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Preface

Modelling forms an implicit part of all engineering design but many engineers
are not aware either of the fact that they are making assumptions as part of
the modelling or of the nature and consequences of those assumptions. Many
engineers make use of numerical modelling but may not have stopped to think
about the approximations and assumptions that are implicit in that modelling—
still less about the nature of the constitutive models that may have been invoked.
Many engineers are probably not aware of the possibilities and implications of
physical modelling either at single gravity or on a centrifuge at multiple gravities.

I have worked for many years at the interface between research and industry
in developing numerical models of soil behaviour and in attempting to explain to
practising engineers the possibilities of soil modelling. In particular, in 1996 and
1997 I held a Royal Society Industry Fellowship to be seconded to work within
Babtie Group with both geotechnical and structural engineers and as a result
became more aware of the realities of the conditions within typical consulting
engineering companies. This book was conceived during that secondment. The
scope of the book attempts to cover the range of guidance that I believe that
engineers who are undertaking geotechnical modelling need. I hope that they
will find the approach accessible.

Much of the material in this book has been developed during courses given to
final year MEng and postgraduate students at Bristol University and elsewhere.
The reader is assumed to have a familiarity with basic soil mechanics and with
traditional methods of geotechnical design. Some modest mathematical ability
is expected: this is not intended to deter, but rather to indicate the nature of
the theoretical understanding that is necessary if geotechnical modelling is to
be safely undertaken.

My previous book Soil behaviour and critical state soil mechanics (Muir
Wood, 1990) used a particular constitutive model for soil behaviour, Cam clay,
as a vehicle for describing the mechanical behaviour of soils and of some simple
geotechnical structures. While Cam clay is presented briefly in section §3.4.2,
this present book deliberately tries not to repeat too much of the material in
that earlier book: there is more description of simple alternative constitutive
models and of the modelling of a range of geotechnical systems. The two books
should be seen as complementary.

I am grateful to the Royal Society for the Industry Fellowship and to Babtie
Group for welcoming me into their midst: they may not have anticipated that
this would have been the outcome. This book project has inevitably lingered
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iv Preface

and I am grateful to Bristol University for giving me a University Research
Fellowship during academic year 2002-2003 in order to give me slightly more
time to work on the manuscript. The final surge to completion was greatly
helped by a Visiting Professorship funded by the Foundation for the Promotion
of Industrial Science which Kazuo Konagai arranged for me at the Institute
of Industrial Science of the University of Tokyo. Osamu Kusakabe gave me
particular assistance in locating references at Tokyo Institute of Technology.
Jacques Garnier, Charles Ng and Sarah Springman were also generous with
information and images.

Erdin Ibraim and Adrian Russell provided some helpful suggestions for im-
provement. However, the rapid march to complete the manuscript—schnell zum
Schlufl—will surely have left errors for which I apologise and accept full respon-
sibility. I can only hope that the irritation attendant on their discovery will be
more than compensated by the educational benefit associated with the working
through to the correct results.

I am grateful to editorial staff at E & FN Spon for their patience.

I thank Helen for tolerating my obsessive work on a second book.

David Muir Wood
Abbots Leigh
April 2004
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Introduction to modelling

1.1 Introduction

In the same way that we may be surprised to find that prose is what we have been
speaking all our lives, so scientists and engineers are often unaware that almost
everything that they do is concerned with modelling. This book is concerned
with the application of principles of modelling to soil mechanics and geotechnical
engineering.

A model is an appropriate simplification of reality. The skill in modelling
is to spot the appropriate level of simplification—to recognise those features
which are important and those which are unimportant. Very often engineers
are unaware of the simplifications that they have made and problems may arise
precisely because the assumptions that have been made are inappropriate in a
particular application.

Engineering is fundamentally concerned with modelling. Engineering is con-
cerned with finding solutions to real problems—we cannot simply look around
until we find problems that we think we can solve. We need to be able to see
through to the essence of the problem and identify the key features which need
to be modelled—which is to say those features of which we need to take ac-
count and include in the design. One aspect of engineering judgement is the
identification of those features which we believe it safe to ignore.

In this chapter the theme of modelling is introduced by reference to modelling
activities that are familiar from early and standard courses in soil mechanics
and geotechnical engineering within degree programmes in civil engineering and
which form the basis for the development of geotechnical design. The scope of
subsequent chapters of the book is then defined.

1.2 Empirical models
Although the preference in this book is for models which have a sound analytical

or theoretical basis there is a long history of empirical modelling in geotechnical
engineering. The dictionary tells us that empiricism rests solely on experience
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Figure 1.1: Bearing capacity of shallow foundation on clay

and rejects all prior knowledge (and defines an empiric as a ‘quack’). Precisely
because soils are tricky materials to deal with, a lot of geotechnical engineering
has had to be based on experience—because the more rigorous modelling tools
have tended to lag behind the demands of the industry. Many of the techniques
have been semi-empirical rather than purely empirical. A few examples are
given here. It may be objected that these are empirical procedures rather than
empirical models: the distinction is somewhat semantic. The key is that these
procedures have been found to provide satisfactory answers even though the
logical thread cannot always be continuously traced. (The prescription of many
medicines is based on knowledge that they work without necessarily being able
to state exactly why they work.)

1.2.1 Vane strength correction

Much of geotechnical design has hitherto relied upon ultimate limit state cal-
culations which are driven by estimates of soil strength hoping, thus, to guard
against geotechnical collapse. (Classically, a factored design based on an ul-
timate limit state calculation, with the factor chosen from experience, might
be used to guarantee satisfactory serviceability without performing a separate
serviceability calculation.) Thus the ultimate bearing capacity (, of a footing
on a clay of undrained strength ¢, might classically be written as

Cu :Nccu+<s (1.1)

where N, is a so called bearing capacity factor and (, is the surcharge on the
surface of the clay at the level of the foundation—which might simply be due to
the weight of overburden at this level (Fig 1.1). Then, if we can find values of
undrained strength, we can estimate capacities of footings; similar calculations
can be performed for other classes of geotechnical structure, such as embank-
ments and excavations.

Given a strength model it needs to be populated with values of soil strength
determined from laboratory or in-situ testing. Most of the widely used strength
models lack the subtleties of, for example, rate effects and anisotropy with which
the ground itself is certainly familiar. Particular tests measure soil strengths
in particular ways: if short term undrained strength of clay is of concern then
the in-situ vane is commonly used to estimate the undrained strength. The
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Figure 1.3: Shear strength mobilised along slip surface in clay

vane (Fig 1.2) measures a mixed strength, combining shearing on horizontal
and vertical surfaces in the soil. A strength model is required to extract an
estimate of undrained soil strength from the actual measurement of the torque
required to rotate the vane and hence to generate a failure mechanism through
the clay. A simple assumption of uniform soil strength on all surfaces of the
failing block of clay of height h and diameter d indicates that the torque T is
given by

1 3 h

T =—mc,d’(1+3-) (1.2)

6 d
Any actual failure mechanism of the geotechnical structure will require the clay
to shear along surfaces having completely different alignments (Fig 1.3).

The vane measures the strength in a matter of seconds—in practice a geotech-
nical structure may take weeks or months to complete and yet the permeability
of the ground may be sufficiently low for the behaviour still to be described as
undrained.

Comparisons of estimates of failure conditions (or margin of safety against
collapse) of embankments and excavations in soft clay (Bjerrum, 1972) indicate
that a ‘correction’ factor, u, dependent on soil plasticity (section §1.8) must be
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Figure 1.4: Correction factor for vane strength (after Bjerrum, 1972)

applied to the strength emerging from the vane test (Fig 1.4). That is:

Cu(design
uldesign) _ i (1.3)
Cu( fieldvane)

Typically (at any rate for Ip > 0.2) the field vane overestimates the strength
which is actually mobilised at failure.

These correction factors have been determined empirically and can be ap-
plied with some confidence to future ultimate limit state designs of embank-
ments and excavations which share the same generic character of the bank of
observations from which they were deduced. However, they do not provide a
secure route for extrapolation from vane strengths (or, more precisely, from the
torques required to rotate field vanes) to design calculations in other circum-
stances. This is an empirical correction to strength measured with a particular
device to provide input to traditional design calculations: the application is thus
very specific.

1.2.2 Consolidation settlement

Consolidation settlement beneath foundations in clays occurs as a result of dis-
sipation of pore pressures generated by the original loading. A logical argument
suggests that, if we can estimate these pore pressures and estimate a soil stiffness
which controls the vertical strains that develop as the pore pressures dissipate,
then we can combine these estimates to calculate the expected settlement. A
tractable procedure which cuts a few corners at each stage was proposed by
Skempton and Bjerrum (1957) and has been widely used. We will discuss it
for the simple case of an axisymmetric loaded area but it is evident that an
essentially similar procedure could be used for other shapes of foundation.
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Figure 1.5: (a) Uniformly loaded circular area on the surface of an elastic half-
space; (b) stresses on centreline beneath circular load

The magnitude of the pore pressures will depend on the constitutive be-
haviour of the soil. Typical characteristics of soil behaviour will be described
in Chapter 2 and various constitutive modelling possibilities will be presented
in Chapter 3. Let us suppose that we can estimate the changes in total mean
stress Ap and deviator stress Ag from an elastic analysis, applying the equa-
tions of Boussinesq!. For loads on the surface of an isotropic elastic half space
(to which we approximate our soil layer) the stress changes are independent of
elastic stiffness but are dependent on the Poisson’s ratio of the soil which for
undrained loading (of an isotropic elastic material) we can propose to be 1/2.
Although there are already several assumptions here it turns out that for verti-
cal loading of the halfspace the changes in vertical stress are rather insensitive
to the details of the constitutive description of the soil, being largely controlled
by a dispersed equilibrium. However, the changes in horizontal stress are ex-
tremely sensitive to the details of the soil model. Stress distributions for the
centreline of a uniformly loaded circular area on an elastic half space are shown
in Fig 1.5: the effect of Poisson’s ratio on horizontal stress is very apparent.

From these changes in total stress we can then use our experience with
similar soils, or our observations of behaviour of the actual soil in undrained
triaxial tests, to estimate the pore pressure using a pore pressure parameter a
(§2.6.2):

Au = Ap + alq (1.4)

For an isotropic elastic material a = 0 and the change in pore pressure is equal
to the change in total mean stress.

IThe stress variables p and ¢ are defined in §2.4.
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Figure 1.6: Circular foundation on surface of elastic layer

Next it is proposed that the deformations that result from pore pressure
dissipation will be largely one dimensional so that the stiffness to be used, F,.q4,
can be obtained from oedometer tests and this stiffness can be used directly to
convert pore pressure changes into settlement p:

H o Aq
= dz 1.5
p / o (1.5)

integrating the pore pressure changes with depth z over a layer of thickness H
(Fig 1.6). Substituting for the pore pressure (1.4) this becomes:

H
p:/ Mdz (1.6)
0 Eoed

If it were assumed that the settlements resulted purely from the change in
vertical stress caused by the loading, then we could calculate an oedometric

settlement poeq:
H (A 2
p+ 5Aq
Poed :/ %dz (1.7)
0 oed

and the ratio of ‘actual’ settlement p to the oedometric settlement p,eq is, ne-
glecting variation of the stiffness E,qq4, a function of pore pressure parameter a
and the geometry of the problem which controls the ratio of elastic total stress
changes Ap and Ag:

H A
0 _fo (l-i-aA—Z) dz

Docd foH (1 N %%g) y (1.8)
or
po_ 1t ;‘I (1.9)
Poed 1+ 35T
where .
7z 1 &dz (1.10)

:HOAP
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Figure 1.7: Ratio of consolidation settlement and one-dimensional settlement

Evidently the two settlements are equal if the pore pressure parameter a = 2/3.
The variation of the settlement ratio with a is shown in Fig 1.7 for a circular
footing on an elastic layer of thickness H where, for simplicity and illustration,
the effect of the finite thickness of the layer on the stress distribution within the
layer has been neglected. Skempton and Bjerrum give a more detailed analysis
of the settlement taking account of the elastic stress distribution within a finite
layer: the ratio remains linearly dependent on a.

This procedure for calculation of consolidation settlement combines elements
of a number of quite distinct soil models: an elastic model to calculate the
total stress changes (which, for a clay layer of uniform stiffness and of either
infinite depth or underlain by a rigid layer, are not actually dependent on that
stiffness); an empirical model to link total stress changes with changes in pore
pressure; and a one-dimensional model for conversion of pore pressure change
to settlement. Each of these models introduces its own simplifications which
could in principle be relaxed: isotropic elasticity, variable stiffness layered soil,
constant pore pressure parameter, constant oedometric stiffness. There is an
underlying logic and the success that the method has enjoyed is itself indicative
of the insensitivity of some aspects of soil response to the details and accuracy
of the calculation procedure: this is a conclusion that will be discovered again
in later chapters.
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Figure 1.8: Cone penetrometer

1.2.3 Cone penetration test and settlement of footings on
sand

Clearly the ease with which a conical object can be made to penetrate the ground
(Fig 1.8) will depend on the strength of the ground which will in turn depend on
the stresses in the ground and the density of packing of the soils. It is logical then
that correlations should be possible between penetration resistance and basic
material characteristics: these are empirical correlations but the results can
then be used as input to more general design procedures. Alternative empirical
rules jump directly from the penetration resistances to geotechnical designs:
here the degree of possible extrapolation must be borne in mind. Correlations
have been produced both for the Standard Penetration Test in which a rather
blunt object is hammered into the ground and for the Cone Penetration Test
in which a cylindrical object with a standard 60° conical tip is pushed steadily
into the ground at a standard rate. The latter seems to have more scope for
rational interpretation and one example of empirical modelling using the cone
penetration test will be briefly described.

