elements of the system we expect sym-
metry of the flexibility matrix from energy considerations. The factor αrp can
be related to the dimensions and spacing of the piles (the spacing controls the
raft area associated with each pile). However, Clancy and Randolph (1993)
show that for many combinations of pile group size and spacing and material
properties a value αrp ≈ 0.8 will give a reasonable estimate of interaction. This
value will be used here for simplicity. (A more detailed treatment is given by
Fleming et al. (1985).)

The concept of raft stiffness kr as a single number may appear mysterious.
Although one might expect that the overall stiffness of a raft (Pr/wr) would



8.2. Elastic analyses 401

1 2 3 4 5 6 7 8 9 10

1.0

1.1

1.2

1.3

1.4

1.5

βz

α=L/B

Figure 8.13: Raft stiffness coefficient βz as function of raft geometry for rectan-
gular rafts

depend on raft flexibility, in fact the flexibility seems to have little influence on
the ratio of total load to average settlement (Barkan, 1962). We can therefore
use the results for a rigid raft quoted by Poulos and Davis (1974). For example,
for a rectangular raft of width B and length L on the surface of elastic soil with
shear modulus G and Poisson’s ratio ν;

kr =
Pr

wr
= βz

√
BL

2G

1− ν
(8.27)

where the dependence of βz on the proportions of the rectangle, α = L/B, is
(Barkan, 1962):

βz =
π
√

α

ln γ+α
γ−α + α ln γ+1

γ−1 − 2
3

γ3−(1+α3)
α

(8.28)

where γ =
√

1 + α2. This is shown in Fig 8.13. For a rigid circular raft of radius
a:

kr =
Pr

wr
= 4a

G

1− ν
(8.29)

The stiffness of the pile group is lower than the combined stiffness of the
individual piles because of the interaction between adjacent piles (Fig 8.14,
compare Fig 1.19). Each pile in elastic soil tends to pull down the surrounding
soil in which the neighbouring piles are located. For n piles with individual pile
stiffness k, the group stiffness kp is reduced by the pile group efficiency ηw

kp =
Pp

wp
= ηwnk (8.30)

Results of numerical analysis of typical pile groups discussed by Fleming et al.
show that the pile group efficiency varies with the number of piles in a group:

ηw = n−α (8.31)
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Figure 8.14: Interaction between piles in pile group

and that the exponent α ≈ 0.5 for typical pile groups, so that

kp ≈
√

nk (8.32)

Now we have all the necessary elements to analyse the response of the piled
raft. It seems to be reasonable to propose that the settlements of pile group
and raft should be equal since the raft provides the cap and connection for the
piles. Therefore:

wp = wr = w (8.33)

and the overall stiffness of the piled raft can be obtained:

kpr =
Pp + Pr

w
=

kp + (1− 2αrp) kr

1− α2
rp

kr

kp

(8.34)

The proportion of load taken by the raft is:

Pr

Pp + Pr
=

(1− αrp) kr

kp + (1− 2αrp) kr
(8.35)

As an example, consider a raft of dimensions 15× 15 m partially supported
by a group of piles of length ` = 25 m, radius ro = 0.3 m, Ep = 25 GPa,
G = 25 MPa, ν = 0.2. The group is formed of 10 × 10 piles at a spacing of
1.5 m.

First we calculate the stiffness of individual piles. The details of the piles
are the same as those of the example considered in section 8.2.3 and hence the
stiffness is k = 505 MN/m.

The pile group contains 100 piles and hence the group stiffness is only 10% of
the possible stiffness calculated from the individual piles. Hence: kp =

√
nk =

5051 MN/m.
The raft stiffness is obtained from (8.27) with βz = 1.06 appropriate to

L/B = 1 and hence kr = 1656 MN/m.
The overall stiffness of the piled raft is then, from (8.34), kpr = 5135 MN/m

and the proportion of the load taken by the raft is, from (8.35), 8.2%. The
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Figure 8.15: Stonebridge Park flats: schematic diagram of foundation arrange-
ment (after Fleming et al., 1985)

stiffness of the raft is about 1/3 of the stiffness of the pile group so it is not
surprising that the overall stiffness is close to that of the pile group and the
proportion of the load taken by the raft is in fact rather small.

The example of the Stonebridge Park flats is presented by Fleming et al.
(1985) (Fig 8.15). This is a 16 storey building supported on a raft 43.3 m ×
20.1 m, founded on London clay on 351 bored piles, 0.45 m diameter, 13 m
long at ∼ 1.6 m centres made of concrete with Ep = 25 GPa. We analyse it
here using the slightly simplified expressions that we have gathered together to
illustrate the general performance of this type of foundation.

We first have to assess relevant stiffness properties for London clay. Fol-
lowing Fleming et al., we propose that typically the undrained strength varies
with depth according to a relationship cu = 100 + 7.2z (kPa). We might take
G/cu ≈ 200 giving G = 20 + 1.44z (MPa). Typically for London clay ν = 0.1.
In order to calculate the raft stiffness we might take as typical the shear stiffness
at a depth z = 2B/3 giving G = 39.3 MPa. Then with L/B = 2.15, βz = 1.094
and kr = 2819 MN/m.

In order to calculate the stiffness of the pile group we might take as the
typical governing stiffness of the soil, for estimation of the stiffness of shaft
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Figure 8.16: (a) Rigid body rotation; (b) bending of foundation; (c) shearing of
foundation; (d) definition of deflection ratio ∆/L

load transfer, the value of shear stiffness at a depth z = 2`/3 giving G =
32.5 MPa. For the base of the pile, we should use a value Gb calculated at depth
z = `, giving Gb = 38.7 MPa. Then for the calculation of single pile stiffness,
η` = 1.473, tanh η` = 0.9, ξ = 11.64, giving k = 412 MN/m. The pile group
stiffness is calculated from this single pile stiffness: kp = k

√
n = 412

√
351 =

7724 MN/m. (With a more detailed analysis of pile group behaviour Fleming
et al. estimate the pile group stiffness as kp = 5300 MN/m.)

Combining these separate stiffnesses, we can estimate the overall stiffness of
the piled raft to be kpr =7871 MN/m and for an overall building load of 156 MN
the settlement would be 20 mm and the raft would be predicted to take 9.3% of
the total building load. In fact measurements at Stonebridge Park showed that
the settlement was actually about 25 mm, and the raft transmitted some 23%
of the total load. The analysis is simplistic (there is also uncertainty about the
choice of average shear stiffnesses for the soil) and does assume that the piles
in the group are all behaving linearly and elastically. Back calculation using
these actual observed figures suggests that the raft and pile group stiffnesses
were nearer kr = 4051 MN/m and kp = 5953 MN/m respectively.

8.3 Serviceability calculations

Geotechnical design based on ultimate limit states provides some confidence
that a geotechnical system will not actually fail. The calculation procedures
are typically based around plasticity theories and have formed the backbone of
geotechnical design for many years. Experience has then shown that satisfac-
tory performance under working loads for standard geotechnical systems can be
guaranteed provided the safety factor or load factor (whatever these terms may
mean) is set at a sufficiently high level. However, this does not obviously pro-
vide a route by which the performance of geotechnical systems under working
conditions can actually be computed. Many of the modelling techniques that
have been presented in this book have been directed towards this end. Service-
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ability limits are usually limits on allowable displacements and the challenges
relate to the calculation of these displacements. However, whereas the opera-
tion of a complete system of structures may be limited by total displacements,
damage to individual structures is more controlled by differential movements—
most frequently differential settlements. As noted by Burland and Wroth (1975)
progress towards defining tolerable levels of differential settlement has been slow
for various reasons:

• Serviceability is very subjective and must include both the function of the
building and the potential reaction of the users.

• Buildings vary so much from one to another that it is difficult to produce
general guidelines for allowable movements.

• Buildings, including foundations, seldom perform exactly as designed be-
cause of the modelling idealisations adopted during the design process.

• There is a link between development of differential settlement and the
stage of construction: much of the eventual structural movement will have
occurred before the cladding (which is often particularly susceptible to
visible damage) is added.

There are obviously major differences between levels of displacement that lead
to concern for overall structural performance and those which produce very
visible damage to structural finishes—many of which tend to be quite brittle.

To be able to propose allowable levels of differential settlement it is necessary
to have some accepted terms for its characterisation. If a structure merely
rotates as a rigid body (Fig 8.16a) then, while it may cause other serviceability
difficulties, it should not lead to internal cracking. However, any profile of
foundation movements which leads to a ‘shearing’ of the structure (Fig 8.16b, c)
will certainly tend to exacerbate such damage. There are various ways in which
relative foundation rotation can be defined (and some will be better suited for
different applications): for the present purposes a deflection ratio, ∆/L (Fig
8.16d) (Burland and Wroth, 1975) will suffice. Then one can interpret the
limiting values quoted by IStructE et al. (1989) to give the values in Table 8.1.

Burland and Wroth suggest that a more useful indicator of likely damage
from differential settlement can be obtained by estimating the maximum tensile
strain that can develop within the structure and then comparing this against
critical tensile strains for different configurations. A deep beam of length L
and height H (Fig 8.17a) can provide an analogue of a structure. The beam
is assumed to be made of elastic material with Young’s modulus E and shear
modulus G. Tensile strains can be generated through direct tensile strain in
sagging or hogging (Fig 8.17b, c) and through diagonal tensile strain resulting
from shear (Fig 8.17d).

For such a deep beam loaded with a single central load P , analysed as a plane
stress problem with negligible out-of-plane stresses, Timoshenko and Goodier
(1970) show that the deflection ratio is:

∆
L

=
PL2

48EI

(
1 +

18EI

L2HG

)
(8.36)



Table 8.1: Limiting values of deflection ratio ∆/L (interpreted from values
quoted by IStructE et al. (1989))

structural type damage ∆/L
framed buildings structural damage 1/500-1/300
framed buildings cracking in walls 1/1000
reinforced load-bearing walls structural damage 1/300
reinforced load-bearing walls cracking 1/1000
unreinforced load-bearing walls visible cracking (sagging) 1/2500-1/1250
unreinforced load-bearing walls visible cracking (hogging) 1/5000-1/2500

L

H

a.

b.

c.

d.

Figure 8.17: (a) Building as equivalent deep beam; (b) ‘hogging’ tensile cracking;
(c) ‘sagging’ tensile cracking; (d) diagonal shear tensile cracking (after Burland
and Wroth, 1975)
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Figure 8.18: (a) Normalised deflection ratio for deep beams with neutral axis
at centre; (b) normalised deflection ratio for deep beams with neutral axis at
base; (c) tolerable differential settlements (limiting strain 0.075%) A: framed
structure; B: load-bearing walls in sagging; C: load-bearing walls in hogging
(inspired by Burland and Wroth, 1975)

where the second moment of area I = H3B/12 for a thin beam of width B ¿ H.
The second term shows the contribution of shearing to the differential settlement
of the beam.

Using the expressions that Timoshenko and Goodier give for the field of
displacements within the beam, the strain components can be deduced at any
location. The maximum direct tensile bending strain occurs at the extreme edge
of the beam under the load and is

εt =
PLH

8EI
(8.37)

The maximum diagonal tensile strain occurs at the centre of the beam at the
supports and is

εd =
PH2

32IG
(8.38)

If we have some idea about the limiting tensile strain, εlim, that the materials
of our structure can withstand then we can use these expressions to deduce the
corresponding limiting values of deflection ratio ∆/L. The ratios ∆/Lεt (solid
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lines) and ∆/Lεd (dashed lines) are shown as a function of the proportions of
the structure L/H in Fig 8.18a for E/G = 2.5 corresponding to Poisson’s ratio
ν = 0.25. It is suggested that load-bearing walls correspond to a modulus ratio
of this order whereas a framed structure will be relatively much less stiff in
shear so that a modulus ratio E/G = 12.5 (say) might be more appropriate (we
temporarily suspend our incredulity at the implied value of Poisson’s ratio and
the consequent implications for the applicability of Timoshenko and Goodier’s
analysis)—ratios ∆/Lεt and ∆/Lεd for this value are also shown in Fig 8.18a.

On the other hand Burland and Wroth suggest that load-bearing walls which
are subjected to hogging deformations as a result of foundation movement are
essentially restrained at their contact with the ground so that they are somewhat
equivalent to one half of a deep beam of depth 2H. All the expressions are
modified correspondingly, with H replaced by 2H and noting that the value of
I will also change. They suggest that such structures are very stiff in shear
and that a value E/G = 0.5 (say) will be appropriate. The corresponding
ratios ∆/Lεt and ∆/Lεd are shown in Fig 8.18b. As would be expected, load
bearing masonry is much more susceptible to damage resulting from differential
settlement than framed structures.