Let us restrict ourselves to the estimation of the settlements at the centre of
a circular footing on sand. With the z axis vertical (Fig 1.5a) we observe that
settlement Ap is an integration of vertical strain increments Ae,

Ap:/ Ae, dz (1.11)
0

If the soil behaves isotropically and elastically then, from Hooke’s law, at any
depth

Ae, = %(ACTZ — 2vAo,) (1.12)

where Ao, and Agc, are the increments in vertical and radial (horizontal) stress
produced by the footing (Fig 1.5b) and F and v are Young’s modulus and
Poisson’s ratio for the soil. This can be written

Ae, = %[(1 —2v)Ao, + 2v(Ac, — Ac,)] (1.13)

in order to emphasise that settlement results both from increase in vertical
stress (Ao,) and from increase in deviator stress (Ag = Ao, — Aco,). The
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Figure 1.9: Distribution of stress Aocges driving settlement beneath circular
footing on elastic half-space

relative contributions of these terms to the settlement will depend on the value
of Poisson’s ratio. The variation with depth of the composite stress Ao et

Acgerr = [(1 — 2v)Ao, 4+ 2v(Ao, — Ao,)] (1.14)

that actually drives the settlement is shown in Fig 1.9 normalised with the
applied pressure A and as a function of normalised depth z/R for different
values of Poisson’s ratio for a uniformly loaded circular area of radius R.

Even though the soil is unlikely to be elastic, (1.13) and Fig 1.9 show clearly
the contribution that shearing is likely to make to settlement: it is not enough
to consider only the change in vertical stress. (Of course, this same message
formed part of the Skempton/Bjerrum procedure for estimating consolidation
settlement that was discussed earlier.) Fig 1.9 also shows that the maximum
value of Ao does not occur at the surface. Indeed for high values of Poisson’s
ratio v — 0.5, the peak shear stress and hence peak value of Aoy occur at a
depth of about 0.7R.

So far this is a coherent modelling strategy based on an elastic analysis for a
uniform isotropic soil. Schmertmann (1970) takes inspiration from this to devise
a procedure which can be applied more generally. If we write

Aasett - IzAC (115)

where I, is a dimensionless influence factor that varies with depth, then

< I
Ap:AC/ Ezdz (1.16)
0
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Figure 1.10: Influence factor for calculation of settlement (adapted from Meigh,
1987)

A simplified profile is assumed for I, (Fig 1.10), partly inspired by analysis
(Fig 1.9) and partly inspired by experiment. This assumes that the influence
of the footing peaks (I,,,, = 0.6) at a depth equal to the radius of the footing
(z/R = 1) and becomes negligible for depths greater than twice the diameter
z > 4R. This is a logical engineering approach which acknowledges both that,
quite apart from the fact that the stress changes induced by the loaded footing
fall with depth (Fig 1.9), soils tend to become stiffer with depth and, also,
that we now understand that the stiffness of soils increases as the magnitude of
the applied strain increment reduces (see §2.5). The contribution to the footing
settlement of the actual strains in the deeper soils is expected to be insignificant.

The value of Young’s modulus is assumed to be correlated with cone pene-
tration tip resistance ¢,

FE =2.5¢q. (1.17)
Then the settlement becomes
AC 4a Iz
== —=d 1.18
r=35) @& (1.18)

which is more usually evaluated as a sum over a finite number of layers (Fig
1.11). For each layer the quotient is calculated of the average value of I, (Fig
1.10) and the average value of ¢. for that layer (Fig 1.11). The sum of these
quotients, weighted by the thickness of each layer replaces the integral in (1.18):

Ap~ % > <I Azi> (1.19)

i1 e
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Figure 1.11: Cone penetration profile and division of soil into layers

Schmertmann, Hartman and Brown (1978) later introduced a slightly more
elaborate empirical expression for the peak value of the influence factor

1 =0.5+0.1 A

Zpeak /
Vz=R

(1.20)

and assumed that I, = 0.1 at z = 0 (Fig 1.10). There are also empirical
correction factors for depth of embedment of the footing and for creep/time
effects but the principle remains the same: a profile of stiffness variation deduced
by an empirical correlation from in-situ testing is combined with a simplified
assumed profile of stress change, inspired by theoretical analysis.

1.2.4 Pressuremeter

The pressuremeter is a device which can be used to determine the properties
of the ground in situ (Mair and Wood, 1987). There are several different pres-
suremeter devices but in essence (Fig 1.12a): a cylindrical cavity lined with
a rubber membrane is created in the ground; the cavity is expanded and the
observed relationship between the cavity pressure and the cavity expansion pro-
vides some sort of stress:strain response from which certain properties of the
ground can be deduced (Fig 1.12b, ¢). The nature of this response depends to
a large extent on the degree of disturbance of the ground during the creation
of the cylindrical cavity: earliest pressuremeters used a preformed hole which
inevitably disturbed the surrounding soil because it was more or less completely
unloaded; more recent pressuremeters use a self-boring technique—a sort of ver-
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Figure 1.12: (a) Pressuremeter; (b) cavity expansion response of pressuremeter
presented in terms of cavity volume; (c) cavity expansion response of pres-
suremeter presented in terms of logarithmic volume change

tical tunnel boring machine—which attempts to reduce the disturbance to an
absolute minimum.

There are two ways in which the results of pressuremeter tests are used. The
expansion of a long cylindrical cavity in an infinite medium is a well defined
boundary value problem which is capable of exact theoretical analysis?. Armed
with such an analytical model, the cavity pressure:cavity expansion results can
be interpreted to give values of soil stiffness, soil strength, in-situ stresses and
perhaps even more detail of the mechanical response of the soil. These quantities
can be seen as fundamental properties of the soil which can then be applied to
the analysis of quite different geotechnical problems. Thus when a pressureme-
ter is rapidly expanded in clay the response curve (Fig 1.12b, ¢) can in principle
be interpreted to give the in-situ horizontal total stress, op,, the undrained
strength, c,, and the shear stiffness of the clay, G. The in-situ stress is deduced
from the cavity pressure at which expansion of the pressuremeter begins. The
interpretation of the results of a pressuremeter test in terms of the undrained
strength and the shear stiffness implies a certain assumed elastic-perfectly plas-
tic model for the shear response of the clay (Fig 1.13): discussion in subsequent
chapters will show that the picture is not quite as simple as that. This model
assumes that the soil is elastic as the shear stress increases until a limiting value
¢y is attained. In such a material the response of the pressuremeter can be
written

AV
P=DpL T Cu 1117 (1.21)

where the limit pressure py, is the pressure developed at infinite cavity expansion,
when the change in cavity volume from the start of the expansion, AV, is equal
to the current volume V. This limit pressure is given by

Cu

PL = Oho + Cu (1 +1n G) (1.22)

2The analysis is essentially similar to that of a collapsing circular tunnel (§8.8) but with
the signs reversed.
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Figure 1.13: Elastic-perfectly plastic constitutive response

Thus (1.21) shows that the undrained strength ¢, can be deduced from the
AV

ultimate slope of the pressuremeter expansion plotted in terms of p and In (7)
(Fig 1.12¢) and the shear stiffness G' can be subsequently deduced from py, and
(1.22). In practice it is preferred to determine the shear stiffness by performing
unload-reload cycles during the cavity expansion (Fig 1.12b): the slope of such
a cycle in a plot of cavity pressure p and cavity volume V is G/V.

So far the example of the pressuremeter merely indicates the use of an un-
derlying model to provide a rational route to the interpretation of the test. The
model may not be an accurate description of the way in which clay behaves but
it is at least theoretically consistent and, if this is the world view that we have
and intend to apply to other situations, then the logic is complete.

Knowing that the model is in fact too simplistic for all sorts of reasons (the
constitutive behaviour of the soil is wrong; the boundary conditions imposed on
the theoretical analysis are wrong—there is an assumption of plane strain and
potential drainage of excess pore pressures is ignored) an alternative possibility
is to regard the pressuremeter as some sort of index test (albeit a rather expen-
sive one)—and here the interpretation of the pressuremeter becomes equivalent
to the interpretation of cone penetration or even standard penetration test re-
sults. Empirical rules are used to convert index values from the test directly
into geotechnical design: emerging with axial capacities of piles, response of
piles under lateral loading, estimation of foundation capacity and settlement,
for example. Thus Baguelin et al. (1979) work with the cavity pressures ps and
p2o (corresponding to proportional cavity volume changes AV/V, = 0.05 and
0.2 respectively, where V, is the original volume of the cavity (= V — AV)) and
define a parameter

5= P20 — Ps (1.23)
P20 — Oho
The value of this parameter § can be used to predict the soil type (in the
same way as can the measurements made with a piezocone: tip resistance, shaft
friction, pore pressure) but it can also be used as input to empirical design
procedures.

Again, there is a tenuous logic to this empirical use of the pressuremeter.

Such procedures are appropriate for interpolation within the range of experience:
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Figure 1.14: Seepage through three dimensional soil element

and, for known soils from which the empirical rules were originally generated,
such procedures may well be secure. However, there is less security attached
to extrapolation to new geological environments and new soil types, where the
application of a more complete underlying theoretical model appears to give
greater prospects of success.

1.3 Theoretical models

There are two reasons for the continued successful application of empirical mod-
els. On the one hand, geotechnical design cannot just come to a halt while more
rigorous models are developed: experience provides a reassuring mode of pro-
ceeding. On the other hand, even when accepted theoretical models exist it
may not be easy to apply them for the actual boundary conditions of a par-
ticular problem. Theoretical models can be seen as elegant solutions looking
for problems to which they can be applied: an initial step is often to assess
how the observed soil behaviour can best be fitted into the framework that the
theoretical model imposes. Once a theoretical model has been formulated there
are two possibilities for its application: either the boundary conditions of the
problem can be massaged in such a way that an exact analytical result can be
obtained; or a numerical solution is required. We will look at some of the issues
associated with numerical analysis in Chapter 4. Here we will look at one of
the many theoretical models which have been widely applied to geotechnical
engineering—others will be presented in Chapter 7.

1.3.1 Steady seepage

The steady flow of an incompressible fluid through a porous medium is gov-
erned by a familiar partial differential equation. Conservation of mass (volume)
requires (Fig 1.14) that the flows into and out of an element of the material
must balance (assuming that the element does not contain either a source or a
sink). If we assume that flow is driven by a potential gradient then Darcy’s law
applies:

kg Ouy,

= 1.24
Yo O (1.24)

Vg
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where v, is the velocity of flow in the x direction across the complete cross
section of the material, k, is a permeability for flow in the x direction, ~,, is
the unit weight of the flowing fluid (assumed to be water) and u,, is the total
water pressure. For a material with porosity n (ratio of void volume to total
volume), the speed at which the water flows through the pores is actually v, /n
(assuming that the ratio of areas of void and of solid material in the direction
of flow is also n).

The total water pressure wu,, = v, H (referred to some arbitrary datum, Fig
1.15) is made up of a pressure resulting from the elevation of the element ~,,z
(referred to the same datum, Fig 1.15) together with the actual pore water
pressure u = 7,h (which is independent of the choice of datum). Clearly in
a swimming pool the pressure varies with depth but the total pressure is ev-
erywhere the same and no flow occurs. The same conclusion is drawn if soil
is shovelled into the swimming pool producing a soil with water in its pores.
Seepage can only occur in the presence of gradients of total pressure.

The mass conservation equation for a three dimensional element (Fig 1.14),
assuming constant soil permeability, is

2
0%y,
“ Ox2

0%y,
Yy ayz

0%y,
k * 022

+k +k

=0 (1.25)

The form of (1.25) allows for anisotropy of permeability (k5 # &, # k.) but can
be simplified by working in a transformed coordinate space. If we write

= & x and y/: ﬁ y and Z =z (1-26)
km ky

then the equation becomes

2 2 2
0%Uy 07Uy 07Uy,

922 + Dy’ + 022 =0 (1.27)
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Figure 1.16: Seepage under a sheet pile wall in permeable half-space

This is Laplace’s equation for steady seepage flow which occurs in many physical
problems—stress analysis, heat flow, electricity flow—and for which standard
methods of solution are available. Many of the geotechnical seepage problems
that are considered are two dimensional: plane flow or radial flow. For these,
exact analytical solutions can be obtained for certain simple boundary condi-
tions and these may be near enough to the real boundary conditions for the
results to be acceptable.