Typical values of the limiting strain εlim might be 0.05-0.1% for brick-
work and blockwork set in cement mortar; 0.03-0.05% for reinforced concrete
(IStructE et al., 1989). Fig 8.18c is plotted using a critical strain of 0.075% to
scale the appropriate curves from Figs 8.18a, b for three cases:

• A framed structures, with E/G = 12.5;

• B load bearing walls in sagging E/G = 0.5; and

• C load bearing walls in hogging E/G = 0.5 with the neutral axis at the
base.

From comparisons with records of building damage for many different classes of
building, Burland and Wroth conclude that a damage criterion based on limiting
tensile strain works quite satisfactorily. Further advantages of this approach are
noted by IStructE et al. (1989):

• It helps the engineer to decide whether a structure is vulnerable to cracking
and where vulnerability to cracking will be greatest.

• It can be combined with complex structural analysis techniques.

• It makes it clear that damage can be controlled by concentrating attention
on the modes of deformation of the structure.

• The value of εlim can be chosen to reflect the actual cracking proclivity
of the materials that are being used—use of soft bricks and lean mortar
(increasing εlim) reduces the likelihood of cracking.

Evidently the onset of cracking does not necessarily indicate the limit of ser-
viceability of the structure or building.
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Figure 8.19: (a) Profile of settlement beneath flexible uniformly loaded circular
foundation; (b) contact stress distribution beneath rigid circular foundation

8.4 Relative foundation stiffness

If a uniform pressure ζ is applied over a circular area of radius a at the surface of
an elastic half-space of shear modulus G and Poisson’s ratio ν, then the surface
settlement ρ under the footing, normalised as ρG/(1 − ν)ζa varies with radius
as shown in Fig 8.19a (adapted from Poulos and Davis, 1974). If a rigid circular
foundation of radius a is pushed into the surface of an elastic half-space the
settlement under the foundation is of course uniform but the vertical contact
stress σz varies with radius r:

σz

ζav
=

1
2
√

1− (r/a)2
(8.39)

where ζav is the average load applied to the foundation. This contact stress
variation is shown in Fig 8.19b. Evidently there is a singularity at the edge
of the footing where the contact stress is theoretically infinite. The normalised
settlement ρG/ζava of the rigid circular foundation is (1−ν)π/4 (§3.2.3, §8.2.4).

In presenting the results of the analysis of the beam on an elastic foundation
consisting of a bed of independent springs (section §8.2.1) we observed (Fig
8.5) that relative stiffness of beam and foundation had a dramatic effect on the
maximum bending moment in the beam and on the differential settlement. Very
stiff beams do not develop differential settlement but do develop large bending
moments. This beam on an elastic foundation was a simple analogue which was
capable of explicit theoretical analysis. We need now to generalise the concept
of relative stiffness to more realistic foundation forms and to show some of the
implications for foundation response (compare §5.2.5).

For circular foundation rafts of radius a, Brown (1969) defines a relative
stiffness:

KB =
Er

E

(
1− ν2

) (
t

a

)3

(8.40)

where t and Er are foundation thickness and Young’s modulus and E and ν are
Young’s modulus and Poisson’s ratio for the soil.



410 8. Soil-structure interaction

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.7

0.9

1.1

1.3

1.5

r/a

σz/ζav

K=0

0.1

1

oo

Figure 8.20: Contact stresses beneath circular foundations of different relative
stiffnesses (adapted from Brown, 1969)

For other shapes of raft foundation a number of different though somewhat
similar expressions have been proposed for relative stiffness. For example, for
rectangular rafts of width B, Fraser and Wardle (1976) suggest

KFW =
4
3

Er

E

(
1− ν2

)

(1− ν2
r )

(
t

B

)3

(8.41)

and there is an obvious logic to the inclusion of the Poisson’s ratio νr of the
raft to give a combination Ert

3
r/

(
1− ν2

r

)
which relates (within a constant of

proportionality) directly to the flexural rigidity of a plate. (For concrete, if
Poisson’s ratio νr ≈ 0.2, then the modifying term

(
1− ν2

r

)
= 0.96 and its effect

may be seen as practically negligible.) However, Horikoshi and Randolph (1997)
propose that some rationalisation of results can be obtained if a relative stiffness
is defined in such a way that results for rectangular rafts of different proportions
(different values of L/B) and for circular rafts can be somewhat unified. Their
relative stiffness is:

K = π3/2 Er

E

(
1− ν2

)

(1− ν2
r )

(
B

L

)1/2 (
t

L

)3

(8.42)

where the factor π3/2 is chosen to give consistency between square and circular
rafts of the same area. The exponent on the term (B/L)1/2 was chosen to give
the best match to numerical results obtained for a wide range of foundation
proportions and material properties (for L/B = 2, K = 0.369KFW ). For a
circular foundation equivalence of areas implies that L = B = a

√
π and K

differs from KB (8.40) only by the factor
(
1− ν2

r

)
.

Contact stress distributions for different values of this relative stiffness KB ≈
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Figure 8.21: Dependence of maximum moment and maximum differential set-
tlement on relative foundation stiffness for circular foundations (adapted from
Brown, 1969)

K are shown in Fig 8.203. The edge singularity remains but becomes less
significant as the relative stiffness falls (the curve for K = ∞ is the same as the
curve for the rigid foundation shown in Fig 8.19b).

More usefully from a structural point of view, Fig 8.21 (following on from
Fig 8.54) shows how the maximum moment in the foundation and the differ-
ential settlement vary with relative stiffness—the results turn out to be rather
independent of the value of ν. For K > 5 a circular raft can be classified as
rigid, for K < 0.08 it can be classified as flexible. (As the flexibility of the raft
increases, K reduces, the location of the points of maximum moment moves
from the centre towards the edge of the raft.)

Detail of settlements and differential settlements of points on rectangular
rafts with aspect ratio L/B = 2 is shown in Fig 8.22 (adapted from Fraser
and Wardle (1976) to show the effect in terms of relative stiffness K). The
settlements or differential settlements ρi can be calculated from the influence
factors Ii plotted: ρi = IiζavB(1− ν)/2G, where ζav is the average foundation
pressure (ζav = P/BL for total foundation load P ). Plausible weighting of
the several settlements could be used to test the assertion that the average
settlement is rather independent of the relative foundation stiffness (§8.2.4).

Horikoshi and Randolph suggest, from numerical analysis, that, using (8.42)
to characterise relative foundation stiffness, the differential settlement between
the centre of a rectangular raft and the mid-point of the short edge is rather
independent of the aspect ratio L/B, provided this differential settlement is
normalised with the average foundation settlement for the rectangular raft cal-
culated using (8.27) (Fig 8.23). Differential settlement is obviously slightly

3Fig 8.20 is adapted from numerical results presented by Brown (1969) computed for
νr = 0.3 but the effect of changing νr to 0.15 is negligible—and merely changes the ratio
K/KB from 0.91 to 0.98.

4µ` in Fig 8.5 is a ratio of ground stiffness to structural stiffness; K in (8.42) is a ratio of
structural stiffness to ground stiffness.
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Figure 8.22: Settlement and differential settlement coefficients for rectangular
foundations with L/B = 2 as function of relative foundation stiffness (adapted
from Fraser and Wardle, 1976)

greater between a corner and the centre, but Horikoshi and Randolph suggest
that the corners of rafts will in practice often be stiffened by the presence of
walls. The result for circular rafts in Fig 8.23 falls between the edge and corner
values of differential settlement.

Further unification of results is proposed by Horikoshi and Randolph for
estimation of maximum moments in rectangular rafts. Normalised bending
moments Myy/ζavL2 for bending of rectangular rafts supporting average foun-
dation pressure ζav along their length (with the y axis parallel to the shorter
sides) are shown in Fig 8.24a for rigid rafts (Horikoshi and Randolph, 1997).
The variation of maximum moment in flexible rafts normalised with the value
for rigid rafts is then found to be essentially independent of raft aspect ratio
(Fig 8.24b).

There are obvious parallels in the complementary links between differential
settlement and maximum bending moment and relative stiffness shown in Figs
8.5, 8.21, 8.23 and 8.24b5.

8.5 Downdrag on pile

All the examples of soil-structure interaction that we have considered so far have
treated all aspects of the problem as entirely elastic. The next few examples
allow in different ways for some nonlinearity of material or interface response to
enter the analysis.

5Noting again the essentially reciprocal versions of relative stiffness implied by the defini-
tions of µ` (Fig 8.5) and K (Figs 8.21, 8.23 and 8.24b).
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Figure 8.25: Downdrag of end-bearing pile

Table 8.2: Pile shaft friction: key properties (Lancellotta, 1987; Fleming et al.,
1985)

soil β = K tan φ′ δc/ro

clay 0.2-0.25 1-4%
silt 0.25-0.35
sand 0.35-0.50 0.25%

Piles are often rather stiff structural members transferring load through soft
soils to firm underlying ground (Fig 8.25). We might näıvely assume that the
load that is imposed on the pile at its top from the above-ground structure is
always the largest load that the pile will experience. However, if the soft soils
around the pile deform then this deformation imposes additional loads on the
piles which the piles must be designed to resist. We concentrate here on axial
load effects but transverse load effects, leading to unintended bending moments
in the piles are often more serious: some aspects of these are considered in
section 8.9.

Skin friction τ develops with relative movement between pile and soil. Typi-
cally, the maximum shaft friction that can be developed can be related to in-situ
vertical effective stress σ′v through an earth pressure coefficient K and the an-
gle of internal friction φ′ (where the value of K incorporates allowance for any
reduction in φ′ occurring at the soil-pile interface):

τmax = Kσ′v tan φ′ (8.43)

with typical values of β = K tanφ′ given in Table 8.2:
The relative movement δc required to mobilise the maximum shaft friction

is proportional to pile radius ro. Typical values are also shown in Table 8.2. We
assume for simplicity that the shaft resistance is mobilised linearly with relative
movement (Fig 8.26).

As an example, consider an end bearing pile of length ` and radius ro in
consolidating clay (Fig 8.25). The ultimate load that can be carried by the pile
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Figure 8.26: Assumed mobilisation of shaft friction with relative pile-soil move-
ment

in shaft friction—when the pile is moving down relative to the soil—is Pult =
πβγ′ro`

2 assuming that vertical effective stress is being generated uniformly
with depth in a soil with buoyant unit weight γ′.

Suppose that the settlement of the clay is δo at the ground surface, decreasing
linearly with depth (Fig 8.25). Then the depth to which shaft friction is fully
mobilised is `1 given by, for δo > δc,

`1
`

= 1− δc

δo
(8.44)

The extra load at the toe of pile is ∆P given by

∆P =
∫ `

0

2πroτdz = 2πro

[∫ `1

0

βσ′vdz +
∫ `

`1

z − `1
`− `1

βσ′vdz

]
(8.45)

giving
∆P

Pult
=

2`2 − ``1 + 2`21
3`2

= 1− δc

δo
+

2
3

(
δc

δo

)2

(8.46)

Fig 8.27 shows how the load builds up as the surface displacement of the set-
tling soil increases relative to the critical interface displacement δc. For δo À δc,
∆P/Pult = 1 and the axial load arising from the settlement of the surrounding
ground is in addition to any axial load the pile may already be carrying. For
example, with γ′ = 5 kN/m3 (for soft clay), ro = 0.25 m, ` = 15 m, β = 0.25,
∆P = 221 kN.

The ultimate load capacity of the pile is not affected by downdrag: failure
will imply sufficient downward movement of the pile to generate full positive
shaft friction. However, if the pile design has essentially neglected the contribu-
tion to ultimate load that the shaft friction in the soft soils may provide then
there may, even under loads close to failure, be insufficient downward movement
of the pile relative to the settling ground to ensure that negative shear stresses
are not mobilised throughout its length.

In a closely spaced pile group, equilibrium shows that the skin friction on
the piles must in fact reduce the vertical effective stress in the soil. For example,
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with piles of length ` at spacing D on a square grid the effective weight of the
unit cell block of soil around each pile is γ′D2` and the load shed into the
pile from the settling soil is potentially πβγ′ro`

2. For the piles of the previous
example at D = 2 m spacing the ratio of shaft friction to block weight γ′D2`
appears to be 74% which would obviously be too high to be neglected (the
reduction in vertical effective stress would actually affect the calculation of skin
friction). With a spacing of 5 m this ratio falls to 12%.