An example of flow through a permeable half-space under a sheet pile wall is
shown in Fig 1.16 in the form of flow lines and equipotential curves along which
the total pore pressure is constant (see, for example, Raudkivi and Callander,
1976). For this idealised problem, with the wall placed at = 0 extending from
y =0 to y = —a the flow lines are confocal ellipses:

T 2 y 2
=1 1.28
(asinha) + (acosha) ( )

and the equipotentials are confocal hyperbolae:

N yo\?
(asinﬁ) +(acosﬁ> =1 (1.29)

where a and [ take appropriate values: [ varies from +7/2 to —m/2 from
the upstream to the downstream side of the sheet pile wall and o = 0 for the
degenerate elliptical flowline that hugs the sheet pile wall.

The presence of a horizontal impermeable boundary at some depth cuts
across the theoretical flow net. An alternative solution procedure is then to
sketch a flow net which satisfies the actual boundary conditions more closely
but starts from the theoretical net. It is usually found that the total flow
rates are not greatly affected by the accuracy with which the net is generated
(provided it is at least generally plausible): total flow rate is an integrated
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quantity. Estimation of pore pressure gradients, which may be important for
stability of the geotechnical structure, is more sensitive to the detail of the
solution: this requires differentiation of the results.

Because Laplace’s equation governs many different physical problems, solu-
tions for one case can also be obtained by studying physical analogues which
are governed by the same equation. Thus measurements of electric potential at
points on a sheet of conducting paper cut to correspond to the boundary con-
ditions of the seepage problem will be directly translatable into values of total
pore pressure driving seepage. Equally, full numerical solution of the equation
will provide another route.

Let us remind ourselves of the assumptions that have underpinned the de-
monstration that Laplace’s equation is appropriate for this geotechnical prob-
lem. The pore fluid has been assumed incompressible; the soil has been assumed
homogeneous, although possibly anisotropic; the flow has been assumed to be
governed by Darcy’s law. So far as the derivation of the equations governing the
flow is concerned, these assumptions can be readily relaxed, but this will lead
to a more complex form of the equation which might include spatial variation
of permeability, dependence of fluid density (or unit weight) on pore pressure,
and an alternative flow law. Under such relaxed conditions numerical solution
of the governing equations is likely to be the only option available.

1.4 Numerical modelling

There are several conclusions that can be drawn from discussion of theoretical
models that are in common regular use in geotechnical engineering.

Understanding the controlling physical constraints on each problem is cru-
cial. Within an understanding of the physics there is usually a need to idealise
the material characterisation and the representation of the boundary conditions
of the problem in order that a solution may be obtained. Exact, closed-form
solutions are in general only obtainable for a rather limited set of conditions.
There will always be a strong temptation to convince oneself that a problem can
be fitted into one of these limited sets because of the ease with which a solution
may thus be obtained. It is always necessary to consider whether the massag-
ing of the problem to fit these constraints removes any key characteristics of
the problem being considered. Where the departure from the ideal situation is
clearly too great there is the possibility of using numerical techniques to obtain
a solution, retaining the elegance of an underlying simple and widely accepted
theoretical description of the physics of the problem on a local scale but us-
ing the numerical approximation to allow realistic boundary conditions to be
accommodated.

Some of the implications of numerical solution of such problems are discussed
in Chapter 4. Numerical solution usually implies the replacement of a contin-
uous description of a problem by one in which the solution is only obtained
at a finite number of points in space and time. The quality of the numerical
modelling result can only be as good as the quality of the numerical approxi-
mation. Where key quantities are changing very rapidly with position or with
time then it is necessary either to increase the density of the discretisation used



18 1. Introduction to modelling

shear > -
stress y; plastic

shear strain

Figure 1.17: Perfectly linear elastic and rigid-perfectly plastic constitutive re-
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in the numerical modelling in order to be able to follow the changes or else to
incorporate within the numerical description some mathematical interpolation
which is able to follow the real variation between discrete modelling points. Of
course the speed and cost of numerical modelling increases as the density of the
modelling points increases. In general it should first be verified that a proce-
dure that is developed for numerical solution of problems is indeed able to give
correct results when applied to a situation for which an exact answer is known.
It can then be applied with greater confidence to the problem of concern.

1.5 Constitutive modelling

Numerical modelling is not only needed in order to manage irregular or non-
ideal boundary conditions. Much more serious often are the idealisations of
material behaviour that are necessary in order that simple theoretical models
can be developed. Elasticity is convenient because of the wide range of analytical
results to which access can be gained for elastic materials. Chapter 2 contains
discussion of typical aspects of the mechanical behaviour of soils and it will
become clear that linear isotropic elasticity can only provide a very inadequate
representation of the observed response (§2.5).

The nonlinearity that is observed in soil behaviour is usually an indication of
plasticity: permanent, irrecoverable changes in the fabric of the soil. A simple
illustration of the effects of soil plasticity on the character of the response of a
geotechnical structure is provided by the schematic illustration of the pattern
of deformation beneath a footing on a linear elastic soil and on a rigid-perfectly
plastic soil. The stress-strain responses of these ideal soils are shown in Fig 1.17
and the deformation patterns in Fig 1.18. The elastic material clings together:
a movement in one location is felt at great distance. The footing produces gra-
dients of deformation, and hence strains, to great depth. The plastic material
is happy to separate into separate blocks of soil as it gradually forms a failure
mechanism (Fig 1.3). The displacements are entirely contained within this fail-
ure mechanism; gradients of displacement only occur at the boundaries between
the sliding blocks, and here they are infinite; elements of soil at depths below
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Figure 1.18: Schematic illustration of settlement profiles with depth beneath
footing

the mechanism are completely unaware of the presence of the footing (the soil
has been assumed rigid before failure).

A second example is provided by the vertical displacements around a group
of piles in the same two contrasting materials (Fig 1.19). In the elastic mate-
rial each pile tends to drag down the surrounding soil in which the adjacent
piles are founded. In the plastic material, all displacement is concentrated at
the interfaces between the piles and the soil: beyond this interface there is no
effect. These are extreme types of soil model, but they serve to demonstrate
the effect that nonlinearity of constitutive response can have and, in particular,
to indicate that nonlinearity can have a major effect on the interaction between
neighbouring geotechnical structures.

Chapter 3 describes some of the alternative possibilities for constitutive mod-
elling of soils and attempts to open to the reader the vocabulary of constitutive
modelling and remove some of the mysteries of this modelling. A constitutive
model is still governed by equations which ultimately describe the link between
changes in strain and changes in stress for any element of soil. Each constitutive
model is itself certainly a simplification of soil behaviour but a simplification
inspired by experimental observation. The art of constitutive modelling is to
identify the features of soil behaviour that are vital in a particular application:
the penalty for increased complexity in constitutive modelling is the increased
number of material properties that must be defined from a greater number of
laboratory or in-situ tests. (An isotropic linear elastic model is completely
defined by just two material properties: Young’s modulus and Poisson’s ratio.)

Adequate complexity of constitutive modelling should be the goal in order
that analysis of boundary value problems should be efficient. For most constitu-
tive models it is impossible to obtain closed form estimates of the link between
stress and strain for anything but the simplest of histories and for single uniform
elements of soil. For realistic histories and boundary conditions numerical anal-
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Figure 1.19: Schematic illustration of surface settlement profiles within pile
group

ysis is again required in order to manage the basic integration of the constitutive
relations.

1.6 Physical models

Physical modelling plays a fundamental role in the development of geotechnical
understanding. In fact, taking the broadest possible interpretation of physical
modelling, we can declare that every experiment is a physical model intended,
if it is a good model, to advance our confidence in some supporting theoretical
model which the experiment was designed to probe. We can see the physical
modelling as forming the observation part of a ‘reflective practice’ cycle (Fig
1.20); theoretical modelling forms part of the prediction.

Physical modelling is performed in order to validate theoretical or empirical
hypotheses. Geotechnical construction is thus also physical modelling: geotech-
nical design makes hypotheses about expected behaviour which may be tested
in greater or lesser detail depending on the extent to which the response of
the geotechnical system is observed. At the very least there will be a binary
observation: has the geotechnical structure failed? A failure will be a pretty
clear indication of inadequacy in the supporting models. If the designer is less
confident in the supporting design models then more extensive observation—for
example of displacements or pore pressures—may provide more secure informa-
tion about the way in which the geotechnical materials are in fact behaving.
Reflection on these observations then provides the route for improved future
design or modelling.

Laboratory testing of small elements of soil (for example in triaxial appa-
ratus, shear box, etc) and in-situ field testing (geophysical testing, penetration
testing, pressuremeter testing, etc) presuppose some model for the way in which



1.6. Physical models 21

/__tmdiction/action

reflection

observation/perception

Figure 1.20: Reflective practice cycle

the soil is going to respond. In many cases the underlying models are hidden in
experience: we have particular stiffness and strength models which we have used
for similar materials in the past so we can choose particular test types—rates of
loading, expected stress levels, ranges of transducers—almost without thinking
about them. Routine testing is usually merely trying to scale an existing model
to fit a given material or set of data—it is less usual that the testing sets out
either to demonstrate that the model is inappropriate or to discover information
which might be used to improve the model.

A well designed physical model provides an important opportunity in the
modelling cycle. It is always tempting to assume that a theoretical model (par-
ticularly if, mathematically, it is a very elegant model) somehow encapsulates
truth. We can never prove a theoretical model to be true; all we can say about
a successful model, or a conjecture on which that model is based, is that it
has not yet been falsified or refuted. In practice, all geotechnical models are
probably very easily refuted and our interest as engineers is in identifying the
range within which the refutation of individual models is weakest since it is this
which defines the range of relevance of those models.

A well designed physical model—retaining the broad interpretation—can de-
liberately set out to probe rival conjectures. Poorly designed physical modelling
is mere data gathering. If the models to be tested are not understood or recog-
nised then it is unlikely that the correct data will be assembled: the physical
modelling is then stuck in the prediction/observation part of the loop which is
not closed by the need for precedent and subsequent reflection.

1.6.1 Physical models: full-scale

The term ‘physical modelling’ is usually associated with the performance of
physical testing of complete geotechnical systems. Where there is a distrust of
theory and analysis, because the assumptions are seen to be too sweeping or
the relevant aspects of material response too complex or the realities of reliable
numerical solution too far-fetched, physical modelling can seem an appropri-
ate route. Physical modelling can use real geotechnical materials, so the need
for theoretical modelling of their behaviour disappears. Physical modelling of
geotechnical systems can (and indeed should) provide data for validation of ana-
lytical modelling approaches and can thus provide a basis for extrapolation from
the physical model to the geotechnical prototype—although, as noted, an in-
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strumented and monitored geotechnical prototype can itself be a physical model
serving this validation purpose.

Logically, if we are performing physical modelling because we are unsure
about the ways in which we might reproduce the detail of a geotechnical sys-
tem, then our optimum strategy might be to perform the physical modelling
at full scale. We will not concern ourselves particularly with full-scale models
in this book but it may be helpful to see them as indeed examples of models.
Given the uncertain and variable nature of the ground there is obvious value
to be obtained from conducting trials at full scale which will load real soils un-
der real loading conditions. Full scale testing is usually performed to evaluate
geotechnical processes which it is believed may be so dependent on the detail of
actual soil fabric and structure that it is imperative to use real soils as prepared
by nature.

Trial embankments provide an obvious example: usually the need is to eval-
uate processes of ground improvement. For example, the use of different types
and spacings of drains to speed the process of consolidation of soft ground may
be studied. It is known that drain installation produces fabric change of the
soils local to the drains; it is also known that the in-situ fabric of the ground
has a strong influence on the flow characteristics which will also have a major
influence on rates of flow and hence of consolidation.

Other processes of ground improvement might be considered as means of
increasing embankment or structural stability without actually necessarily in-
creasing the rate of consolidation: examples include ground reinforcement using
grids and fabrics; cement treatment of the ground or sections of it; installation
of columns of compacted granular material to provide local strengthening of the
ground. Model testing at small scale may be possible in all cases but the details
of the process may be best evaluated at full scale.

Our understanding of the behaviour of piled foundations is improving but
there is still a general feeling that the supporting theoretical models of pile-
ground interaction are not completely reliable. Again, the uncertainties may
well attach to the process of pile installation—whether by driving/jacking or by
boring and concreting—and to the detail of the interaction of this installation
process with the ground. Test piles are consequently regularly required—these
can use actual intended installation procedures and actual ground conditions
and, of course, full scale component dimensions (Fig 1.21). The unreliability of
theoretical models of pile response is such that Eurocode 7 (EC7, 1995) makes
it clear that all pile design calculations must be related, directly or indirectly,
to the results of static pile load tests which must be shown to be compatible
with general experience. There is thus a Eurocode requirement to complete the
prediction, observation, reflection loop (Fig 1.20): the design model should be
modified in the light of the experience of the full scale physical modelling.