Floating friction piles (Fig 8.28) are slightly more complicated. The skin
friction contributions need to balance the applied load Pt to give overall equi-
librium. There is a neutral point at depth `2 at which there is no relative
displacement of pile and soil and at which the direction of the shaft shear stress
reverses. For simplicity we will assume that δc ≈ 0 so that shaft friction—either
upwards or downwards—is always fully mobilised. We also assume that the pile
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is rigid. Then equilibrium requires that:

Pt +
∫ `2

0

βγ′2πrozdz =
∫ `

`2

βγ′2πrozdz (8.47)

giving (
`2
`

)2

=
1
2

(
1− P

πβγ′ro`2

)
=

1
2

(
1− Pt

Pult

)
(8.48)

where Pult = πβγ′ro`
2 is the overall capacity of this friction pile. The variation

of axial load in the pile is then, for 0 < z < `2:

P

Pult
=

Pt

Pult
+

(z

`

)2

(8.49)

and for `2 < z < `:

P

Pult
=

Pt

Pult
+ 2

(
`2
`

)2

−
(z

`

)2

= 1−
(z

`

)2

(8.50)

The variation of axial load is shown in Fig 8.29a for different values of Pt/Pult.

Again we note that the ultimate capacity of the pile is not affected. If the
pile is moving downwards sufficiently far to generate positive shaft friction, the
limiting curve in Fig 8.29a corresponds to Pt/Pult = 1 and then the axial load
falls parabolically from the top of the pile. However, with the applied load at
the top of the pile Pt using only a fraction of the available shaft resistance the
maximum load in the pile Pmax, which will occur at the neutral point z = `2,
may be greatly magnified. The variation of this magnification ratio Pmax/Pt

with apparent pile load factor Pt/Pult is shown in Fig 8.29b. The input load at
the ground surface Pt may provide only a very unsafe estimate of the maximum
axial load in the pile.

8.6 Settlement reducing piles

In analysing the interaction of pile and raft in piled raft foundations in section
8.2.4 we assumed that both the raft and the piles were behaving elastically.
The movement necessary to fully mobilise shaft friction may, as just seen, be
quite small. Inelastic shaft load transfer will vitiate the elastic analysis but it
is possible to exploit this characteristic of pile response.

The cost of a foundation raft will vary with its stiffness. We have seen that
rafts need to be stiff (relative to the soil) in order to maintain differential settle-
ments at an acceptable level (which may be necessary to reduce the likelihood
of development of cracking in the structure being supported (§8.3) and we have
observed a ‘complementarity’ between variation of contact pressure and varia-
tion of foundation settlement across the foundation as the relative stiffness is
changed from 0 to ∞ (Fig 8.19). However, the flexible foundations that we
have studied only develop large differential settlements because they have been
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subjected to uniform loads. If we subjected our flexible foundation to a distri-
bution of pressures which exactly matched the pressure distribution for a rigid
foundation of the same shape then it would settle uniformly with no differential
settlement. That is an ideal which we cannot realise but we can use friction
piles, judiciously located, and operating more or less at their ultimate capacity
to achieve something tending towards this ideal result (Fig 8.30a) (Burland et
al., 1977).

As an example, consider a tank 17 m diameter founded on soft clay applying
an average design loading of 160 kPa. The object is to find an arrangement of
individual piles which could be combined with a flexible raft to produce greatly
reduced differential settlements. Let us assume that the piles are 250 mm square
concrete friction piles, 10 m long generating a shaft capacity of 500 kN each in
soil with undrained strength of the order of 50 kPa. We will assume—but must
subsequently check—that this shaft capacity will be fully mobilised by the actual
tank settlements.

An iterative approach is required in order to choose the number of piles.
The tank supplies a loading 160 kPa over a circle of 8.5 m radius; use n piles to
reduce average loading to ζav = 160 − (500 × n)/(π × 8.52). Try n = 30: then
ζav = 94 kPa. Now compare the required loading (160 kPa) with the contact
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stress for a rigid raft and use piles, at an appropriate spacing, to take the
difference. The contact stress for a rigid circular raft depends on radius (8.39),
and consequently the required distribution of piles also depends on radius.

• At the centre, r/a = 0, σz/ζav = 0.5, σz = 47 kPa. The piles have to
take 160 − 47 = 113 kPa which requires 113/500 = 0.226 piles/m2 or
4.4 m2/pile. This can be achieved with a square grid with spacing 2.1 m
or a triangular grid with spacing 2.6 m.

• At r/a = 0.5, σz/ζav = 0.577, σz = 54 kPa, and the pile spacing becomes
2.2 m (square) or 2.7 m (triangular).

• At r/a =
√

3/2, σz/ζav = 1, σz = 94 kPa, and the pile spacing becomes
2.8 m (square) or 3.4 m (triangular).

The variation of pile spacing with radius is shown in Fig 8.30b. In principle
the contact stress for the rigid raft is only greater than the average applied
stress for radii greater than

√
3/2 = 0.87 times the foundation radius so that

the load needs to be shed into the piles until we get quite close to the edge of
the foundation.

To estimate the raft settlement we need to estimate the shear stiffness using
perhaps G = 200cu = 10 MPa; we might take Poisson’s ratio for the soil ν =
0.3. For a foundation of radius 8.5 m carrying an effective load of 94 kPa the
settlement, from (8.29) is 44 mm which is about 18% of the pile size and should
certainly be adequate to mobilise full shaft resistance.

We might note that the 351 piles supporting the raft for Stonebridge Park
(§8.2.4) are not being used very efficiently. Let us explore an alternative design
using just 40 piles of the same size (0.45 m diameter, 13 m long). A similar
treatment can be used as for the circular tank foundation looking at the contact
pressure distribution for a rigid rectangular raft. The raft at Stonebridge Park
has L/B = 43.3/20.1 = 2.15 so some modest interpolation is required to produce
Fig 8.31 from the distributions presented by Poulos and Davis (1974) for rafts
of proportions L/B = 1.5 and 4.

First we need to assess the shaft capacity of the piles. For the heavily
overconsolidated London clay we might choose to use a total stress approach
in which the shaft friction is linked with undrained strength τmax = αcu. In
our previous analysis (§8.2.4) we assumed that the undrained strength variation
with depth was given by cu = 100 + 7.2z kPa. The strength at the mid-height
of the piles is thus 146.8 kPa. With a shaft friction factor α = 0.4 for an
overconsolidated clay, the shaft friction is then π × 0.45 × 13 × 0.4 × 146.8 =
1079 kPa and 40 piles, working close to their ultimate load, will absorb 43.2 MN
of the total load, leaving 156 − 43.2 = 112.8 MN to be transferred by the raft.
(Base resistance will be a stress of the order of 9cu giving a contribution to
capacity of 277 kN per pile but this will be mobilised much more slowly.) The
average raft stress is then 112.8/(43.3 × 20.1) = 130 kPa. The overall raft
stiffness will be independent of its flexural rigidity and remains 2819 MN/m.
The settlement will now be 40 mm, adequate to mobilise the shaft friction of
our piles which are being assumed to respond essentially perfectly plastically
and therefore contribute no stiffness to the combined piled raft.
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Figure 8.31: Contact stresses under rigid rectangular foundation with L/B = 2
(interpolated from results presented by Poulos and Davis, 1974)

At the centre of the raft the contact pressure is about half the average
pressure, 65 kPa. The average contact stress without the piles is 156/(43.3 ×
20.1) = 179 kPa so that the centre piles must support 179 − 65 = 114 kPa
requiring 9.46 m2/pile or spacing 3.1 m. Where the contact stress is reduced to
0.7ζav the spacing can be increased to 3.5 m. The need for iteration becomes
clear—we need to ensure that we have enough piles to provide the necessary
reduction in contact stress over a sufficient proportion of the raft foundation.

Horikoshi and Randolph (1995) perform a more elaborate analysis of the
Stonebridge Park raft and emerge with a redesign using just 18 piles, slightly
larger and longer, placed over the central part of the raft. The design is sup-
ported by numerical modelling using a specialist piled raft analysis program.
The computed settlement is 42 mm but the differential settlements are very
small (these are harder to estimate using the simplistic approach outlined here).

Love (2003) describes the recent design of a foundation in London making
use of settlement reducing piles but notes both that this type of foundation has
not been widely used and that, for it to be successful, the pile capacity must be
rather accurately assessed so that the necessary perfect plasticity under working
conditions of the structure can be guaranteed. The guiding principle is evidently
not ‘how many piles are needed to carry the entire weight of this building?’ but
‘how many piles are needed to reduce differential settlements to an acceptable
level?’ (Fleming et al., 1985).

8.7 Flexible retaining wall

Commonly adopted calculation procedures used for the design of retaining struc-
tures assume that the earth pressure varies linearly with depth according to some
coefficient of earth pressure computed from a Rankine limiting stress field or a
Coulomb critical wedge. Even when the design approach attempts to allow for a
less than complete mobilisation of the available frictional strength of the soil—
either because of guidance provided by a code of practice (for example, EC7,
1995 or BS8002, 1994) or as a result of theoretical insight (§7.5.2)—the calcu-
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Figure 8.32: Anchored flexible wall

lation procedure still usually uses the language of coefficients of earth pressure.
There are three reasons why this approach may be inadequate:

• The soil behaviour is not rigid perfectly plastic but usually steadily non-
linear. This nonlinearity can to some extent be accommodated through
the use of a nonlinear mobilisation model.

• The adoption of coefficients of earth pressure assumes that the interac-
tion of the wall and the soil is effectively through a series of independent
springs. The response of one spring is in no way influenced by the re-
sponse of adjacent springs—whereas we might anticipate that there would
be variations in degree of mobilisation as the soil manages to arch across
regions of reduced stiffness6.

• The flexibility of the structure has not entered the calculation but it will
certainly influence the way in which the wall deforms and the earth pres-
sures are generated.

Allowance for these effects can be achieved through full numerical analysis of the
soil and wall together. However, some empirical allowance for the flexibility of
the structure can be made using as inspiration results of experiments performed
by Rowe (1952) and associated numerical analyses (Rowe, 1955). We will con-
centrate on anchored flexible walls (Fig 8.32). Further discussion is given by
Powrie (1997).

Rowe (1952) tested model walls of heights up to 0.91 m, anchored at var-
ious points near the top, carrying various levels of surcharge behind the wall,
and retaining various different dry granular materials. The soil was first filled
uniformly on both sides of the wall and then excavated in stages in front of the
wall, with measurements of prop loads and bending strains in the wall being
taken during this excavation. Typical effects of wall flexibility and soil density
on the wall displacements and distributions of stress on the wall in the passive
zone are shown in Fig 8.33. The simplistic calculation assumes that the wall
rotates rigidly about the prop. A flexible wall bows out towards the excavation

6Compare Fig 8.5, where the differential settlement for an extremely flexible beam on a
bed of springs increases indefinitely with reduction in beam stiffness (increase in µ`), with Fig
8.21 where the continuity of the elastic material manages to restrain the differential settlement
even when the relative stiffness K becomes very small.
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Figure 8.33: Schematic effects of soil density and wall stiffness on (a) deflected
profile and (b) horizontal stresses in passive region (inspired by Rowe, 1952 and
Clayton and Milititsky, 1986)

but experiences hardly any outward movement towards its embedded toe. Con-
sequently very little passive pressure is generated towards the toe and, further,
the centre of action of the passive pressure moves up towards the dredge level.
The maximum moment that is generated in the wall will of course be strongly
influenced by the lines of action of the active and passive forces: if the passive
force moves up then the maximum moment will tend to fall.

Rowe presented his results in terms of the reduction of moment as a function
of some measure of wall flexibility expressed as a ‘flexibility number’ ρ = H4/EI
for a wall of total height H and flexural rigidity EI per unit width (Fig 8.34).
The results of many tests show modest variation of moment reduction with
embedment ratio α = D/H where D is the depth of excavation (Fig 8.32), and
more significant variation with soil density.

Unfortunately the flexibility number ρ is not dimensionless. Rowe measured
E in pounds per square inch, I in inches4 per foot and H in feet. The conversion
to SI units requires that ρSI = 916.5ρRowe. With E in kPa, I in m4/m and H
in metres the value of ρ has units m3/kN. Fig 8.34 is plotted with these units
for ρ.