The principal advantage of full scale modelling is that we are working with
real ground conditions, real soils, real loads, real stress levels, real stress histo-
ries: these are all things that need to be considered in any geotechnical mod-
elling. Over some of these we have direct control: we can be sure of the di-
mensions of structures we create, heights of embankments, diameters of driven
piles. However, we have no control over the ground conditions and the extreme
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Figure 1.21: Full scale pile loading test

realism may in the end be a disadvantage. The physical modelling is seen as
part of a coordinated cycle of theoretical and physical modelling. If we are not
sure exactly what the ground conditions are then we cannot be sure how we
should tune our theoretical model, and we cannot be sure whether the source of
discrepancy with the theory lies in the theory itself or in some unknown detail
of the ground conditions (the anisotropy of the mechanical behaviour or the
drainage properties, for example).

There are obvious disadvantages of full scale modelling. Often smaller scale
modelling leads to much more rapid results purely because of the smaller size.
Construction of an embankment over soft soils, for example for a road or airport,
may take years to complete. Full scale testing to study the rates at which
the embankment can safely be built can occur no more rapidly (though one
of the purposes of the full scale testing may be to explore ways in which the
construction process can be safely accelerated); cost will increase with the scale
of modelling. For both these reasons small scale modelling may be preferred
because it permits more tests to be performed and more variables to be explored.
Real conditions may be a problem as much as a benefit because if the physical
modelling is to be used as part of a process of validation of theoretical modelling
then it must be a fair competition—the physical and theoretical approaches must
be considering the same problem.
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1.6.2 Physical models: small-scale

If the physical modelling is to be performed at any scale other than full scale
then the key question is concerned with establishing the validity of the models
and ensuring that we have a secure route to extrapolation from the behaviour
we observe at model scale to the behaviour that we could expect at prototype
scale: eventually all geotechnical modelling is seeking to improve geotechnical
practice. The existence of supporting theoretical models is thus even more
important for interpretation of small scale physical models than for full scale
models. The understanding of relevant scaling laws and the dimensional analysis
which controls them is essential.

Seepage model

Let us consider the physical modelling of a seepage problem, such as the flow
under a sheet pile wall (Fig 1.16), as an example. In this case the underlying
theoretical model is quite well established: steady flow through a porous soil is
governed by Darcy’s law. We know that flow rates will be directly dependent
on soil permeability so we need to know the representative field permeability,
ks, and a corresponding model permeability, k,,,. We note immediately that the
permeability may be anisotropic and we guess that we need to ensure that the
nature of this anisotropy is the same in the field and in the model. We note also
that the permeability is likely to depend on the porosity or density of packing
of the soil: the actual density of packing does not have to be the same in the
field and the model but we need to be confident that the spatial variation of
permeability is the same in both.

Applying Darcy’s law at the system level rather than the element level tells
us that we can expect the flow velocities, v, to be proportional to the overall
hydraulic gradient and permeability

Kk Ap

=1 (1.30)
w

where Ap is the pressure drop across the sheet pile wall, and L; is a typical
dimension controlling the distance over which this pressure drop occurs (Fig
1.22). The volume flow rate per unit length of a long wall, @, which is of
primary concern if the ground on one side of the wall is to be kept dry, is then
given by
k Lo

Q )\%} LlAp (1.31)
where Lo is a second typical dimension controlling the distance through which
the flow is occurring (Fig 1.22). The multiplier A is likely to be a function of the
geometry of the problem. The theoretical model governing the quantity of flow
under the wall is thus extremely simple: the flow is proportional to a material
quantity, the permeability k, and to an input quantity, the pressure drop Ap;
the flow is controlled by a system quantity, a dimensionless geometrical property
of the problem ALy /L, which will be related to the depth of penetration of the
piles and might well be a variable whose influence would need to be studied
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Figure 1.22: Parameters controlling seepage under a sheet pile wall

using the physical modelling. In fact, this simple theoretical analysis shows
that the geometry is really the only variable to consider. If we write

QYw - Lo
oy <L1) (1.32)

then we see that we need only make one measurement of flow for each geometry
(La/L1) and that it is entirely superfluous to vary Ap or k as well. Field
flow rates can then be estimated knowing the field permeability and the field
pressure differential combined with the geometrical factor deduced from the
physical modelling.

This simple example is intended to illustrate the benefit of understanding the
theoretical model which underlies the physical problem. It secures the extrap-
olation and can focus the modelling energies on the key controlling parameters
of the problem. In this case too there is a well accepted route through sketching
of flow nets which can be used both to predict the physical capacities required
for the physical modelling (for example, pump capacities) and to ensure that
the measured results are in accord with expectation.

Small scale models

The great advantage of small scale laboratory modelling is that we have full
control over all the details of the model. We can choose the soils that we
test and ensure that we have supporting data to characterise their mechanical
behaviour. We can choose the boundary and loading conditions of the model
so that we know exactly how the loads are being applied, and to what extent
drainage is permitted or controlled at the boundaries. The nature of the problem
to be modelled theoretically in parallel with the physical modelling is thus well
defined. Small quantities of soil are required; drainage paths are short so test
durations may also be short; and the possibility exists of performing many tests
repeating observations and studying the effect of varying key parameters. The
costs of individual tests will be correspondingly lower than full scale tests.

The size of the models is both an advantage and a disadvantage. If a partic-
ular prototype is to be modelled physically then a length scale must be chosen.
A typical length scale might be 1:100 so that a 10 m high prototype structure
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becomes a 100 mm high model. Features of the fabric of the ground—for ex-
ample, seasonal layering of silts and clays—having a prototype spacing of the
order of a few millimetres would have to be modelled with spacings of a few
tens of microns—or an alternative modelling decision would have to be made.
A prototype granular material might have a typical particle size of the order of a
few millimetres, so that the ratio of structure dimension to particle size is of the
order of 103. Use of this same material in the physical model, which would be
very desirable if continuity of mechanical behaviour were to be assured, would
then lead to the ratio of structure dimension to particle size falling to only of
the order of 10. This ratio might be too small to guarantee correct response in
the physical model. There are ways in which such difficulties can be solved (see
§5.3.6)—the important point is that they cannot merely be ignored.

1.7 Geological model

This is not a book about geology: the emphasis is on mechanical aspects of
geotechnical modelling. The questions to be answered relate to the engineering
characteristics and properties of the geotechnical materials. However, these
materials have been placed either by geological and geomorphological history or
by man. Knowledge of this history can help to focus our ideas about the likely
mechanical characteristics and a geological or stratigraphic model is usually
recommended as a precursor to and underpinning feature of the geotechnical
model.

A reasonably well developed geological model can lead to economy and ef-
ficiency in subsequent site investigation to determine quantitative properties of
the ground. Parallels can be drawn with past experience and with adjacent
sites with similar geologies. The expected properties, the nature and mineral-
ogy of soil particles, the appropriate constitutive models (which may in some
ways predefine the in-situ or laboratory testing), and the likely pitfalls can be
predicted. For example, fractured rock associated with faulting or irregular
buried erosion features in weaker rocks may be anticipated. Although geophysi-
cal techniques can be used to obtain an overview of the structure of the ground,
detailed knowledge usually comes from discrete boreholes. A geological model is
necessary to be able to propose continuity (or lack of continuity) of stratigraphy
between boreholes (Fig 1.23, Fig 1.24). The ground is usually not homogeneous.
Vertically the inhomogeneities may primarily result from depositional layering:
different rock layers at one scale—with spacings perhaps of the order of metres;
varves resulting from seasonal variations in sediment transport and water veloc-
ities at another—with spacings perhaps of the order of millimetres. Horizontally
there may also be variations. The geological model can help to understand the
reason for and the nature of the spatial variations.

At the simplest level, the boundary between the soil-like materials which are
expected to deform and control the behaviour of the geotechnical system, and
the rock-like materials which are expected to be more or less rigid (and possibly
impermeable) in comparison, is important in defining the extent of the ground
that needs to be modelled either physically or numerically. Of course a rock
layer is not always the boundary beyond which nothing of interest or concern
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Figure 1.23: Geological model deduced from borehole exploration (solid lines)
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Figure 1.24: Model of stratigraphy of surface deposits deduced from borehole
exploration (solid lines)
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Figure 1.25: Particle size distributions
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Figure 1.26: Particle sizes determined by sieving

will occur but very often it will indeed serve to limit the size of the physical or
numerical model (see §4.10.2).

1.8 Classification model

Before any tests to determine the mechanical properties of the soils are per-
formed, and as an almost subliminal guide to the sorts of models that might
be used to inspire the design of a programme of testing, a classification model
is usually invoked with which the soils that are encountered are popped into
categories. Samples have been recovered; they are possibly disturbed but one
can from simple visual inspection categorise the soil as broadly gravelly or sandy
or silty or clayey. Particle size distributions can be obtained (Fig 1.25) which
confirm this initial visual classification. The determination of these distribu-
tions itself invokes a simplified model of the soil in which the particles of which
it is formed are replaced by equivalent spheres. For a soil with particles large
enough to sieve, the size of the equivalent spheres is defined by the size of the
mesh spacing through which the particles—of whatever actual shape—will fit
(Fig 1.26). For a soil with finer particles, Stokes’ law, which describes the ter-
minal velocity of spheres falling through a viscous fluid (Fig 1.27), is used to
define the size of the spheres to which the actual soil particles in their rate of
descent through the fluid are equivalent. In addition, sometimes as a luxury or
afterthought, some assessment may be made of the typical particle shapes (Fig
1.28) (and possibly also particle mineralogy).
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Figure 1.27: Particle sizes determined by sedimentation: (a) actual soil particles;
(b) equivalent spherical particles
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Figure 1.29: Plastic limit test

If the soil is basically sandy then standard index tests can be used to de-
termine the typical range of densities over which the dry soil can exist (Kol-
buszewski, 1948). A standard vibratory procedure is used to discover the max-
imum density, or minimum void ratio e,;,, of the soil. A series of repeated
inversions of a large tube containing a sample of the sandy soil is used to es-
timate the minimum density, or maximum void ratio, €,,4.. If the soil is then
prepared or found to exist at any other void ratio, e, then a relative density,

D,., can be defined
e

D, = —Smar 7€ (1.33)
€max — Emin

It is to be expected that this range of void ratios will itself depend on the range
of particle sizes and the typical particle shapes. Many empirical links have been
proposed between relative density (often combined with some statement about
stress level) and other soil properties—such as stiffness and strength. Some
sophisticated soil models reckon to obtain all their constitutive parameters by
correlation with this standard range of void ratios (Herle and Gudehus, 1999).

It is found that the maximum and minimum void ratios do not actually define
the extremes of packing: they merely provide a useful index for the soil. There
are some repeated shearings which can lead to even greater densities, lower void
ratios, than the standard procedure. The standard procedures are evidently
conducted at very low stress level: in the large tube used for estimating the
maximum void ratio the vertical stress in the sand is unlikely to be greater than
a few kilopascals.

If the soil is basically clayey and sticks together as a sample then the so-called
Atterberg limits again provide an indication of the range of packings at which
the soil can ideally exist (Atterberg, 1911). Atterberg’s limits seem almost more
relevant to the selection of clays for use in making pots:

Then said another with a long-drawn Sigh
‘My Clay with long oblivion is gone dry:
But, fill me with the old familiar Juice,

Methinks I might recover By-and-by€

(stanza LXV: Rubdiydt of Omar Khayydm)

As water is added to a clay there is a range of water contents for which the
clay can be readily moulded without cracking. If the water content is too high
the clay becomes a slurry and flows like a liquid. If the water content is too low
the clay tends to crumble when it is moulded. Thus broadly were defined the
liquid limit and plastic limit for a clay soil.
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Figure 1.30: Liquid limit test

The plastic limit, wp, is still determined by a procedure similar to that
proposed by Atterberg: a thread of soil of diameter 3 mm is rolled out (Fig
1.29) until it starts to crumble. The rolling hand gradually draws off water,
thus steadily moving the water content towards the plastic limit.

Atterberg’s test to determine the liquid limit was indeed a test to spot the
occurrence of flow in the soil. However, this test has been abandoned in many
countries (because it was found to be somewhat operator sensitive) and replaced
by a test which is actually a strength test (Wood, 1985)(§5.2.2). A cone of
standard geometry and standard mass is allowed to fall into the soil under its
own weight from contact with the flat surface of the soil (Fig 1.30). If the cone
angle is 30°, the cone mass 80 g and the depth of penetration 20 mm then,
according to the British Standard (BS1377, 1990), the soil must be exactly at
its liquid limit, wyr. (In Scandinavian countries the cone angle is 60°, the mass
60 g and the depth of penetration 10 mm (Karlsson, 1977).)

This cone test is exactly equivalent to the indentation hardness tests used,
in a nondestructive way, to estimate the yield strength of metals. A test which
was originally required to set a standard limit to the volumetric packing of the
clay has become a test which measures soil strength. It can be shown that
the undrained strength of a clay soil at its liquid limit is about 2 kPa (Wood,
1985; see §5.2.2), and that the British Standard and the Scandinavian standard
procedures both seek the water content at which the clayey soil has this strength.

Results of site investigation are frequently presented in terms of the profiles
of liquid limit, plastic limit and natural water content w with depth (Fig 1.31)
because these profiles can reveal a lot about the nature of the soils (and the
internal consistency of the site investigation). There are many correlations of
soil mass properties with plasticity index, Ip

Ip:wawp (134)
If the actual water content, w, of the soil is known then a liquidity index,
I, can be defined which is somewhat equivalent to relative density>
w—wp

I = —— (1.35)
wr —wp

3Relative density increases with decreasing void ratio, but liquidity index increases with
increasing void ratio.
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Figure 1.31: Profiles of index properties and natural water content

and correlations of certain properties with liquidity index can be obtained (Muir
Wood, 1990).

These classification index tests are simple standard tests which can be rapidly
performed with low cost equipment but whose results can help to slot the soils
into an explicit or implicit bank of past experience. They make up a classifica-
tion model which can be useful for sharing information across different sites and
can provide a basis for moderation of other estimates of soil properties. If soils
from two sites have similar index properties and similar particle characteristics
(and similar geological histories) then it is to be expected that other mechanical
properties will fit into a consistent pattern across the sites.

1.9 Conclusion

Various modelling issues have been aired in this introductory chapter and ex-
amples have been given of some of the different types of modelling activities
that are in regular use by geotechnical engineers. The remainder of this book
will concentrate on theoretical, numerical and physical modelling.

The equations of equilibrium and of strain compatibility for a continuous
material are well established. In order to analyse the deformations of a geotech-
nical system it is necessary to provide a link between stresses and strains in
the form of a constitutive model. In Chapter 2 we will discuss elements of
the mechanical behaviour of soils and deduce that simple linear elastic or per-
fectly plastic models are inadequate in detail—though they may be appropriate
in certain circumstances. Chapter 3 will then explore some of the alternative
possibilities for forms of constitutive model which may be more generally appli-
cable to soils. This is something of an open field and the intention is to open
the eyes of geotechnical engineers to the possibilities of constitutive modelling
without suggesting that work has come to a conclusion in this area. In fact it
will be shown that there are often several ways in which the same experimental
observation can be modelled.

The extreme nonlinearity of most plausible constitutive models makes it
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essential to use numerical procedures to obtain solutions to boundary value
problems—the behaviour of complete geotechnical systems of interest to geotech-
nical engineers. The essence of numerical approximation is discussed in Chapter
4 but numerical analysis is seen as a tool to be used and the emphasis is cer-
tainly not on the theoretical basis of numerical analysis. However, the power of
the computers that are available to all geotechnical engineers has increased so
much that it is quite reasonable to suggest that numerical analysis tools should
be used much more as part of the routine of geotechnical design, incorporating
the constitutive models of today and recognising the inadequacy of some of the
simplifying assumptions that have been imposed in the past for reasons of cal-
culational expediency. However, increased use of numerical tools cannot obviate
the need to ensure the reliability of the results.

The importance of scaling laws in the design and interpretation of physical
models will be described in Chapter 5. It will be shown in Chapter 2 that soils
are nonlinear history dependent materials. The understanding of scaling laws
for stress related quantities for such materials is not necessarily straightforward
and the extrapolation of observations made in small scale physical models to
the full scale prototype response is simplified if the stress level of the physical
models is similar to that of the prototype. This can be achieved by subjecting
the physical model to an artificial gravitational field on a geotechnical centrifuge.
Chapter 6 provides an introduction to geotechnical centrifuge modelling.

Modelling should always be of only adequate complexity. Numerical mod-
elling will not be required or appropriate in all circumstances. Elastic analyses
are regularly used as part of geotechnical design and for validation of compu-
tational tools that are to be used for more elaborate calculations. The use of
perfect plasticity underpins much of the ultimate limit state design in geotechni-
cal engineering. Some of the possibilities for simple calculations using plasticity
models and other theoretical models of aspects of geotechnical behaviour are
described in Chapter 7.

One of the prime applications of geotechnical modelling, whether theoreti-
cal/numerical or physical, is to assess the consequences of soil-structure inter-
action. Soil-structure interaction problems tend to be driven by stiffness or
deformation properties of soils. Constitutive modelling of prefailure deforma-
tion properties is thus vital. The importance of soil-structure interaction will
be demonstrated in Chapter 8.






2

Characteristics of soil
behaviour

2.1 Introduction

It has been shown briefly in Chapter 1 (and will be shown more extensively
in Chapter 5) that application of techniques of physical geotechnical modelling
requires correct application of scaling laws in order to be able to extrapolate
behaviour observed in (usually) small physical models to the behaviour that
can be expected in a prototype geotechnical structure. Correct development of
these scaling laws requires some understanding of the factors that influence the
behaviour of the materials that are being modelled.

Numerical geotechnical modelling combines uncontroversial laws of equilib-
rium and of compatibility—continuity of displacement fields—through so-called
constitutive relations which relate the changes in loads applied to elements of
geotechnical materials to the deformations or gradients of displacement that
develop in those elements. In this chapter we are concerned to describe some of
the characteristics of the mechanical behaviour of geotechnical materials, pri-
marily soils, which make them interesting and challenging materials to model.
A hierarchy of possibilities for constitutive models that attempt to reproduce
some of these characteristics is presented in Chapter 3 (see §3.4.1, for example).
An extensive discussion of soil behaviour in the context of so-called ‘critical
state soil mechanics’ is given by Muir Wood (1990) and that book will provide
a complement to the descriptions of soil behaviour in this chapter.

We will include a very brief discussion of the influence of strain rate on the
mechanical behaviour of soils in section §3.7. However, our concern will primar-
ily be with slow deformation of soils. Several phenomena that are important
in understanding certain applications of soils or soil-like materials will therefore
be excluded. Many granular materials are stored in silos and are subsequently
discharged as a more or less rapid flow through a hopper. Rock avalanches
and rapid landslides involve inertial effects and the mechanics of collisions be-
tween individual blocks. Sediment transport by flow of water in rivers, lakes and
oceans is obviously extremely important in its influence on the structure of the
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Figure 2.1: Particle-continuum duality for geotechnical system

soils that are eventually formed by sedimentation. Large changes in geometry
will not be specifically addressed although they certainly occur in each of the
applications just cited. Numerical procedures and constitutive models need to
be specially formulated and adapted to cope with such large deformations.

2.2 Particle-continuum duality

If you pick up a handful of dry sand it can be poured, flowing almost like a liquid.
Yet we know that, contrary to biblical expectations, we can safely construct
major buildings sitting on the sand. We know that most soils have reached
their present location by being transported by wind, water or ice. While being
transported they were, at least if transported by air or water, present as dilute
particle suspensions with little interaction between individual particles. We are
faced with the problem of describing materials which clearly are composed of
individual particles but which clearly also exist in forms in which the particles
interact beneficially so that they appear to be strong materials which can be
relied upon for engineering applications which are usually so much larger than
the individual particles that we have to smear out the properties and create an
equivalent continuum for any analysis. In deciding how we should describe and
model the mechanical behaviour of soils we have to come to terms with this
particle-continuum duality (Fig 2.1).

As we have seen in the brief presentation of the classification model (§1.8),
soils can exist in a wide range of densities or volumetric packings and it is certain
that the interesting properties of soils require us to develop models which are
able to describe and accommodate large changes in volume as the particles
rearrange themselves and displace some of the fluid which fills the surrounding
voids. There may in general be more than one fluid in the voids—typically water
and air at near surface depths in temperate climates—but there could be water,
and liquid and gaseous hydrocarbon in certain circumstances. It will suffice
here to think merely of soils which are saturated with a single pore fluid. There
are two approaches which might be used to attempt to construct constitutive
models of soil behaviour.

Computing power exists today to be able to describe assemblies of very large



2.2. Particle-continuum duality 37

Figure 2.2: Hertzian contact of two spherical particles

numbers of individual particles interacting in three dimensions. Computation of
the response of such an assembly requires two things. A house-keeping operation
is required to check on the relative position of neighbouring particles and note
when they begin to interact. If they do interact then an assumption is required
concerning the physical law governing their interaction: basically a law relating
approach of two particles in contact with the forces generated at the contact.
The summation of all the effects at the particle contact level then produces the
response of the entire assembly.

Textbook solutions (eg Johnson, 1985) can be obtained as a first attempt
at describing the interaction of pairs of particles. The elastic contact of two
spherical particles of radii Ry and Rs (Fig 2.2) is described by Hertzian contact
theory which suggests that the load P should vary with a power of the relative
approach of their centres ¢:

P= %E*(R*é?’)a (2.1)

The exponent & = 1/2 and R* and E* are given by

L1, 2
R* Ry Rs ’
1 (=)  (1-1)
- m + o (2.3)

where F4 and vy, and Es and v, are Young’s modulus and Poisson’s ratio for
the material of the two spheres.

This is of interest because it demonstrates that even for elastic particle ma-
terial response the contact law is nonlinear. The behaviour of a contact under
combined normal and tangential forces can also be analysed theoretically for
elastic spheres and this can be extended to allow for limiting friction (local
ratio of tangential to normal stress) across the region of contact.

Actual sand particles are usually rather unspherical (the shapes which influ-
ence the particle interaction will be linked with the crystalline structure of the
material around the contact points) and the difficulties of geometric characteri-
sation have rather limited the analyses of assemblies of particles of more realistic
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Figure 2.3: Agglomerated spherical particles

shapes in either two or three dimensions. An approximation to non-spherical
particles can be created by glueing together two or more spherical particles of
different diameters (Fig 2.3), but the spherical nature of the contact remains.
Analytical results are also available for the contact between a conical and a
spherical object. In real soils it is likely that abrasion will also occur at the
contacts, where the level of local stress is often rather high, and in principle
particle fracture should therefore be included. Such analyses have their attrac-
tion for studying the behaviour of assemblies of sand- or gravel-like particles
where the particles interact by (apparently) rather straightforward mechanical
laws at their contacts.

For clay-like materials on the other hand electron micrographs indicate that
the ‘particles’ consist of packets of clay molecules which are distinctly non-
spherical (Fig 2.4). The particles are sufficiently small that surface electrical
forces between particles are significant and it is no longer sufficient to describe
particle interactions in purely mechanical contact terms. Being formed of pack-
ets of molecules one should also consider the possibility of deformations oc-
curring within the packets as well as between the packets. The shape of such
particles makes it likely that particle bending will have a significant influence
on the deformation response of a system of particles. The analysis of assemblies
of such particles has been much more rarely attempted.

Classic experiments were conducted by Drescher and De Josselin de Jong
(1972) on the shearing of a two-dimensional random assembly of photoelastic
discs having six different diameters from 8 to 20 mm. The photoelastic property
of the material of the discs and the size of the discs allowed the way in which
stresses were transmitted through particle contacts to be very clearly observed—
and the actual stresses in individual discs to be determined. Fig 2.5 is very
illuminating: from it can be deduced a diagram such as Fig 2.6 which shows
the network of contact forces passing through the particles. The lines in Fig
2.6 have a thickness which indicates the magnitude of the contact force; the
line is drawn linking the centres of the contacting particles. It is found that
some contacts are loaded much more heavily than others—and some particles
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Figure 2.4: Scanning electron micrograph of Bothkennar clay (reproduced by
kind permission of Professor MA Paul and Dr BF Barras)

hardly loaded at all—so that ‘force chains’ appear, roughly aligned with the
direction of the imposed major principal stress. Soil particles are born free but
are everywhere in chains.

Numerical calculations with random assemblies of (usually) circular particles
have managed to introduce much larger numbers of particles—and can tackle
three-dimensional assemblies too. These have confirmed the character of the
load carrying networks revealed in Figs 2.5 and 2.6.

The arrangement of the soil particles adjusts itself to accommodate these
force chains which form a network with a typical dimension much larger than
that of individual particles—perhaps of the order of ten particle sizes in these
simple analyses. The mechanical response of the assembly is intimately linked
with the creation and adjustment of this fabric of more heavily loaded particle
contacts. As loads are increased in such analyses deformation is seen to occur
by buckling of chains of particles and the establishment of new sets of contacts.
In particular, rotation of principal axes requires realignment of the load car-
rying contacts and is likely to imply softer material response than a loading
which retains the current direction of principal stresses. Buckling remains a
helpful analogy: the application of even a small lateral perturbation to the top
of a structural column has a dramatic effect on the load at which a buckling
instability will occur. Physicists see sand piles as examples of self organised
criticality and have called the material ‘fragile matter’ because the structure is
so sensitive to small changes in the nature of the loading (eg Cates et al, 1998).