Rowe notes that there is a critical value of ρ below which there is no reduction
of moment, reached when the deflection of the wall at the level of the base of
the excavation is equal to the deflection of the wall at its toe. He deduces from
his model wall tests and from one-dimensional compression tests on the various
soils that this critical flexibility number ρcrit ≈ 630/Eoed m3/kN, where Eoed

(measured in kiloPascals) is an estimate of the one-dimensional stiffness of the
soil.

Rowe is emphatic that this moment reduction factor is linked with the rise
in location of the resultant passive force and ‘has nothing whatever to do with
arching on the active pressure side of the wall’. This then justifies the use by
Rowe (1955) of a numerical analysis of the bending of a wall which treats the
soil as a series of independent springs in order to explain his earlier experi-
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Figure 8.34: Reduction in moment dependent on soil density, wall geometry,
and wall flexibility: collected results from model tests (after Rowe, 1952)

mental findings. He uses a spring stiffness k for the development of passive
pressure which varies linearly with depth below the excavation k = mz. We
could interpret this as indicating a soil stiffness directly dependent on overbur-
den stress. The parameter m has dimensions of stress/length: Rowe’s results
indicate m ≈ 200 MPa/m for dense sand and m ≈ 9 MPa/m for loose sand.
The moment reduction factors (and reduction factors for the prop force) are
now presented in terms of mρ which is a dimensionless factor (Fig 8.35). The
mean curves from Fig 8.34 are also included in this figure using Rowe’s values
of m.

Alternative guidance on selection of values of m is provided by Terzaghi
(1955) (using a different notation). He proposes values of about 7 MPa/m and
0.9 MPa/m for dense and loose sand respectively on the basis of large model
wall tests. The order of magnitude difference presumably reflects the greater
range of deflection and greater dimensions in Terzaghi’s tests and hence the
greater degree of soil nonlinearity and decrease in stiffness from an initial value.

As a simple example of the application of Rowe’s correction curves let us
consider the design of an anchored quay wall with free height 10 m in dense
sand with φ′ = 38◦ and total unit weight γ = 20 kN/m3 (Fig 8.36). The water
level is at the ground surface and the anchor is also at the ground surface. We
need to estimate the required depth of embedment, the anchor force, and the
maximum bending moment. From the maximum moment (allowing for moment
reduction through pile flexibility) we will be able to choose an appropriate sheet
pile section.

The standard route to design uses the free earth support method which
we have introduced previously (§7.5.2) and which assumes stress distributions
associated with ultimate limit states (though possibly with some modification of
soil parameters). Thus we assume active pressure behind the wall, and passive
pressure in front. Moment equilibrium and horizontal equilibrium allow us to
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Table 8.3: Estimate of φ′ for siliceous sands and gravels (after BS8002, 1994)

contributory factor value
angularity A◦

rounded 0
sub-angular 2
angular 4
grading B◦

uniform (D60/D10 < 2) 0
moderate (2 < D60/D10 < 6) 2
well graded (D60/D10 > 6) 4
modified SPT N value C◦

N ′ ≈ 225/(σ′v + 55)− 0.2 with σ′v in kPa
N ′ < 10 0
10 < N ′ < 20 2
20 < N ′ < 40 6
40 < N ′ < 60 9

φ′ = 30 + A + B + C◦

φ′crit = 30 + A + B◦

calculate the depth of embedment, the anchor force and the moments in the
wall.

First of all we have to choose an appropriate route by which to introduce
factors of safety in our initial ultimate limit state calculation. There are many
different proposals. We have already seen (§7.5.2) the consequences of the re-
quirement for kinematic compatibility of displacements on the two sides of the
wall and the consequence that limiting active conditions are usually attained
more rapidly than limiting passive conditions (but this will depend on the ini-
tial horizontal pressures in the ground). One standard scheme is then to apply
a reduction factor of 2 to the passive pressures.

BS8002 (1994) proposes that in the analysis of earth retaining structures
the angle of shearing resistance should be computed using a mobilisation factor
M = 1.2. The design strength is then the lower of φ′peak/M and the critical
state angle φ′crit for constant volume shearing. Guidance on estimation of angles
of shearing resistance for siliceous sands and gravels is shown in Table 8.3.

EC7 (1995) on the other hand proposes that a partial factor of 1.25 should
be applied to tan φ′ and makes no mention of critical state values. Both BS8002
and EC7 lead to design with the same factored strength on each side of the wall
and this single value of strength is used to compute appropriate values of active
and passive earth pressure coefficients Ka and Kp.

For a generic anchored wall of total height H and free height (excavation
depth) αH (Fig 8.36), and with water table at the same level on both sides of
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Table 8.4: Wall geometries for different design assumptions

rule design value of φ′ Ka Kp Kp/2 α
Kp/2 φ′ = 38◦ 0.24 4.20 2.10 0.710
BS8002 φ′ = tan−1 [(tan 38)/1.2] = 33.0◦ 0.29 3.40 0.751
EC7 φ′ = tan−1 [(tan 38)/1.25] = 32.0◦ 0.31 3.25 0.737

the wall, moment equilibrium about the anchor tells us that (compare (7.166))

1
3
γ′KaH3 =

1
6
γ′KpH

3(1− α)2(α + 2) (8.51)

which can be solved to give the values shown in Table 8.4 for the three different
design approaches (where wall friction has been ignored in the calculation of
values of Ka and Kp). The choice of factors is in some way trying to ensure
that serviceability conditions for the wall will be acceptable but the ‘deformation
calculation’ is still based on an ultimate limit state approach to the problem.

We will adopt the EC7 approach here, so that α = 0.737 and the total length
of our wall is 10/0.737=13.56 m. Then horizontal equilibrium of the wall gives
the anchor force T :

T =
1
2
Kaγ′H2 − 1

2
Kpγ

′H2(1− α)2 = 287.8− 210.4 = 77.4 kN/m (8.52)

The maximum moment Mmax occurs where the shear force is zero, at depth xm

below the top of wall:

1
2
Kaγ′x2

m = T ; → xm = 7.03 m (8.53)

and the value of this moment is:

Mmax = Txm − 1
2
Kaγ′x2

m

xm

3
=

2
3
Txm = 363 kN-m/m (8.54)

We have completed our initial design and can now start to explore the mo-
ment reduction associated with flexibility of our sheet pile wall. The wall prop-
erties are not initially known. The free earth analysis just performed provides
values of H, α and Mmax. The correction curve appropriate for the soil type can
be used to determine the moment reduction factor λ = Mreq/Mmax as a func-
tion of ρ and hence a curve relating required moments Mreq and second moment
of area I of the sheet pile section can be produced (Table 8.5 and Fig 8.37).
Candidate sheet pile sections can then be directly compared with this curve
and available values of second moment of area and allowable steel moments can
be studied to choose an appropriate economical section—recognising that there
may be other considerations that will limit the amount of wall deformation that
can be allowed in certain circumstances.

Care needs to be taken with the units in generating the numbers in Table 8.5:
the units of I and Mreq have been chosen to match those of tabulated sheet pile



Table 8.5: Application of moment reduction chart: α = 0.737, dense sand

log10 ρ ρ = H4/EI I Mreq/Mmax Mreq

m3/kN cm4/m kN-m/m
-0.5 0.316 50939 0.64 232
-0.3 0.501 32140 0.57 207
-0.1 0.794 20279 0.49 178
0.1 1.259 12795 0.43 156
0.3 1.995 8073 0.37 134
0.5 3.162 5094 0.33 120
0.7 5.012 3214 0.30 109
0.9 7.943 2028 0.27 98
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Figure 8.37: Required link between maximum moment and second moment of
area of wall compared with available sheet pile sections
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Table 8.6: Sheet pile section data

pile type section I Mallowable

cm4/m kN-m/m
Frodingham 1BXN 4947 125

1N 6072 129
2N 13641 209

Larssen LX8 12863 149
LX12 18727 217
LX12d 19217 223
LX12d10 19866 231
6W 6508 110
GSP2 8756 158
GSP3 16316 235

(from http://www.corusconstruction.co.uk/indexes/idxph002.htm)

section data (Table 8.6). We take Young’s modulus of steel E = 210 GPa and
then use sheet pile section data to calculate allowable maximum moments using
a maximum steel stress σmax = 180 MPa corresponding to medium tensile steel
(EN10248) and permanent works (British Steel, 1997). The resulting sheet pile
data have been plotted in Fig 8.37. This figure shows very clearly the way in
which increased pile stiffness leads to increased moments. The range of values
of I that has been explored is much greater than that required for the purposes
of design of this particular wall. From inspection Frodingham 1BXN or 1N and
Larssen GSP2 sections will be satisfactory, having adequate moment capacity
for their flexural rigidity.

8.8 Tunnel lining

A simple analysis of the ground-structure interaction implied by the construction
of a lined tunnel can be achieved by assuming that the tunnel is of circular
section, radius ro, and sufficiently deep in uniform ground for the ground surface
to be assumed infinitely distant and the initial stress state to be isotropic and
homogeneous (Fig 8.38)7. The lining is of thickness t ¿ ro. We neglect the
difficulty that would be caused by the three-dimensional nature of a tunnel
heading and treat the tunnel as a plane strain problem. This is obviously an
idealised situation but one that is capable of closed form analysis8.

From symmetry stresses can only vary with radius. We take a sign conven-
tion that assumes that compressive stresses and strains are positive. The first

7I am grateful to Alan Muir Wood for initial discussion on this section.
8The axisymmetric collapse of a tunnel as ground support is removed is directly analogous

to the problem of expansion of a cylindrical cavity such as the pressuremeter.
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ro
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r

d >> ro

plastic
elastic

Figure 8.38: Circular tunnel in elastic-plastic ground

statement to be made concerns equilibrium

d
dr

(rσr) = σθ (8.55)

In the far field the radial and circumferential stresses are assumed equal σr =
σθ = σ∞. (Some assumption about stresses and not just stress increments is
necessary because we are going to introduce the possibility of plasticity in the
soil.) Since both radial and circumferential stresses are assumed to be changing
from the same initial value the equilibrium equation then applies equally to the
changes in stresses ∆σr and ∆σθ.

The second statement to be made concerns kinematic compatibility. Radial
and circumferential strains are linked to inward radial displacements u and
radial gradients of radial displacement.

∆εθ =
u

r
(8.56)

∆εr =
du

dr
(8.57)

The third statements that are made concern the constitutive response of the
ground. It is assumed that there is a region of plastic yielding which extends
from the tunnel boundary as far as a radius r1 (Fig 8.38). Within the plastic
zone the circumferential and radial stresses are related through some Mohr-
Coulomb criterion with cohesive and frictional terms (which do not need to
exist simultaneously)

σθ = A + Bσr (8.58)

where
A =

2c cosφ

1− sin φ
(8.59)
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and

B =
1 + sin φ

1− sinφ
= Kp (8.60)

for a soil with cohesion c and angle of shearing resistance φ.
For the tunnel construction, where the excavation of the cavity results in a

reduction of radial stress, it is the circumferential stress that will be the major
compressive principal stress (whereas for the pressuremeter being expanded it
is the radial stress which is the major principal stress).

In the plastic zone a statement is required to describe the deformation condi-
tion: a flow rule needs to be introduced. In general, there will be a link between
volumetric strain and radial strain which implies a link between circumferential
strain and radial strain (expressed here, for simplicity, as a link between total
strains rather than plastic strain increments):

∆εθ

∆εr
= −1− sin ψ

1 + sin ψ
= −Kε (8.61)

where ψ is the angle of dilation. For constant volume shearing, ψ = 0 and
radial and circumferential strain increments are equal and opposite. For tunnel
convergence with ψ > 0 the magnitude of the radial extension exceeds the
magnitude of the circumferential compression9.

In the plastic zone, combination of the flow rule (8.61) and the kinematic
compatibility conditions ((8.56), (8.57)) leads to

u

r
= −Kε

du

dr
(8.62)

and hence

u =
C

r1/Kε
(8.63)

The constant C is given by the need for compatibility at the boundary between
the plastic and elastic zones at radius r1 where the radial displacement is u1.