If one were confident about one’s ability to describe the mechanical behaviour
at particle contacts then one could envisage modelling real geotechnical proto-
type situations as boundary value problems containing assemblies of particles.
The numbers of particles involved are, however, daunting. Suppose the typical
particle size is about 5 mm and a typical prototype dimension 10 m. For a plane
strain problem a block of soil of the order of 10 x 10 x 1 m will need to be anal-



Figure 2.5: Photoelastic picture of random assembly of circular discs (from
Drescher and De Josselin de Jong, 1972)

Figure 2.6: Network of chains of contact forces determined from photoelastic
experiments on assembly of circular discs (from Drescher and De Josselin de
Jong, 1972)
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ysed: effects of geotechnical structures are expected to extend away from the
structure to distances at least of the same order as the size of the structure—the
height of a retaining wall for example. The width of the block being studied
needs to be large enough to accommodate any effects of patterned soil fabric
or particle structure that may develop as described in the previous paragraphs.
The number of particles contained in this volume is then of the order of 8 x 108
which is not completely out of reach but would probably require quite long run-
ning analyses. (Of course, if the problem of concern actually involves rockfill
with individual particles having dimensions of the order of 1 m then the possibly
of analysing every particle in the boundary value problem is entirely reasonable,
provided that the detail of the contact laws is fully understood.)

The number of particles to be included in the analysis could perhaps be
reduced by replacing the actual particles by ‘macroparticles’” which were small
enough in comparison with typical problem dimensions for the overall response
not to be dominated by individual particles but sufficiently large to keep the
numbers of particles to a reasonable level. This has the apparent attraction
of retaining the particulate nature of the material. It is evident that it is the
fabric of the network of force chains rather than the size of individual particles
that must be small by comparison with the problem dimension. There remains
the problem of tuning the mechanical properties of the macroparticle contacts
to ensure that the overall response is satisfactory: these macroparticles have
somehow to scale up the properties of the smaller particles.

The alternative to the particulate approach is the continuum hypothesis.
Here we propose that the material is continuous at all scales that interest us—
all quantities are infinitely differentiable. Instead of working in terms of forces
and relative displacements at particle contacts we now work in terms of con-
tinuum concepts such as stress and strain. Stress is only relevant at a scale
considerably larger than the individual particles and the network of force chains
between particles. Strain is defined in terms of gradient of a field of displace-
ment. Analyses and observations of particle assemblies show that individual
particles rotate as well as slide at particle contacts—in fact for some assemblies
of circular particles rotation seems to be the dominant mechanism (consistent
with the buckling of force chains) and interparticle friction has a lower effect
than might have been anticipated (see, for example, Thornton, 2000). Conven-
tional definitions of strain do not admit rotation as a field variable. Particle
rotation can be seen as a consequence of out of balance moments being imposed
on the particles. These too cannot be incorporated in conventional definitions of
stress: we assume that only normal and shear tractions (and not moments) can
be transmitted across any surface in the continuum and the need for moment
equilibrium forces the symmetry of the stress tensor.

There are some features of response of granular materials—particularly those
associated with high gradients of displacement and particle rotation in narrow
failure zones—which cannot be satisfactorily modelled unless enriched contin-
uum approaches are adopted (see, for example, Oda and Iwashita (eds) (1999)).
For example, we might permit ‘couple stresses’ to apply moments across the
boundaries of our element and then correspondingly include rotations in our
description of displacement gradient. This is well beyond the scope of this book
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Figure 2.7: Volume element used for estimation of average stress state

but is mentioned to indicate that we may need to be prepared to question some
of our starting hypotheses in order to make progress in modelling strange or
difficult phenomena.

Practically, we have to work in terms of the continuum quantities stress and
strain in order to be able to estimate the behaviour of geotechnical systems. It
is also inevitable that our understanding of the behaviour of soils as assemblies
of individual particles should in general be mediated through observation of the
behaviour of samples of soils in the laboratory—each sample containing a very
large number of particles. The constitutive models that we present in Chapter
3 are therefore all constructed in terms of components of stress and strain. The
most appropriate use of analyses of particulate assemblies seems at present to
be to provide inspiration for the continuum constitutive models.

Given such an inhomogeneous numerical (or photoelastic) assembly we have
to go through a homogenisation process in order to derive an average continuum
behaviour from the local observations (Drescher and De Josselin de Jong, 1972).
With a finite volume V' of a continuum, the stress state o;; wil be everywhere
in equilibrium but variable. An average stress state ;; is

1
05 = V/O'Udv (24)

\%4

which, by application of Gauss’ divergence theorem, can be converted to a
surface integral of tractions t; over the surface S of the volume

_ 1
S
where z; is the coordinate of a point on S. For a boundary intersecting a
physical or numerical assembly of particles, the integral becomes a summation

of discrete forces T, with components T}, over all the particle contacts on the
boundary (Fig 2.7)

0ij ~ v Z T (2.6)
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and moment equilibrium of the assembly of particles should ensure that &;; =
0 ji-

An exactly similar argument can be used to develop an average strain tensor.
Strain is calculated from gradients of displacement so we need to consider the
construction of the average, over the volume, of typical displacement gradients
u;,j, adopting this shorthand notation for du,;/0x;. As before:

1
U5 = V/ui,jdv (27)
1%

and from the divergence theorem this can again be converted to an integral over
the surface S of the volume V:

1
U5 = V/um]dS (28)
S

where n; is the normal to the elemental surface area dS. For a system of
particles we convert this to a summation

N
wig Y Aufd) (2.9)

m=1

where Aw; is the relative translation of the centres of two particles on the edge
of the volume and d, with components d;, is a ‘complementary area vector’
which assigns an area and a direction to each contact on the boundary (Fig
2.8). The macroscopic average strain €;; is then
€5 = S A Bt L (210)
2
and the average rigid body motion w;; is given by the skew symmetric part of
U, 53
Wy = —L (2.11)
2
There is thus a clear route for moving from particle analysis to continuum
interpretation—although, of course, much richness of the actual particle re-
sponse and nature of the transmission of loads is lost in the transformation.
As well as providing information about particle movements and the trans-
mission of forces through the granular medium, numerical analyses of particle
assemblies can give information about the evolving ‘fabric’ of the material. The
fabric includes various elements (Oda and Iwashita, 1999):

e the orientation fabric, describing the orientation of non-spherical particles;
e the void fabric, describing the size and orientation of voids; and

e the multigrain fabric, describing the interaction betwen neighbouring par-
ticles.
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Figure 2.8: Definition of complementary area vector d for boundary of element
used to define average strain state

There are two elements to the multigrain fabric: the geometric fabric which
simply describes the orientation of contacts, and the kinetic fabric (Chen et al.,
1988) which describes how these contacts are actually being used to carry forces
through the soil. Evidently the same orientation and geometric fabrics can carry
many different external loads and, as a corollary, one might propose that kinetic
fabric can change very much more rapidly—through formation and elimination
of particle contacts—than orientation fabric which requires significant particle
rotation and relative movement.

2.3 Laboratory element testing

The possibilities for performing real physical experiments on homogeneous soil
samples (even ignoring for the moment the actual particulate nature of the soil)
are limited by the ingenuity of the designers of soil testing devices; the possi-
bilities for performing and deconstructing numerical experiments on assemblies
of soil particles are much greater. Any general element of soil in a geotechnical
system will experience changes in all of the six components of stress to which
it is subjected (Fig 2.9)!. Any constitutive model (Chapter 3) that is used in
numerical analysis (Chapter 4) will be expected to make reasonable predictions
of the soil behaviour under such general stress changes. The reliability of the
constitutive model can best be checked by pitting it against carefully conducted
laboratory experiments which expose uniform soil samples to similarly general
stress or strain changes.

Most data from laboratory tests on soil elements have come from tests per-
formed in the standard triaxial apparatus (Fig 2.10). A sample is contained
in a membrane and subjected to lateral pressure through this membrane. It is
also subjected to axial deformation through rigid end platens. The loading is
axisymmetric and (neglecting end effects and possible problems associated with

1The sign convention adopted throughout this book except where specifically noted assumes
that compressive stresses and strains are positive. A shear stress 7;; is positive if it acts on a
plane facing in the positive 7 direction but is directed in the negative j direction.
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Figure 2.9: Soil element subjected to general state of stress

Figure 2.10: Axisymmetric (triaxial) testing configuration

initial anisotropy of the sample) we have two lateral principal stresses equal to
the cell pressure o,

Oy = Oy = Oy

and an axial principal stress o, = 0,. Depending on the way in which the test is
conducted the axial stress may be the major principal stress (‘compression’)—so
that the intermediate and minor principal stresses are equal-—or the minor prin-
cipal stress (‘extension’)—so that the intermediate and major principal stresses
are equal. The test has two degrees of freedom and is more strictly described
as a confined uniaxial test than a triaxial test. However, it is likely to remain
the most widely used soil testing device. The other test apparatus described
here are, on the whole, either purely research devices or will enter commercial
application only for particularly subtle or sensitive geotechnical projects.
Axial symmetry may not seem particularly relevant to many geotechnical
systems: it matches exactly the conditions on the centreline beneath a circular
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Figure 2.11: Plane strain element test

load (such as an oil tank), but not the stresses at any point off the centre-
line. Plane strain may seem more generally applicable (Fig 2.11). The relevant
element test can be achieved either by inserting fixed lateral boundaries in a
triaxial cell or by development of a dedicated biaxial apparatus. The latter
may be advantageous in permitting either o, or o, to be the major principal
stress. In either, the intermediate strain increment, which from symmetry is
also a principal strain increment, is zero and the corresponding stress o, will be
the intermediate principal stress (and will be a dependent stress quantity taking
whatever value is required to maintain the plane strain condition):

dey =0; 0y =09

Such a device also has two degrees of freedom.

True triaxial apparatus or cubical cells permit the application and control of
three independent principal stresses, and corresponding principal strain incre-
ments, with fixed coincident principal axes (Fig 2.12). Loads can be imposed
either by means of flexible cushions (Ko and Scott, 1967)—imposing direct con-
trol of stresses—or by a cunning arrangement of nested rigid platens (Hambly,
1969)—imposing direct control of strains. Suitable control systems can permit
either device to be used, in principle, for stress or strain controlled testing with
three degrees of freedom.

The simple shear apparatus (Fig 2.13) permits some control of rotation of
principal axes and has been somewhat widely used for commercial testing—
especially for cyclic testing linked with offshore and seismic applications. It is a
plane strain device, de, = 0, but also prevents any direct strain in the z direc-
tion, de, = 0. The only two degrees of freedom are therefore the shear strain,
.z, and the vertical strain, €,, which is therefore also the volumetric strain.
There are stresses 7,, and o,, associated with each of these strain components.
The intermediate principal stress o, is not an independent quantity because it
has to take an appropriate value to maintain the plane strain condition. The
final stress component, o,,, is also dependent on the response of the soil. The
simple shear apparatus was developed as an improvement on the shear box
(Fig 2.14) (Roscoe, 1953) which clearly makes no pretence of imposing uniform
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Figure 2.12: True triaxial apparatus

Figure 2.13: Simple shear apparatus
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Figure 2.14: Direct shear apparatus (shear box)

Figure 2.15: Directional shear cell

conditions on the soil being tested. Unfortunately, the need for the soil to be
able to change in volume, and the kinematic need for the ends of the sample to
become longer as the sample changes section from rectangle to parallelogram
(even at constant volume), mean that there is a difficulty in providing the nec-
essary complementary shear stress 7., on the ends of the sample. Stresses and
strains within a simple shear sample are inevitably nonuniform and it has to
be interpreted as a boundary value problem rather than a single homogeneous
element (Airey, Budhu and Wood, 1985).

The directional shear cell (Fig 2.15) (Arthur et al., 1977) is another plane
strain device (de¢, = 0 which aims to impose controlled shear and normal stresses
on two sets of initially orthogonal flexible boundaries of a sample which is free to
undergo all the associated deformations, in principle homogeneously. This single
element test has three degrees of freedom (0.4, 0., T22) but the complexities
of the loading arrangements have severely limited its use.

The torsional hollow cylinder apparatus (Fig 2.16) (Saada and Baah, 1967),
on the other hand, has been much more widely adopted. A hollow cylindrical
sample is subjected to axial load F', and axial torque T through rigid end platens,
and internal and external pressures (p;, p,) through containing membranes.
This gives us four degrees of freedom, which is nice, but one should quickly
understand that this is at the expense of inevitable internal variations of stress
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Figure 2.16: Torsional hollow cylinder apparatus

and strain. We are testing a closely controlled boundary value problem not a
single homogeneous soil element. Any discussion of stress:strain response has
to be deduced from average quantities.

For example, with internal and external radii r;, r,, we could propose an

average axial stress
.. = F/m (12 —17) (2.12)

and shear stress
Tow = 3T/ [2m (r3 — 1})] (2.13)

But this has assumed a uniform shear stress over the section whereas, for a
rotation 6 of the top of a sample of height h, the imposed shear strain varies
linearly from r;0/h at the inner edge to r,0/h at the outer edge of the hollow
cylinder. Should we assume some corresponding linear variation of shear stress
with radius? This will certainly change the average in (2.13)—in fact the volume
average for the shear stress then becomes

AT (rh 1))
3w g =) (g =)

Tex (2.14)
And if the stress:strain response is not in fact linear—elastic-plastic perhaps?—
then the radial variation (and volumetric average) of shear stress will be different
again.