In the elastic zone, for radii r > r1, from Hooke’s law (§3.2) for plane strain,
strain increments and stress increments are related by

∆σθ =
E

(1 + ν)(1− 2ν)
[(1− ν)∆εθ + νεr] (8.64)

∆σr =
E

(1 + ν)(1− 2ν)
[(1− ν)∆εr + νεθ] (8.65)

Using the compatibility equations ((8.56), (8.57)), and substituting into the
equilibrium equation (8.55), we obtain

r2 d2u

dr2
+ r

du

dr
− u = 0 (8.66)

9For radial cavity expansion with ψ > 0, the magnitude of the circumferential extension
exceeds the magnitude of the radial compression. This can be treated by changing the sign
of the angle of dilatancy in (8.61).
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with the solution

u = αr +
β

r
(8.67)

where α = 0 because u → 0 as r → ∞. The integration constant β will be
found from the need for radial continuity of stresses and displacements at the
boundary between the elastic and plastic regions at r = r1.

Hence

∆εr = −∆εθ = − β

r2
(8.68)

The elastic deformation occurs at constant volume and is thus a pure shearing
process irrespective of the value of Poisson’s ratio of the soil. The changes in
stresses are then

∆σr = −∆σθ = −2Gβ

r2
(8.69)

At the boundary between the elastic and plastic zones at radius r1 the elastic
stresses must just satisfy the yield criterion

σ∞ +
2Gβ

r2
1

= A + B

(
σ∞ − 2Gβ

r2
1

)
(8.70)

and hence

β =
r2
1 [A + (B − 1)σ∞]

2G (B + 1)
(8.71)

and at the boundary between elastic and plastic zones the radial stress is given
by

σr1 =
2σ∞ −A

B + 1
(8.72)

The radial displacement u must be continuous at the boundary r = r1

between the plastic zone (8.63) and the elastic zone (8.67). Hence

u1 =
C

r
1/Kε

1

=
β

r1
(8.73)

so that the radial movement at the boundary of the tunnel at radius ro is uo:

uo =
β

r1

(
r1

ro

)1/Kε

(8.74)

Within the plastic zone the combination of the yield criterion (8.58) with the
equilibrium equation (8.55) gives

d
dr

(rσr) = A + Bσr (8.75)

and hence

σr =
1

B − 1
(
λrB−1 −A

)
(8.76)
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The integration constant λ must be chosen to give stress compatibility with the
radial stress at the boundary with the elastic zone r = r1 (8.72):

λ =
1

rB−1
1

2 [A + σ∞(B − 1)]
B + 1

(8.77)

and sufficient information is now available to establish the relation between
radial stress at the tunnel boundary and radial convergence at this radius (Fig
8.39).

Some special cases can be considered. For purely elastic ground (Fig 8.39a)
(8.67), (8.69):

σro
= σ∞ − 2G

uo

ro
(8.78)

For purely cohesive ground (φ = ψ = 0, c = cu, A = 2cu, B = 1) (Fig
8.39b):

σr1 = σ∞ − cu (8.79)

σro = (σ∞ − cu) + 2cu ln
(

ro

r1

)
(8.80)

β =
cu

2G
r2
1 (8.81)

uo =
cu

2G

r2
1

ro
(8.82)

For purely frictional ground (c = A = 0) (Fig 8.39c):

σro =
2σ∞
B + 1

(
ro

r1

)B−1

(8.83)

β = r2
1

(
B − 1
B + 1

)
σ∞
2G

(8.84)

uo = r1

(
B − 1
B + 1

)
σ∞
2G

(
r1

ro

)1/Kε

(8.85)

The variation of radial tunnel stress with inward movement at the tunnel
boundary is shown in Fig 8.40 for the cohesive and frictional soils. For the
elastic soil the tunnel pressure varies linearly with inward movement.

The tunnel lining is also assumed to be elastic with Young’s modulus Es and
Poisson’s ratio νs. Under an external radial pressure σro the circumferential
stress will be

σ`θ = σro

ro

t
(8.86)

The axial stress in the lining will adopt the value necessary to allow the lining to
deform in plane strain. If t ¿ ro, the average radial stress in the lining will be
negligible by comparison with the circumferential stress. The resulting change
in radius of the lining can be deduced from the circumferential strain:

uo

ro
=

1− ν2
s

Es

ro

t
σro (8.87)
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Figure 8.39: Stresses and displacements around tunnel in (a) elastic ground; (b)
elastic-plastic cohesive ground (r1/ro = 2); (c) elastic-plastic frictional ground
(r1/ro = 2, φ = 30◦, Kp = 3, ψ = 20◦, Kε = 0.49)
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Figure 8.40: Variation of tunnel stress with inward tunnel movement (cohesive
ground: G/cu = 150, G/σ∞ = 30; frictional ground: φ = 30◦, ψ = 20◦,
G/σ∞ = 30)

The equilibrium tunnel lining deflection is then the consequence of com-
bining the elastic loading and displacement of the lining with the elastic-plastic
unloading of the ground (Fig 8.41). A soft lining will allow the ground to deflect
and a low lining stress will be generated (Fig 8.41a). A stiff lining on the other
hand will attract load and in the limit would be required to support a radial
stress equal to the in-situ stress in the ground (Fig 8.41a). Delay in installing
the lining will also reduce the stress that the lining is called upon to support
(Fig 8.41b). We deduce again that there is an economic benefit to be gained
(through the use of a thinner lining) if we can tolerate some displacement.

8.9 Pile in displacing ground

The use of correction factors for calculation of stress resultants in flexible re-
taining walls based on Rowe’s (1952) experimental observations (§8.7) represents
an empirical approach to the conversion of an ultimate limit state geotechnical
calculation to an assessment of soil-structure interaction. The analyses that
Rowe (1955) subsequently performed provide some justification for the nature
of the correction procedure and were based on an analysis of the bending of
the flexible wall experiencing the presence of the soil through a set of linear
springs with stiffnesses varying with depth. An analysis will be presented here
in which the interaction of a pile with the soil is modelled as a series of nonlinear
springs—thus introducing a slightly greater degree of geomechanical realism.

This analysis is of interest because it shows how a problem which initially
appears somewhat intractable can be reduced to a set of simple controlling vari-
ables whose effect on the character of the response can be readily explored. The
analysis is inspired by a real problem in which landfill was known to be moving
slowly down a gentle slope past a piled structure. The structural question is:
what are the moments induced in the piles as a result of the ground movement?
A subsidiary question is: if we can measure the lateral movements of the piles
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Figure 8.41: Interaction of deforming tunnel lining with contracting tunnel: (a)
effect of lining stiffness; (b) effect of delay in installing lining

at the ground surface, does this provide sufficient information to enable us to
estimate the maximum moments in the piles?

Modelling the structure-soil interaction with a series of independent non-
linear springs may be more appropriate for a pile, where one can imagine the
dominant soil movements being somewhat confined to sub-horizontal planes,
flowing round the pile, than for a long wall where vertical soil movement is
certainly likely to occur.

The analysis of active or passive lateral loading of piles using a set of subgrade
reaction springs is not novel (Reese and Matlock, 1956; Poulos, 1973) but such
analyses have usually assumed that the soil is elastic so far as generation of
displacements and stresses is concerned, and exact solutions can be invoked for
the magnitudes of these stresses (though Poulos introduces the possibility of a
limiting soil resistance). The problem to be analysed here is approached in a
different way.

There are a number of situations where structures are supported on piles
through weak strata which are expected to undergo large movements—for ex-
ample, offshore structures on continental margins where recent slope deposits
are often in a metastable state; or structures piled through landfill where the
effects of lateral movement of the fill can be less easily avoided than those of
settlement. For such materials the mechanical properties are often rather poorly
defined and there are some advantages in exploring the possibilities of rather
simple analyses and in ascertaining the dimensionless combinations of soil and
structural parameters which control the problem.
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Figure 8.42: Pile loaded by translating ground

The generic problem to be analysed is therefore described as follows. A
volume of ground—soil or fill—is known to be moving sideways as a result of
internal redistribution of stresses, as a result of movement on a gently inclined
basal layer, or as a result of a changing pore pressure regime. Observations
suggest that the movements are likely to continue for some time and although
estimates can be made (from direct observation) of the magnitude of horizontal
movement at the ground surface the distribution of horizontal movement with
depth through the ground is unknown. A structure supported on piles, of length
`, and uniform flexural rigidity EI, and built in at their base, is founded through
the ground on the underlying competent material (Fig 8.42). (Other degrees of
end fixity could be studied by changing the boundary conditions of the analysis.)
A dimensionless coordinate η = z/` defines position on the pile with η = 0 at
the base and η = 1 at the ground surface. The pile is assumed to have no
restraint at the top, η = 1.

The ground is moving with a profile of horizontal movements

δ = δoη
α (8.88)

where δo is the movement at the ground surface, η = 1, and α is a parameter
which characterises the profile of movement (Fig 8.43). A value of α = 1 implies
linear variation of movement with depth; α > 1 implies that the movement is
more concentrated towards the surface (in principle α = ∞ implies that move-
ment is everywhere zero except for η = 1); α < 1 implies that the movement
is more concentrated towards the base of the ground (α = 0 implies that the
ground is moving as a block with δ = δo at all depths). It is assumed that indi-
vidual piles are sufficiently far apart that their influence on the overall ground
movement and their interaction with each other can be ignored.

The translating ground imposes a load on the pile dependent on the relative
movement of ground and pile. It is assumed that the ground has strength
characteristics such that the lateral stress σh exerted on the pile depends on the
overburden pressure or depth

σh = Kγ`(1− η) (8.89)
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Figure 8.43: Profiles of ground displacement

where γ is an appropriate unit weight for the soil and the lateral stress coefficient
K is a function of relative movement ∆ = δ−y where y is the lateral movement
of the pile.

It seems realistic to assume that the lateral stress coefficient cannot exceed
some limiting value K∗ when the relative movement becomes large, and an
appropriate expression for K = f(∆) could be (Fig 8.44).

K

K∗ = tanh
[
λ

(
∆
d

)]
= tanh [β (ηα − ζ)] (8.90)

where ζ = y/δo and β = λδo/d; λ and K∗ are subgrade reaction parameters;
and d is a typical pile dimension related to pile diameter or pile width. The
dimensionless group β combines information about the stiffness of the pile-
ground response, λ, with a ratio of length parameters: ground movement at the
free surface, δo and typical pile dimension, d.

Such a relationship seems reasonable for a material with purely frictional
strength for which the asymptote K∗ would be linked with the passive pressure
coefficient Kp for the soil. Alternatively, for a normally consolidated clay with
undrained strength cu = ρσ′v, where σ′v is overburden pressure and ρ might
typically be ∼ 0.2 (Muir Wood, 1990), then K∗ would be a simple multiple of
ρ. For example, Randolph and Houlsby (1984) suggest that σh/cu ≈ 10 for flow
of cohesive soil around a cylindrical pile so that K∗ ≈ 2.

The tanh function has the benefit that it is symmetric and will produce
reasonable lateral pressures whatever the sign of the relative movement between
ground and pile. The initial stiffness of the interaction between the pile and the
ground is

dK

d∆
= λ

K∗

d
(8.91)
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Figure 8.44: Development of pressure on pile as result of relative movement
between pile and ground

The actual coefficient of subgrade reaction expressed as stress per unit relative
displacement of pile and ground is

kh =
dσh

d∆
= λK∗γ

`

d
(1− η) (8.92)

with the value kho = λK∗γ`/d at the base of the pile (η = 0).
The degree of nonlinearity introduced by the tanh function is not great at low

values of ∆/δo. The relative movement required to move halfway to the limiting
value (corresponding to K/K∗ = 1/2) is ∆50 = (d ln 3)/(2λ)=(δo ln 3)/(2β) or

β =
ln 3
2

δo

∆50
(8.93)

which provides a potential link between β and other parameters describing the
problem.

In order to complete the equation of elastic deformation of the pile it is
convenient to assume that the lateral stress σh acts over an equivalent width d
which might be assumed to be greater than the diameter of the pile in order to
allow for side friction as the ground flows past the pile and for any ‘boundary
layer’ effect of influence of the pile on the ground movements: d is the equivalent
pile size in freely moving soil. Deformation of the pile is then governed by the
equation

EI
d4y

dz4
= Kγ(`− z)d (8.94)

which can be conveniently rewritten in dimensionless form

d4ζ

dη4
=

1− η

χ

K

K∗ =
1− η

χ
tanh [β (ηα − ζ)] (8.95)

with
χ =

EIδo

`2
1

K∗γ`3d
(8.96)



440 8. Soil-structure interaction

This dimensionless parameter χ indicates the ratio of two moments, one a
structural property and the other a loading characteristic. For a cantilever of
length ` and flexural rigidity EI subjected to a tip displacement δo with no
other loading, the root moment is Mr = 3EIδo/`2. For a cantilever of length
` subjected to lateral pressures over a width d given by the limiting value of
the lateral stress coefficient K = K∗ throughout the depth, the root moment is
Mf = K∗γ`3d/6. Thus χ = Mr/18Mf .

The boundary conditions for the cantilever pile shown in Fig 8.42 are zero
deflection and slope at the base of the pile (assuming complete fixity at the
base): ζ = dζ/dη = 0 for η = 0; and zero moment and shear force at the top of
the pile d2ζ/dη2 = d3ζ/dη3 = 0 for η = 1.

Once the deformation equation (8.95) has been solved to give a profile of
normalised displacement ζ with normalised depth η, the variation of moment
M within the pile can be presented in various dimensionless ways:

µ =
d2ζ

dη2
=

M

EIδo/`2
(8.97)

normalises the moment with input parameters of the problem. The displacement
of the tip of the pile is an output quantity, ymax = ζ1δo, where ζ = ζ1 at η = 1,
which will in general be different from the ground displacement δo. A cantilever
in air whose tip is moved sideways by a distance ymax develops a root moment
Mmax = 3EIymax/`2 so that the alternative dimensionless group µ1

µ1 =
M

Mmax
=

µδo

3ymax
=

µ

3ζ1
(8.98)

allows us to compare the moments in a pile whose lateral movement is brought
about by the translation of the ground with the maximum (root) moment in a
pile in air given the same movement at the top. The dimensionless group µ2:

µ2 =
M

Mf
=

M

K∗γ`3d/6
= 6χµ (8.99)

normalises the moment with the maximum moment that can be generated when
the soil is slipping past the pile and fully mobilising the resistance coefficient
K∗ over the full length of the pile.

Even if we do not have detailed information available, we need to choose
reasonable values of the three controlling parameters α, β and χ. For parametric
studies, a reference value α = 1.0, corresponding to linear variation of ground
movement with depth (Fig 8.43) has been taken and the effect of changing this
by a factor of 2 (to 0.5 and 2.0) has been explored.

The parameter β controls the stiffness of the pile-ground interaction but
its dimensionless definition (8.93) introduces both the relative movement ∆50

required to generate half the limiting load (a parameter of the ground-pile in-
teraction), and the magnitude of the ground surface movement δo—which is
assumed to be quite independent of the pile response. It might be assumed
that ∆50 is about half the pile diameter and that the ground surface movement
is of the same order as the pile diameter. Then, for pile diameter d = 0.5 m
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(= 2∆50), β = 1.1. A reference value β = 1.0 has been used for parametric stud-
ies and the effect of increasing and decreasing this has been explored. Stiffer
pile-ground interaction (lower ∆50) will imply increased β. An earlier stage in
the overall process of ground movement after installation of the piles will imply
lower δo and hence a decreased value of β.

Typical values of χ can be deduced for appropriate assumed values for the
parameters defining the problem:

• ground surface movement: δo = 0.5 m (as before)

• pile diameter: d = 0.5 m (implying I = πd4/64 ≈ 0.0031 m4)

• Young’s modulus for concrete: E = 30 GPa

• pile length: ` = 10 m

• ground unit weight: γ = 10 kN/m3

• limiting lateral pressure coefficient: K∗ = 2 (corresponding to Rankine
passive pressure ratio Kp for angle of friction φ′ ≈ 20◦ or to the Randolph
and Houlsby (1984) treatment of normally consolidated clay noted above).

Then χ = 0.0464. A reference value χ = 0.05 has been used for parametric
studies and the effect of increasing and decreasing this has been explored over
the range 0.0004 to 0.1. The value of χ is very sensitive to the details of the
pile geometry: χ ∝ d3 and `−5 (see (8.96)).

The governing equation (8.95) is extremely nonlinear but is capable of nu-
merical solution using standard routines10. Results are shown in plots of dimen-
sionless pile displacement ζ = y/δo (Fig 8.45) and of dimensionless moment µ1

(Fig 8.46) with dimensionless position on the pile η = z/`.
The effect of varying the profile of ground movement through the parameter

α is shown in Figs 8.45a and 8.46a. The greater the average movement of the
ground (the lower the value of α) the greater the load on the pile and the greater
the pile movement and root moment. Fig 8.46a appears to show little influence
of α but recall that µ1 scales moment with pile tip movement (8.98) and this
is certainly influenced by α (Fig 8.45a). The value of α is not something over
which the engineer has much control, but any tendency for mass movement of
the ground to occur will certainly be very damaging for any structure trying to
impede the motion. Most analyses have been performed with α kept constant
at 1.0 corresponding to linear variation of ground translation with depth.

The pile displacements and moments are very sensitive to the stiffness of
the interaction between the pile and the ground: the higher the value of β the
larger the displacements and moments (Figs 8.45b, c and 8.46b, c). However,
the effect of changing β is dependent on the pile stiffness, as reflected in the
parameter χ. With a lower value of χ = 0.002, the tip deflection of the pile is
hardly affected by the value of β for β > 1.0 (Fig 8.45c) although the greater
curvature at the toe of the pile leads to much higher moments.

Increase of pile stiffness through χ has the expected effect of reducing pile
deflection (compare Figs 8.45b, c). However, reducing χ below 0.002 has little

10I am grateful to Jörgen Johansson for programming the solution of (8.95).
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Figure 8.47: Influence of β and χ on (a) maximum deflection and (b) maximum
moment developed in pile

additional effect on the pile displacements although the curvature at the toe of
the pile is slightly increased. The profile of dimensionless moment, µ1, remains
unchanged for values of pile stiffness χ > 0.05 (Fig 8.46b). For the most flexible
pile considered the maximum moment is nearly 6 times the free air value; for the
stiffer piles it is still more than 50% higher than this value. It can be concluded
that observation of pile tip movement at the ground surface gives a very poor
indication of the magnitude of moments in the pile.

The interaction of values of β and χ in influencing the tip movement and root
moment is shown in Fig 8.47. It is clear that for a very flexible pile (χ = 0.0004)
the tip movement is more or less equal to the ground movement for all values
of β, whereas for less flexible piles the proportion of ground movement at the
tip increases with β (or, which is equivalent, with δo). Similarly, the scaled
moment, µ1, is independent of β for higher values of pile stiffness; these scaled
moments are always at least 50% higher than those obtained for the cantilever
displaced in free air.

Since the two dimensionless parameters β and χ both contain the surface
ground movement δo, the process of gradual mobilisation of ground-pile inter-
action for a given pile can be followed by varying both β and χ in appropriate
constant proportion.

β

χ
=

ln 3
2

δo

∆50

`2

EIδo

(
K∗γ`3d

)
=

ln 3
2

K∗γ`5

EI

d

∆50
(8.100)

and for the typical values that we have suggested here, β/χ ≈ 20. We can
follow the gradual mobilisation of pile moment by looking at the variation of the
normalised moment µ2 (8.99) with increasing normalised ground displacement
δo/d ≈ β (Fig 8.48). As ground displacement builds up this normalised moment
approaches 1: the ground:pile earth pressure coefficient is close to K∗ over the
whole length of the pile. A lower ratio β/χ indicates a stiffer pile: for stiffer
piles the limiting moment is reached more rapidly.

The moments generated in a pile by translating ground have been shown
to be dependent on three dimensionless parameters and thus the results are
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Figure 8.48: Development of (a) pile top movement and (b) pile toe moment
with ground movement

of completely general application. Not all of these parameters can be easily
controlled by a designer. The profile of ground movement with depth, through
parameter α, has a major influence on pile response and deep mass movement
of the ground will be particularly damaging. The stiffness of the pile and the
stiffness of the interaction between the pile and ground combine in their effect on
pile movement and moments. The ground-pile stiffness is not easy to specify. It
is linked with some estimate of coefficient of subgrade reaction—but subgrade
reaction is a notoriously empirical concept. The link with some assessment
of the relative movement required to generate limiting loads on the pile may
be more useful. However, this dimensionless form of β that emerges from the
analysis includes characteristics of both the pile-ground interaction (∆50) and
the ground deformation (δo) which are essentially independent. For a poorly
compacted fill β is likely to be towards the lower end of the range of values
that has been studied. The parameter χ is easier to assess provided that some
estimate of the limiting pile-ground interaction coefficient K∗ can be obtained.
All the other quantities are directly known.

Faced with an apparently difficult problem the geotechnical engineer is not
permitted just to throw up his or her hands in despair. This section has tried
to show how such a problem can be logically dissected and made ultimately
amenable to analysis.

8.10 Integral bridge abutment

The examples of soil-structure interaction that we have considered so far have
either dealt only with elastic materials (soil and structure), or have permitted
nonlinear soil behaviour but with a very simple geometry (tunnel), or have
treated the nonlinearity in a rather simplistic way (nonlinear subgrade reaction
springs). Such analyses are important in providing qualitative or quantitative
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insight into the character of the response but in order to obtain a more complete
picture of the consequences of soil-structure interaction a full numerical analysis
will usually be unavoidable. We present here the results of such an analysis—
albeit using a rather basic soil model—which has assisted in understanding
the behaviour of integral bridge abutments. The results are initially slightly
counterintuitional. Fuller details of the analyses are provided by Muir Wood
(1999b) and Muir Wood and Nash (2000).

Traditionally highway bridges have been constructed with their deck sec-
tions structurally separated from their supporting abutments by bearings which
permit relative sliding movement to occur as the length of the deck changes
as a result of thermal effects (Fig 8.49a). However, these bearings tend to be
adversely affected by the de-icing salts that are used on United Kingdom roads
and by other sources of corrosion and consequently are in need of regular in-
spection and maintenance. In order to reduce some of these continuing costs
associated with highway bridges it has become popular recently in the United
Kingdom to construct so-called integral bridges in which the deck is connected
directly to the abutments with no intervening bearings (Fig 8.49b). Bearings
do of course make it possible for the daily and seasonal thermal expansion of
the bridge deck to be accommodated as movement relative to the abutments.
Without this freedom the thermal expansion must be accommodated through
interaction of the abutments themselves with the fill that is placed behind them.
From a structural point of view, the design question is: what are the magnitudes
of the earth pressures that are generated on the abutments and what are the
magnitudes of the resulting bending moments?

It appears that this is a simple problem of calculation of earth pressures
and, since thermal expansion causes the abutment wall to move towards the
fill, it must be passive pressures that will dominate the loading. However, it is
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known that passive pressures are mobilised rather slowly with increasing wall
displacement so it must be appropriate to make some allowance for actual wall
movement in estimating the passive pressure coefficient to be used. On the other
hand, the process of construction of the abutment will involve compaction of
the fill and this will itself lock in certain initial stresses into the wall.

In fact, this is a classic example of soil-structure interaction where the struc-
tural consequences of the thermal movements are dependent on the relative
stiffness of the fill and the structure. We present some numerical analyses of a
typical integral bridge abutment which explore the way in which earth pressures
are generated and calculate the consequent abutment bending moments. Para-
metric studies have been performed to indicate those properties of the backfill
or of the structural materials which have the greatest influence on the earth
pressures and bending moments. The structural stiffness properties will usually
be known quite closely. However, the properties of the backfill may be more
uncertain. In particular, since this is a problem of soil-structure interaction, it
is important to be able to estimate the stiffness of the fill—this will usually be
neither known nor controlled.