If the internal and external pressures are different then the obvious average
radial stress is

Or = Oyy = (Pi + o) /2 (2.15)

(although this is not actually the volume average of the radial stress). The
corresponding average circumferential stress, from radial equilibrium of a small
element of the hollow cylinder (Fig 2.16), is

09 =O0gy = (poro - piri) / (To - Ti) (216)
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Figure 2.17: Mohr’s circle of stress for torsional hollow cylinder

In all proposed expressions for average stress quantities the departure from
uniformity is reduced as the ratio of wall thickness to average radius reduces—
large thin samples are preferred. There are evidently compromises to be made
between apparatus size, ease of sample preparation and internal stress unifor-
mity.

If we sacrifice one degree of freedom and keep p; = p, then ¢, = 69 = G4, =
04y = 02 but now, as we vary the axial load and torque, the geometry of Mohr’s
circle (Fig 2.17) tells us that

09 = oy 8in? o + o3 cos® (2.17)

or that the quantity b which indicates the value of the intermediate principal
stress relative to the other two principal stresses is

09 — 03

b= =sin’a (2.18)

01 — 03

where « is the angle made by the major principal stress to the horizontal.

This relationship of the intermediate stress to the major and minor principal
stresses is now a function of the value of o and cannot be chosen independently.
This sacrifice of a degree of freedom, while leading to reduced uncertainty of
the values of some of the averaged stress components, somewhat constrains the
stress paths that can be followed in the torsional hollow cylinder apparatus.

Interpretation of the results of hollow cylinder tests is something of an ex-
ercise in deconvolution—working back from system response to underlying con-
tributory elemental behaviour. Four degrees of freedom seem to be the maxi-
mum that we can achieve in laboratory element testing and we are always going
to have to extrapolate using our constitutive model in order to describe the final
two degrees of freedom (and we have to use a postulated model to deconvolve
the hollow cylinder response itself).

2.4 Stress and strain variables

Having established that concepts of stress are likely to be helpful we need to con-
sider the ways in which we can most usefully characterise the stresses to which
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Figure 2.18: ‘Wavy’ plane through granular material

elements of soil are subjected. Triaxial testing provides the bulk of the avail-
able data on the mechanical behaviour of soil elements and therefore provides
a useful background against which to introduce ideas of constitutive modelling
of soils in Chapter 3—even though the bulk of the applications in geotechni-
cal engineering do not have the axial symmetry that is implied by the triaxial
apparatus.

The triaxial apparatus provides the possibility for confined uniaxial testing
of soils or other materials and evidently provides two degrees of freedom in
control of externally applied stress states. There are, however, many different
ways in which these two degrees of freedom can be chosen for presentation
and interpretation of test results: there are many different national traditions.
However, when it comes to the development of constitutive models then it is
necessary to start to impose some constraints on the choice of variables.

Development of constitutive models describing the link between changes in
stress and changes in strain requires correct choice of strain increment and stress
variables. Soils consist of more or less rigid particles separated by voids. Volume
changes are recognised to be an important feature of the mechanical response
of soils. Volume changes of saturated soil require pore water movement which
is controlled and limited by the permeability of the soil. Our experience tells us
that undrained response of soils is often important where the permeability of
the soil prevents flow of water. Undrained deformation implies constant volume
deformation (the compressibility of pore fluid is usually negligible in most civil
engineering applications) and hence pure distortion, change in shape at constant
size. It is convenient, then, to divide soil deformations into compression (change
of volume) and distortion (change of shape) and to choose the strain increment
variables correspondingly.

The principle of effective stress proposes that it is the effective stresses that
control the deformation behaviour of the soil—all the constitutive models that
are discussed in Chapter 3 will take this principle as axiomatic. Various attempts
have been made to prove the validity of the principle of effective stress: here it
will be taken simply as a hypothesis or conjecture only weakly non-falsified which
has been found to work well within the context of understanding of saturated soil
behaviour. Drawing a ‘wavy plane’ through a granular material (Fig 2.18) (see,
for example, Lambe and Whitman (1979)) to support an argument of partition
of total stress between pore pressure and intergranular stress (intergranular
normal forces averaged over the whole area) can only support the principle of
effective stress if the area of contact—over which the intergranular stress but
not the pore pressure acts—is small by comparison with the total area. Classic
experiments by Laughton (quoted by Bishop (1959)) on lead shot, subjected
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to such high pressures that the observed flats on the surface of the originally
spherical particles indicated a contact area of 60%, showed that the principle of
effective stress still applied under these extreme conditions.

Formally, given a total stress tensor o;; (compression positive) and pore
pressure u, the effective stress tensor o} ; 1s given by

O',Ej = 045 — U(Sij (219)

where d;; is the Kronecker delta
0ij =1, i=j; d0;;=0, i#] (2.20)

Expression (2.19) simply tells us that the pore pressure affects only the
normal stresses and not the shear stresses supported by the soil element: this
does not surprise us because we know that, in the context of soil mechanics,
water has negligible shear stiffness and negligible ability to carry shear stresses.

In presentation of constitutive models in Chapter 3, we will concentrate on
conditions which are attainable in conventional triaxial tests, where the states of
stress and strain are assumed to be axisymmetric. In any test we can obviously
identify the axial and radial strain increments de, and de, respectively, and
corresponding axial and radial effective stresses o/, and ol.. However, since
volumetric effects are recognised to be important let us choose as our first strain
increment variable for constitutive modelling the volumetric strain increment
dep:

dep = 0€q + 20€, (2.21)

At many stages in numerical and constitutive modelling we need to make
statements about increments of work done in deforming soil elements. This
leads to the idea of work conjugacy of strain increment and stress quantities. In
the context of volumetric deformations we need to choose a ‘volumetric’ effective
stress p’ such that the work done in changing the volume of a unit element of
soil is given by

W, =p'de, (2.22)

This requires that this volumetric stress should be the mean effective stress:

p = % (o), + 207.) (2.23)
The subscript , for the volumetric strain indicates that this p strain is linked
with the p stress.

Our two degrees of deformational freedom for soil samples in the triaxial
apparatus are compression (change of size) and distortion (change of shape).
We need next to choose a pair of strain increment and stress variables which
can describe distortional processes. We are now bound more by convenience
than by any direct theoretical constraint. When we perform triaxial tests we
directly measure the ‘deviator stress’ ¢ which is the amount by which the axial
stress exceeds the radial stress:

q:Ua_Ur:F/A (224)
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where F' is the axial force and A is the cross sectional area of the sample. If we
choose ¢ as our distortional or shear stress then we have no remaining choice in
the definition of the distortional strain increment de,

0eq = ; (0eq — der) (2.25)

and the increment of work required to change the shape of a unit element of soil
is given by
OWy4 = qdeq (2.26)
and again the subscript , reminds us of the link between the distortional ¢ strain
increment and the ¢ stress.
The total work done per unit volume during any strain increment is the sum
of the volumetric and distortional terms:

W = 6W, + Wy = p'de, + qdey = 0,0€q + 20,.5¢, (2.27)

The relationships between stress variables and between strain increment vari-
ables can be summarised in matrix form

RGO
(7)-(0 5)(%) )
- A(E) e
M E
ool
oo = oo O .

It is also convenient to define a stress ratio 7
-1 (236)

which is equivalent to a mobilised friction ¢],. Under conditions of triaxial
compression, in which ¢ > 0 and the axial stress is greater than the radial
stress,

o/ 1+sing! 3+2

o _ Lt sindy, 312 (2.37)

o 1—sing), 3—17

/
r
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and , 5
Oq — Oy 7
sin ¢}, = o T ol — 647 (2.38)
so that 6 5in o
sin
= —"n 2.39
g 3 —sing!, ( )

Under conditions of triaxial extension, in which ¢ < 0 and the axial stress is less
than the radial stress,
1—sing,, 3+2n

0_/
=2 = = 2.40
o, 1-+sing), 3—n (240)

and , , 5
: 0y, — 0, 7
sin ¢}, = . UZ =517 (2.41)
so that 65in o
sin
=™ 2.42
n 3+sing!, ( )

It is unfortunate that the symbols p’ and ¢ have frequently also been used for
the quantities (o/, + 07.) /2 and (o), — o) /2 respectively. These definitions are
not helpful in the context of constitutive modelling of response in triaxial tests
because it is not possible to use them to develop correct work statements—
there are no corresponding work-conjugate strain increment quantities. The
engineer must be careful, in using quoted experimental data, to ensure that the
definitions of p’ and ¢ are indeed as anticipated.

For axisymmetric states of stress there are only two degrees of freedom and
the introduction of the stress variables q and p’ clearly implies no loss of infor-
mation. However, the complete stress state at any location (a symmetric second
order tensor) has six independent components. We can choose these to be the
normal and shear stresses on three mutually orthogonal planes (Fig 2.9) but for
every stress state there is a set of three mutually orthogonal planes on which
the shear stresses vanish (Fig 2.19). The normals to these three planes define a
set of three principal directions or principal axes and the corresponding normal
stresses are the three principal stresses o1, 09, 03. The two stress states in Figs
2.9 and 2.19 are exactly equivalent and related to each other by the rules of
tensor transformation—or stress resolution.

If we know that the directions of the principal axes are not changing or if
we choose to ignore the effects of changing the directions of the principal axes
(this may be unwise) then the principal stresses alone are sufficient to describe
the stress state. If we reckon that even for these more general stress states it is
still important to think of the volumetric effects separately from the distortional
effects then we can propose that the mean stress p will still be a useful stress
variable:

1 1
p= 5(01 + oy +03) = g(sz-ﬁ-Uyy—i—ozz) (2.43)

This mean stress can also be defined as

ltr (Uij) (2.44)

p=3
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Figure 2.19: Principal axes and principal stresses for general state of stress

where tr signifies the trace, or the sum of the leading diagonal terms of the
tensor.

For a given state of stress at a point in a continuum the elements of the stress
tensor Ouy, Oyy, 02z, Tyz, Tza, Tay Will change if the directions of the coordinate
axes x, 1, z are changed. However, the values of the principal stresses will not
change: these quantities are said to be ‘invariant’ to choice of coordinate axes.
Any function of the three principal stresses will also be invariant to choice of
axes but, by convention, the three invariants of a stress tensor are defined as

I :0'1+O'2+0'3=tl"(0'ij)=3p (245)

1
I, = 3 {[tr (aij)}z —tr (J?j)} = 0903 + 0301 + 0109 (2.46)
Ig = detaij = 010203 (247)

If we subtract the volumetric stress then we can create a stress deviator
tensor s;; which describes solely the distortional components of stress

Sij =045 — péw (248)
It is easy to see that
tr (Sm‘) =0 (249)
The second invariant of the stress deviator tensor is defined (as in (2.46)) as
1 I?
T = gtr (s3;) = 31 — I (2.50)
Alternative expressions for Jy are
1
2 =5 (01 =) + (02 =) + (03— p)°] (2:51)
and
T, — 1 _ 2 . 2 + N 2 2 2 + 2 2.52
2 — 6 (Uyy UZZ) + (UZZ JCM) (O'If Uyy) + Tyz + T Ty ( . )
Noting that, for an axisymmetric system of stresses
1 2
Jo =5 (022 — 00a) (2.53)

3
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Figure 2.20: (b) w-plane deviatoric view of (a) principal stress space down space
diagonal o, = 0y = 0,

we deduce that a generalised definition of our distortional stress ¢ (2.24) will be

q=(3J)"" (2.54)

There is a class of theoretical constitutive models that can be constructed
within the framework of so-called Jy plasticity for which the stress:strain re-
sponse is controlled only by the first and second invariants of the stress tensor,
p and Jy. This might also be called the Von Mises generalisation from the
axisymmetric condition. It will be shown subsequently (§2.7) that this generali-
sation is not obviously directly appropriate for soils, though it does confer some
mathematical simplification.

The generalised distortional stresses for true triaxial tests—in which all three
principal stresses are changed without changing the orientations of principal
axes—can be displayed in a two-dimensional diagram which is a view of the
so-called m-plane—a view of principal stress space down the line 0, = 0, = 0.
(Fig 2.20). For plotting purposes this is equivalent to projecting onto orthogonal
axes ¢, and ¢, (Fig 2.20):

Oy — Oy (0, —0g) — (0y —02)

Se = — = Sy—
V2 ! V6

which are both clearly functions of independent stress differences. Under con-
ditions of axial symmetry, o, = 0, and ¢, = 0 and ¢, = /(2/3)g. Contours of
constant generalised ¢ (2.54) are circles in the 7-plane.