So far as earth pressures on integral bridge abutments are concerned, the
design guidance in the United Kingdom at the time of the analyses (Highways
Agency, 1996) proposed that the earth pressure coefficient should be equal to
K∗ over the top half of the retained height H of the wall (Fig 8.50)

K∗ = Kp

(
δ

0.05H

)0.4

(8.101)

where Kp is the passive pressure coefficient (calculated taking appropriate ac-
count of the interface friction between the abutment and the backfill) and δ
is the horizontal displacement at the top of the abutment wall due to thermal
expansion of the deck. The lateral pressure then remains constant with depth
as the earth pressure coefficient drops to the earth pressure coefficient at rest
Ko and then the earth pressure coefficient remains constant at Ko below this
depth (Fig 8.50). There is an additional limit on K∗ that it should not be lower
than either Ko or Kp/3 and it is this latter restriction that tends to be limiting
once the angle of shearing resistance of the backfill becomes high so that the
deformation (and hence flexibility) of the abutment wall is then not allowed
to have any effect on the resulting stresses. The value of the earth pressure
coefficient at rest Ko is linked with the angle of shearing resistance φ′ (§3.8):

Ko = 1− sin φ′ (8.102)

These proposals for estimation of the pressures resulting from the thermal
expansion of integral bridges make no allowance for the flexibility of the abut-
ment. The bridge abutment is primarily required to resist the vertical load
from the bridge deck so that the main requirement is that it should be stiff ver-
tically. It must be sufficiently strong laterally to contain the fill (and possibly
resist loads generated by the traffic on the approach embankment) but lateral
stiffness is not essential. An extremely flexible abutment will withstand deck
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expansion by flexure near its top and may not move towards the fill lower down
its height sufficiently to generate any significant passive pressures: indeed it
may retain an outward deflection from the initial construction placement and
compaction of the backfill (Fig 8.51). A much stiffer or rigid abutment would
tend to move into the backfill more monolithically (Fig 8.51) and would be ex-
pected to generate passive pressures over much of its height. Since structural
costs will be controlled by the magnitude of the bending moments that arise
in the abutment there is some advantage in aiming for a flexible structural ele-
ment which tries to reduce the mobilisation of high earth pressures. This is yet
another example of soil-structure interaction where the structural consequences
of the thermal movements are dependent on the relative stiffness of the fill and
the structure.

Numerical analyses have been performed using the finite difference program
FLAC (Itasca, 2000). The model chosen for analysis is a slightly simplified
version of a prototype integral bridge with a continuous deck across two equal
spans constructed in a limestone rock cutting with side slopes cut at 1:1.5 (Fig
8.52a). The bridge has two equal spans of 26.3 m. The abutments are 8.8 m
high and are pinned at their bases to pad footings founded on the rock. The
section through the abutment has been analysed in plane strain: it is assumed
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that the abutment earth wing walls provide sufficient restraint to make this an
appropriate assumption. A plane strain analysis will anyway tend to overesti-
mate the earth pressures if there is in reality some deformation out of plane.
The grid used for the analyses is shown in Fig 8.52b.

The fill is built up from 20 layers of elements with heights chosen to fit
in with the changes in the structural abutment section properties as shown in
Table 8.7. The rock cutting beyond the backfill is modelled as a stiff and strong
Mohr-Coulomb material (friction angle 30◦, cohesion 1010 kPa, dilation angle
zero, shear modulus 105 kPa, bulk modulus 2×105 kPa). The bottom boundary
of the backfill and the left hand boundary of the rock are both smooth and rigid.

The abutment and bridge deck are composed of ‘beam’ elements. The abut-
ment wall, also of height 8.8 m, is composed of 20 elements with lengths chosen
to fit in with changes in section properties (taken from the prototype) as shown
in Table 8.7. The deck is composed of 20 elements with total length 26.3 m
representing half the bridge. Individual lengths have been chosen to fit in with
the changes in structural section as shown in Table 8.7.

The abutment elements are separated from the backfill by a layer of interface
elements. At its top the abutment has full moment connection to the deck. At
the centre of the bridge, where there is a supporting pier, the deck is prevented
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Table 8.7: Section properties for structural elements

number element cross- second
of length sectional moment note

elements area of area
m m2/m m4/m

Abutment

0 - 6.9 m 16 0.43125 0.8 0.0427 uncracked
0.2533 0.02 cracked

6.9 - 8.8 m 4 0.475 0.9 0.0607 uncracked
0.28 0.0273 cracked

Deck

0 - 2 m 2 1 0.713 0.124 diaphragms cracked
2 - 6.35 m 4 1.0875 0.413 0.093 slab cracked

6.35 - 19.95 m 8 1.7 0.553 0.143 uncracked
19.95 - 24.3 m 4 1.0875 0.413 0.093 slab cracked
24.3 - 26.3 m 2 1 0.713 0.124 diaphragms cracked

from vertical movement and rotation and a plane of symmetry is assumed for
the analysis.

In the analysis the backfill is placed layer by layer, and each layer is ‘com-
pacted’ by adding and removing a vertical stress of 20 kPa to model, at least
partially, the real construction operation using a moving vibrating roller moving
over the surface of each layer of fill. Once construction of the backfill is com-
plete, no surcharge loading has been applied to either the backfill or the bridge
deck during the thermal expansion. The results that are obtained thus relate
purely to the expansion process since this is the loading case that is expected
to be limiting for structural design of the abutment wall.

Thermal expansion of the bridge deck is represented by a horizontal move-
ment of the centre of the bridge sufficient to produce a movement of 11 mm at
the top of the abutment. With a coefficient of thermal expansion of concrete
of 12 × 10−6/◦C this corresponds to a seasonal temperature range of about
35◦C. The actual thermal expansion is of course distributed along the deck but
the structural consequences for the abutment will be identical using this more
convenient mode of loading of the numerical model.

The abutment and deck beam elements are modelled as elastic concrete.
The reinforced concrete was specified to have Young’s modulus 34 GPa. The
formulation of the beam elements in FLAC assumes that they are plane stress
elements. In order to match them to a plane strain analysis it is necessary to
modify the Young’s modulus by a factor 1/(1−ν2) (Itasca, 2000). Poisson’s ratio
ν has been taken as 0.3 for concrete, so that the analyses have been performed
using a value of concrete Young’s modulus of 37.36 GPa.

As is typical for many structures of this type, the information available from
which the properties of the backfill can be deduced is extremely limited. Since
the design procedure makes use of a terminology of frictional limiting pressures it
seems appropriate to model the backfill using a Mohr-Coulomb model (§3.3.4).
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This model assumes that the soil behaves elastically (and isotropically) until
a limiting frictional strength is reached. It certainly provides a rather crude
representation of the way in which real soils deform before failure (and fails
to reproduce the steady fall in soil stiffness that is known to occur in reality
prior to failure). Equally the unavailability of information about the fill gives
no justification for greater modelling sophistication. The model requires the
specification of two elastic stiffness properties (for example, shear modulus and
bulk modulus or Young’s modulus and Poisson’s ratio) together with a frictional
strength, and an angle of dilatancy for the material.

Because the design guidance links earth pressure generation to passive pres-
sure coefficients the result is very sensitive to the value that is chosen for the
angle of friction of the fill. In practice, there are competing requirements. The
fill is required to have a low strength in order to reduce these passive pressures:
and that might typically lead to a specification of a uniform rounded granular
material. However, the fill is also the material which supports the approach
roadway and for this purpose it is required to have high stiffness so that it will
not generate excessive settlements during the life of the structure. For high
stiffness a well-graded fill may be more appropriate but this is likely to have
a higher angle of friction. Since it might be intuitively assumed that angle of
friction would be the principal variable affecting the performance of the inte-
gral bridge abutment, analyses have been performed using angles of friction
φ′ = 35 to 55◦ in order to enable calculations to be made across a full potential
range of actual fill strengths.

A zero angle of dilation has been used for all the analyses presented here.
The angle of dilation describes the volumetric deformations that occur when
frictional failure is reached. The present problem has a large unrestrained free
surface and it is found that dilatancy has negligible influence on the system
response.

There is no available information concerning the stiffness properties of the
prototype granular backfill material (crushed limestone). It has been assumed
that Young’s modulus for the backfill varies according to some power of the
confining stress:

E = Eo

(
σ

σo

)α

(8.103)

with the reference stress σo = 100 kPa (approximately equal to atmospheric
pressure) and the exponent α = 0.5. With the range of vertical overburden
stresses in the different layers of backfill this implies that the stiffness will vary
from 0.216Eo in the surface layer to 1.298Eo in the bottom layer of the model.
The range of possible values of the reference stiffness Eo is large. Muir Wood
and Nash (2000) show, from a brief review of the literature, that a minimum
value Eo = 20 MPa and a maximum value Eo = 180 MPa would be reasonable
with a value Eo = 60 MPa seen as a ‘best estimate’. Poisson’s ratio for the
backfill material has been taken as 0.3 throughout.

The interface between the abutment and the backfill has to be given stiffness
properties as well as strength properties. The stiffness relates movements and
forces from nodes on opposite sides of the interface but plays no role in analyses
of the type reported here: normal and shear stiffnesses of 1010 kN/m have been
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used. The limiting frictional strength on the interface has been set at half the
angle of shearing resistance of the backfill. (An analysis with a smooth interface
showed little difference in the structural response.)

Detailed results of the numerical analyses are provided by Muir Wood and
Nash (2000): here we will concentrate on the structural consequences of the
soil-structure interaction at the end of thermal expansion of the bridge deck
into the backfill. The analysis with φ′ = 45◦ and Eo = 60 MPa is taken as a
reference analysis.

The principal surprise is that backfill strength has negligible effect on the
horizontal stresses in the abutment (Fig 8.53a). Backfill stiffness on the other
hand has a dramatic effect (Figs 8.53b, 8.54). That it is in fact relative stiffness
that is important is shown by performing analyses in which the structural section
properties are first modestly reduced to allow for cracking of some of the tensile
concrete (Table 8.7), and then artificially reduced by a factor of 10 (10% concrete
stiffness in Fig 8.53c). The pattern of horizontal stresses depends on the relative
stiffness; the absolute values of the horizontal stresses depend on the absolute
soil stiffness. It may be noted that the shapes of the horizontal stress profiles
are very similar to those observed by Rowe (1952) in his tests on model flexible
retaining walls (Fig 8.33b). Except for the highest backfill stiffness—and even
then only at the very top of the abutment—the stresses are much lower than
the design line assuming an earth pressure coefficient Kp/3 shown for φ′ = 45◦.

Horizontal displacements of the abutment, for the various values of backfill
stiffness, are shown in Fig 8.54a. Unless the flexural stiffness of the abutment
is made artificially low the abutment does indeed move towards the fill through
its entire height. The deflections are always lower than those of the structure
subjected to thermal expansion in the absence of the fill: the curvature of the
wall is reversed through most of the height as a result of the earth pressures
that are generated (Fig 8.54a).

The horizontal stresses, horizontal deflections and bending moments com-
puted in the reference analysis (φ′ = 45◦, Eo = 60 MPa) are compared in Fig
8.55 with the corresponding values that emerge from application of the design
guidance with φ′ = 35◦ and 45◦. The profile of horizontal stress is completely
different (Fig 8.55a). The design guidance results in wall deflections away from
the backfill over much of the height of the abutment (Fig 8.55b) which is of
course in contradiction with the basic underpinning hypothesis of the guidance
that the earth pressures are generated by passive soil deformation. And the
bending moments are greatly overpredicted (Fig 8.55c)—the maximum sagging
moment is some 7 times greater and the maximum hogging moment, at the top
of the wall, about 3 times greater.

The apparently counterintuitional almost complete independence of the re-
sults from the angle of friction of the backfill over the range from 35◦ to 55◦

can be understood when the stress path for a typical element of soil at mid-
height just behind the wall (indicated in Fig 8.52b) is considered (Fig 8.56a).
There is of course some rotation of principal axes (Fig 8.56b) resulting from
the generation of shear stresses on vertical planes in the backfill from the shear
resistance on the back of the wall so that principal stresses are not actually
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sufficient to describe the stress state completely. However, in terms of principal
stress quantities—the major and minor principal stresses σ1 and σ3—a plane
strain mean stress s = (σ1 + σ3)/2 and shear stress t = (σ1 − σ3)/2 can be
defined (compare §2.4, §3.8, §7.5.1).

Yielding of the backfill—mobilisation of the available shearing resistance—
is confined to a small row of elements close to the top of the wall where the
stress level is low and the strain forced on the fill by the deck expansion brings
the fill to Mohr-Coulomb failure (Fig 8.52b). There is also a group of yielding
elements near the bottom of the wall where, although the lateral movements
are low (the toe of the abutment is pinned and not allowed to move), the fill is
being squeezed between the abutment and the rock. The detail revealed from
the numerical analysis is a little crude in this region because of the coarseness
of the mesh and the approximate way in which the inclined boundary of the
rock cutting has been modelled.

Around the mid-height of the wall, where the most significant stress changes
occur, the effect of the movement of the abutment into the backfill is to move
the state of the soil away from failure (Fig 8.56a). At the end of construction
the major principal compressive stress is approximately vertical (Fig 8.56b).
The compaction process, as modelled, is a somewhat one-dimensional loading
and unloading of the backfill, but with the flexibility of the abutment allowing
a little lateral stress relief. The movement of the wall towards the backfill then
tends to increase the horizontal stress producing a major change in mean stress
s but a rather small change in the shear stress t, thus moving the stress state
towards a more isotropic condition with a lower mobilised angle of friction. The
wall friction is also helping to generate some additional vertical stress and hence
provide some additional confinement to the fill. The majority of the backfill is
therefore being loaded entirely elastically (as indicated by the absence of yielding
in Fig 8.52b) and its frictional strength plays no important role—except just
towards the top of the abutment—but the stresses here have negligible effect on
the generation of moments in the abutment.

The stiffness of the actual backfill is not known. The Mohr-Coulomb model
has been used here in the absence of sufficient data on the behaviour of the
backfill materials to warrant any greater sophistication. This model assumes
that the soil behaves elastically until the frictional failure state is reached. It is
known that all real granular materials show a steady fall in stiffness from any
initial stress state towards failure. The incremental stiffness that is mobilised is
dependent on the direction of the current stress changes in relation to previous
stress changes (§2.5.3): persistent travel along a stress path in one direction
leads to reducing stiffness; reversal of movement leads to higher stiffness.

The highest value of reference stiffness for the backfill, Eo = 180 MPa, prob-
ably tends towards the dynamic stiffness which will only be relevant for very
small strain excursions and will not be appropriate for a complete episode of
bridge deck expansion. It can be deduced from the analyses that a fall in in-
cremental backfill stiffness will lead to a reduction in the lateral stresses and
resulting moments. Any tendency to further compaction of the backfill through
the life of the structure, as a result of the cyclic seasonal expansion of the bridge
or as a result of steady low level cyclic traffic loading, would tend to lead to an
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increase in the stiffness of the fill and hence a tendency to generate increased
stresses towards the top of the backfill and increased moments during any one
expansion episode. The standard Mohr-Coulomb model is not sufficiently ad-
vanced to be able to make any useful prediction for this situation. However, if,
using this simple model, a series of cycles of bridge deck expansion and contrac-
tion is applied, the extent of the already small region in which yielding occurs
diminishes until, after three complete cycles, there is no further yielding. The
stress paths during these cycles more or less reverse and repeat those shown for
the first episode of deck expansion (Fig 8.56c)—a further indication that though
there are nonlinearities in the system the process is predominantly elastic.

The analyses have deliberately concentrated on a structure which has rela-
tively low abutment flexural stiffness: this seems to be efficient in performing
the bridge support role that is required of it. Passive pressures can only be gen-
erated if the wall moves in towards the soil; design horizontal pressures based
on partial mobilisation of passive pressures will lead to outward movement of
the wall when applied to a flexible structural element. Once the stress paths
for soil elements have been inspected the computed behaviour of the overall
backfill-abutment system is seen to be entirely plausible. There is a message
here: do not pause in the assessment of results of numerical modelling until any
anomalies have been satisfactorily explained.

8.11 Closure

The numerical analysis of the final case study of soil-structure interaction con-
firms a message that has been repeated several times in this chapter. Structural
resultants—which will be required for structural design purposes—are controlled
by relative stiffness of structure and ground and not primarily by soil strength.
The ‘sad, perpetual strain’ is that problems of soil-structure interaction must be
considered as complete systems. Attempts to consider the soil and the structure
separately are doomed to failure since their intricate interaction cannot then be
understood.

A corollary of this might be that close control over structural consequences
of soil-structure interaction can only be achieved through reliable knowledge or
control of soil stiffness. The word ‘stiffness’ is intended to imply a model of
the deformation response of the soil which might (or might not) be an elastic
model. Certainly it implies laboratory or in-situ testing designed to reveal
deformation and not just strength characteristics. For man-made (‘designer’)
soils, such as the crushed rock fill of the final example, stiffness is expected to be
correlated in a general way with strength so that although stiffness effects are
not regularly reliably determined, a link between compactive effort and density
and strength might be used to infer a value of stiffness. However, this is not
really a satisfactory substitute for direct stiffness measurement.



9

Envoi

It is said that Gerd Gudehus, visiting Cambridge from Karlsruhe in the 1960s,
described with Cartesian conviction the way in which mathematical modelling
held the key to understanding and reproducing soil behaviour. In response
Andrew Schofield, coming from an environment of Baconian scepticism, opined
that ‘The soil will defeat you!’ and returned to his direct observation of soil
behaviour in early British geotechnical centrifuges. I have tried in this book
to give a flavour of many of the different aspects of theoretical and physical
modelling that might help us to at least obtain a truce in our battles with the
soil.

Modelling is personal. This book contains an eclectic, personal collection of
tools, techniques and technologies that seem to have some place in geotechni-
cal modelling. However, whatever modelling you undertake, you need to feel
comfortable with the approaches and simplifications that have been adopted.
It is much easier to defend your own decisions than those which you have had
reluctantly thrust upon you1.

My modelling choices
Are founded in logic.
Can I convince you?

Modelling should attempt to surprise. Modelling to support design may be
performed to provide reassurance. Modelling to further geotechnical under-
standing should deliberately set out to surprise.

If you look down,
Are you surprised to see

Only your feet?

If we only perform routine tests and explore the response of our constitutive and
theoretical models only within the context of these tests then, not only is there

1When I spoke on a related theme in Japan a few years ago I introduced a number of
haiku-like apophthegms to encapsulate some of the messages that I was attempting to convey
(Muir Wood, 1995). I reproduce some similar messages here. Purists will remark that haiku
should have 5-7-5 syllables and have a seasonal allusion.
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the danger that we will fail to discover possible irregularities in our theoretical
models, but also we are neglecting potentially wide and fascinating tracts of
geotechnical knowledge which are awaiting exploration.

The train keeps to the tracks
But the country around
Remains unexplored.

Modelling should be justifiable. Modelling is concerned with appropriate
simplification of reality. The emphasis is obviously on appropriate.

Modelling must be auditable. The steps taken along the way and the as-
sumptions and simplifications must be declared so that your findings—whether
experimental or numerical—can be reproduced.

Modelling should be adequately complex. I suspect that the more complex the
model the more the modelling itself will obscure the underpinning mechanics of
soil behaviour and geotechnical system behaviour which we are trying to probe
and understand. The art of successful modelling is to include just enough detail
for the implied simplification to be reasonable for the particular application.
Modelling assumptions will differ in different contexts.

Show the trees in the wood:
but must we include

all the reeds on the muir?

‘Scientific understanding proceeds by way of constructing and analysing models
of the segments or aspects of reality under study. The purpose of these mod-
els is not to give a mirror image of reality, not to include all its elements in
their exact sizes and proportions, but rather to single out and make available
for intensive investigation those elements which are decisive. We abstract from
non-essentials, we blot out the unimportant to get an unobstructed view of the
important, we magnify in order to improve the range and accuracy of our obser-
vation. A model is, and must be, unrealistic in the sense in which the word is
most commonly used. Nevertheless, and in a sense, paradoxically, if it is a good
model it provides the key to understanding reality.’ (Baran and Sweezy, 1968)

Modelling is local. It follows that geotechnical modelling will be ‘local’ in the
sense that it will try to describe well the behaviour under modest perturbations
of engineering interest from the current state. This is about extrapolation. The
more distant the extrapolation the more chaotically uncertain the reliability
of the outcome will be. A detailed distant model may be so complex that it
becomes unwieldy.

The excellent map
misses no detail, but it is

as large as the world.

Modelling should be elegant? Dirac is supposed to have written on a black-
board in Moscow: ‘It is more important to have beauty in one’s equations than
to have them fit experiment.’ This seems to be a misguided sentiment in the
context of modelling for geotechnical engineering. We know that soils are com-
plex materials—I do not believe that we yet understand enough of the richness
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of their behaviour to be dogmatic about the ways in which we should model
them. Beauty and elegance in modelling are satisfying but we should ensure
that they do not unduly distract.

In the end there is a need for compromise between several of the competing
demands but also a need to exploit the complementary benefits of different
modelling possibilities. The realism of physical modelling may provide insights
of which numerical modelling is incapable—especially where novel engineering
solutions are being proposed. But the observations of experiment can provide
the data necessary to refine the numerical models.

Those involved in modelling tend to become more interested in the process
than its purpose:

the stimulation of simulation is greater than the pleasurement of measurement:
but it makes you go blind.
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geotecnica, Università di Roma ‘La Sapienza’.

Callisto, L, Gajo, A and Muir Wood, D (2002) Simulation of stress probe
tests on natural and reconstituted Pisa clay. Géotechnique 52 (9) 649-666.
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den. Danmarks Naturvidenskabelige Samfund, København. Ingeniørvidenskab-
elige Skrifter A45 (English translation (1969) Physical properties of remoulded
cohesive soils. US Waterways Experimental Station, Vicksburg, Mississippi,
report 69-5).

Iai, S (1989) Similitude for shaking table tests on soil-structure-fluid model in
1g gravitational field. Soils and Foundations 29 (1) 105-118.

Imamura, S, Hagiwara, T, Mito, K, Nomoto, T and Kusakabe, O
(1998) Settlement trough above a model shield observed in a centrifuge. Proc.
Int. Conf. Centrifuge 98, Tokyo (eds T Kimura, O Kusakabe and J Takemura)
AA Balkema, Rotterdam 1 713-719.

Institution of Structural Engineers, Institution of Civil Engi-
neers, International Association for Bridge and Structural En-
gineering (1989) Soil-structure interaction: The real behaviour of structures.
Institution of Structural Engineers, London.

Ishibashi, I, Chen, Y-C and Jenkins, JT (1988) Dynamic shear modulus
and fabric: Part II: Stress reversal. Géotechnique 38 (1) 33-37.
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Nuñez, I and Randolph, MF (1984) Tension pile behaviour in clay - cen-
trifuge modelling techniques. Application of centrifuge modelling to geotechnical
design (ed WH Craig) AA Balkema, Rotterdam 87-102.

Oda, M and Iwashita, K (eds) (1999) Mechanics of granular materials: an
introduction. AA Balkema, Rotterdam.



Bibliography 473

Paolucci, R (1997) Simplified evaluation of earthquake-induced permanent
displacements of shallow foundations. Journal of Earthquake Engineering 1 (3)
563-579.

Pennington, DS, Nash, DFT and Lings, ML (1997) Anisotropy of Go

shear stiffness in Gault clay. Géotechnique 47 (3) 391-398.

Pennington, DS, Nash, DFT and Lings, ML (2001) Horizontally mounted
bender elements for measuring anisotropic shear moduli in triaxial clay speci-
mens. Geotechnical Testing Journal 24 (2) 133-144.

Phillips, R, Guo, PJ and Popescu, R (eds) (2002) Physical modelling in
geotechnics: ICPMG’02, Newfoundland, AA Balkema Publishers, Lisse.

Potts, DM (2003) Numerical analysis: a virtual dream or practical reality?
(42nd Rankine Lecture). Géotechnique 53 (6) 535-573.
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Šuklje, L (1957) The analysis of the consolidation process by the isotache
method. Proc. 4th Int. Conf. on Soil Mechanics and Foundation Engineering,
Butterworths Scientific Publications, London 1 200-206.

Take, WA and Bolton, MD (2002) An atmospheric chamber for the in-
vestigation of the effect of seasonal moisture changes on clay slopes. Physical
modelling in geotechnics: ICPMG’02, Newfoundland (eds R Phillips, PJ Guo
and R Popescu) AA Balkema Publishers, Lisse 765-770.

Tamate, S and Takahashi, A (2000) Manual of basic centrifuge tests: 6,
Slope stability test. Proc. Int. Conf. Centrifuge 98, Tokyo (eds T Kimura, O
Kusakabe and J Takemura) AA Balkema, Rotterdam 2 1077-1083.

Taylor, DW (1948) Fundamentals of soil mechanics. John Wiley, New York.

Taylor, GI and Quinney, H (1931) The plastic distortion of metals. Phil.
Trans. Roy. Soc. A230 323-362.

Taylor, RN (ed) (1995) Geotechnical centrifuge technology. Blackie Academic
and Professional, London.

Taylor, RN, Grant, RJ, Robson, S and Kuwano, J (1998) An image
analysis system for determining plane and 3-D displacements in soil models.
Proc. Int. Conf. Centrifuge 98, Tokyo (eds T Kimura, O Kusakabe and J
Takemura) AA Balkema, Rotterdam 1 73-78.

Terzaghi, K (1955) Evaluation of coefficients of subgrade reaction. Géotech-
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