For test apparatus which permit rotation of principal axes we have to include
the imposed shear stresses in our selection of stress variables. For example, for
simple shear (Fig 2.13) or directional shear cell (Fig 2.15) tests we can display the
two distortional degrees of freedom in a diagram with axes 8 = (0., — 0zz) /2;
and 7, (Fig 2.21) with corresponding work-conjugate strain increments ¢ =
0€,, — O€zp and 07,,. In this form of plotting of deviatoric stress information
the length of the stress vector is (o7 — 03) /2 where o7 and o3 are major and
minor principal stresses respectively. The inclination of the stress vector to the
[ axis is 2a where « is the inclination of the major principal stress to the z

(2.55)
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Figure 2.21: Deviatoric stress plane for rotation of principal axes
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Figure 2.22: Additional deviatoric stress axis for intermediate principal stress

direction. Mobilised friction only involves major and minor principal stresses
and, provided the out-of-plane stress oo is indeed the intermediate principal
stress, contours of constant mobilised friction for given values of mean stress
become circles in the §:7,, stress plot (Fig 2.21).

For the torsional hollow cylinder apparatus (Fig 2.16) we need to display
three degrees of freedom of distortional information: the third axis could logi-
cally be o9 — p = 0y, — p (from (2.48)) (Fig 2.22).

As an example of the application of these stress variables we can consider
the stress path followed in a simple shear test (Fig 2.13). The results relate to
tests on dry sand so that total and effective stresses are identical. It is found
experimentally (Airey, Budhu and Wood, 1985) that data from simple shear
tests on sands and clays, in which complete information about the stress tensor
is available from boundary stress measurements, fit quite closely a relationship
(Fig 2.23):

TZ{E

= ktana (2.56)
UZZ

where k is a soil constant. In plane strain tests such as this the intermediate

principal stress o9 is a dependent quantity, taking whatever value is required in

order to maintain the plane strain condition. It is consequently helpful to think
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Figure 2.23: Relationship between shear stress ratio and principal stress axis
direction for simple shear tests on Leighton Buzzard sand (after Airey et al.,
1985)

of stress changes using a plane strain mean stress s:

Ogxg + 02z 01+ 03
= = 2.57
s 5 5 (2.57)

Since it is found that, in simple shear tests on sand, oo ~ 0.8s (Stroud, 1971)
or more generally oy ~ kos, we have

p _ (2+k)

P (2.58)

Equation (2.56) can be converted into a stress path (Fig 2.24)
72, = k202, — 2kfBo.. = 2kso.. — k(2 — k) o, (2.59)
s=0.—f (2.60)

and we see that the kinematic constraints of the simple shear test empirically
constrain the distortional stress path to take a parabolic form (Fig 2.24a).
The mobilised friction is given by
. kozz - ﬁ
sin ¢, = ———— 2.61

" Ozz — ﬁ ( )
and a link can be obtained between the orientation « of the major principal
stress and the mobilised friction:

o 2sin¢y, —k(14sing,)

tan® o = k(1= singm) (2.62)
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Figure 2.24: Empirically deduced stress paths for simple shear tests (after Muir
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Figure 2.25: Random assembly of rods: variation of distribution of contact
normals: (a) one-dimensional compression to 12% vertical strain and (b) simple
shear to 12% shear strain (after Oda and Iwashita, 1999)
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Figure 2.26: Orientations of principal axes of stress, stress increment and strain
increment in a cycle of simple shear on Leighton Buzzard sand (after Wood and
Budhu, 1980)

The dramatic effect of simple shear deformation on the fabric of a granular
material is shown in Fig 2.25 (Oda and Iwashita, 1999) for a test on a two-
dimensional random assembly of cylindrical rods of three different diameters.
The geometric fabric of this pseudo-granular material is described in terms of the
numbers of particle contacts in different directions. The effect of compression
in the z direction to 12 % strain is to generate contacts in this vertical direction
and to lose contacts in the orthogonal horizontal direction (Fig 2.25a). The
effect of subsequent simple shear to 7., = 12% is to generate contacts at some
inclination to the horizontal (Fig 2.25b): the fabric is changing dynamically
during the shearing process.

Another indication of a related effect can be detected from observations of
the way in which the principal axes of strain increment vary during a simple
shear test. Typical data for a single simple shear cycle on a sample of sand
are shown in Fig 2.26). The principal axes of stress increment are in one sense
not independent but are linked with the slope of the stress path shown in Fig
2.24a—that path was an empirical deduction and not theoretically ordained.
When studied directly, it is found that, after each reversal of straining, the
principal axes of strain increment initially coincide with those of stress increment
but progressively tend towards those of stress as the strain is monotonically
increased. From a constitutive point of view this could be interpreted as a
progressive transition from an elastic to a perfectly plastic model of response.

If the simple shear test eventually reaches a condition where shearing contin-
ues without further change in volume then the Mohr circle of strain increment is
centred on the origin (Fig 2.27) and with coincident axes of principal strain in-
crement and of principal stress the measured shear stress 7,, must lie at the top
of the Mohr circle of stress (Fig 2.27), with a = 7/4, so that 7., /0., = sin ¢¢y
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Figure 2.27: Mohr’s circle of (a) strain increment and (b) stress for simple shear
sample undergoing constant volume (critical state) deformation

where ¢, is the angle of friction for constant volume (or critical state) shearing
(§2.6.1). We can then deduce that k = sin ¢, in (2.56).

2.5 Stiffness

We perform laboratory tests in order to assemble observations which can help us
to develop and calibrate constitutive models of soil response which provide the
link between strain increments € and stress increments o which will be required
for performance of numerical analysis of geotechnical systems. Formally we
require to develop and populate a stiffness matrix D

0o = Dde (2.63)

and this incremental link between stress and strain is probably the most useful
definition of stiffness.

2.5.1 Nonlinearity: secant and tangent stiffness

Typical stress:strain relationships for soil are not linear. This nonlinearity has
to be characterised and then modelled. One way in which the nonlinearity can
be described is by showing how the stiffness varies with strain. Stiffness for
nonlinear materials can be defined in two quite different ways (Fig 2.28), using
either secant stiffness

-
Gs = — 2.64
5 (2.64)
or tangent stiffness
Gy = or (2.65)
£ 5y :

The use of the term ‘stiffness’ can quickly lead to false expectations because
of its general association with ‘elasticity’—and even more general association
with ‘linear elasticity’. This confusion is greatest when secant stiffness is being
used because this stiffness merely defines an average stiffness over a chosen range
of strain from an arbitrary zero. Tangent stiffness is more obviously useful
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Figure 2.29: Cantilever under tip loading

because it is describing the way in which the soil will respond in generating
change in stress as a result of a small imposed deformation from the current
state of the soil—and the elastic-plastic models to be developed in Chapter 3
will generate just such general stiffness relationships.

One of the dangers of adopting any elements of the language of elastic-
ity is that one can be rapidly seduced into adopting the entire accompanying
framework of elastic analysis. Let us give a simple example, using a structural
analogy: a steel cantilever beam, built in at one end and subjected to a tip
point load W (Fig 2.29). This structural problem is capable of exact analysis
whereas for most geotechnical systems we have to resort to numerical procedures
or approximations and the direct physical insight is obscured.

The beam is of length ¢, with flexural rigidity FI, rectangular cross section
(bx 2d) and full plastic moment M,,. A familiar problem might be to determine
the limiting value of W to cause plastic collapse of the beam. A slightly more
subtle problem is to compute the relationship between the tip deflection § of
the beam and the force W necessary to produce this deflection.

While the beam is behaving purely elastically the link between W and § is

W 3FEI
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Figure 2.30: Idealised elastic-perfectly plastic stress:strain response for steel

As the deflection and the load increase there comes a point at which the moment
at the root of the cantilever is sufficiently large that the stress in the extreme
fibres of the beam just reaches the yield stress o, of the steel. The corresponding
moment is the yield moment M, which, for a beam of rectangular section, is:

2
M, = §Mp (2.67)
The yield value of the tip load is
M 2M,
W, =—2==""" 2.68
Y 14 3¢ ( )
and the corresponding tip deflection is
2M,0?
= 2-
%= 9ET (2.69)

The compression and extension behaviour of the steel is assumed to be given
by the bilinear relationship shown in Fig 2.30. Once the steel starts to yield then
it is no longer able to accept any additional stress. As the deflection is increased
beyond the yield value the stiffness of the cantilever must fall. Following Baker
and Heyman (1969) we can obtain an explicit solution as follows.

Let the moment at the root of the cantilever be AM,, (2/3 < X <1) so that
the tip load for this statically determinate cantilever is

AM,
¢

There will be a zone of partial plasticity extending into the cantilever from
the root. At any particular location the elastic region occupies a fraction « of
the section (1 > o > 0) (Fig 2.31) and the moment in the partially plastic state
is

W = (2.70)

a2
At the root of the cantilever

a=a,=+/3(1-2X) (2.72)
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Pk
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Figure 2.31: Strain and stress distributions across section of beam with partial
plasticity

Moment equilibrium then tells us that, within this partially plastic region (Fig
2.29), measuring x from the root of the cantilever,

2

@ x

=S =a(1-7) 2.73

3 7 (2.73)

and hence, substituting o = 1, that the partially plastic section extends a

distance z, from the root:

T, = (1 - 32/\> ¢ (2.74)

The elastic core of the beam controls the curvature in just the same way as
for a fully elastic beam so that we can write

&Py _ oy _2M,
de2  «aFd  3aFEI

Integrating this equation we deduce that the slope of the cantilever at position
T, is:

(2.75)

dy 4 W2
and the deflection is
4 W
y|33:113o = am (2 — 30éo + O[g) (277)

Combining these values with the behaviour of the elastic cantilever of length
2¢/3) we find that the deflection of the tip of the cantilever is

4 W3 3
0= gm (10 — 90{0 + ao) (278)
where a, and X are parametrically linked.

The resulting elastic-plastic relationship between load and deflexion is shown
in Fig 2.32. The limiting load is W), = M,/{ corresponding to A = 1, a, =0
and the corresponding (finite) tip deflection is

_ 40 Wpe3 20

» =1 Bl _359 (2.79)
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Figure 2.32: Load:deflection relationship for progressively yielding cantilever
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Figure 2.33: Deflected shape of cantilever
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Figure 2.34: Incremental (tangent) and secant stiffness for cantilever

Now at the moment that this fully plastic collapse tip deflection is reached
the shape and slope of the deflected cantilever are as shown in Fig 2.33a, b (and
the variation in degree of plasticity is shown in Fig 2.33c). For comparison, the
shape of an elastic cantilever with the same tip deflection is also shown. So far
as the tip response is concerned we could happily describe an equivalent elastic
secant stiffness which would have to vary with deflection as shown in Fig 2.34.
However, while this would describe the overall system response in some respects
it would mislead us into deducing that the distribution of deflection along the
cantilever had still the elastic form. Figs 2.33a and b show this deduction to be
false.

This simple structural system provides an illustration of two other points.
Tangent stiffness falls much more rapidly than secant stiffness because it effects
the way in which the cantilever wants to behave now. Once the cantilever has
a fully developed plastic hinge at its root the tangent stiffness (in terms of
increment of tip load/increment of tip deflection) falls to zero—the cantilever
has no further ability to accept additional load. The secant stiffness continues
falling gently and only reaches zero at infinite deflection.

If we consider a one-dimensional normalised loading diagram (Fig 2.35a) we
find that there are three identifiable regimes. For 0 < \ < 2/3 the response is
elastic; for 2/3 < X\ < 1 the response is elastic-plastic. The value A = 1 indicates
the collapse load. The regime A\ > 1 is inaccessible.

We can now consider a corresponding one-dimensional deflection diagram
(Fig 2.35b), using a normalised deflection *

EI§

= e

(2.80)
we find that the elastic region corresponds to 0 < §* < 2/9; the elastic-plastic
region corresponds to 2/9 < §* < 40/81; and that the collapse load corresponds
to all deflections 6* > 40/81. There is a many to one mapping from deflection
to load.



2.5. Stiffness 67

0 A 2/3 1

elastic elastic/plastic collapse

a. normalised load A= WZ/Mp

0 29 8% 4081

| | |

| | - >
elastic elastic/plastic collapse

b. normalised deflection 5*=5EI/Mpf2

Figure 2.35: Regimes of response of cantilever terms of (a) load and (b) deflec-
tion

More importantly, whereas the whole of the deflection diagram is accessi-
ble (there is no limit to the deflections that can be imposed on the tip of the
cantilever—we are not concerned with changes in geometry and the practical
details), the accessible part of the load diagram is restricted to the region below
the collapse load. This gives us some hints about problems of experimental con-
trol (if we want to explore the whole of the load:deflection relationship we will
be well advised to do this by steadily increasing the deflection rather than pro-
gressively increasing the load) and numerical control (we will see subsequently
(83.3, §3.4) that it is always more secure in using constitutive models to com-
pute soil response to work from strain increment to stress increment, than from
stress increment to strain increment, because it is quite likely that some stress
increments will try to take the soil into a forbidden area—beyond the collapse
condition).

2.5.2 Stiffness and strain measurement

Perceptions of stiffness are intimately linked to one’s ability to measure strains
from changes in length of a known initial gauge length. Stiffness variation in
a monotonic test—for example, a triaxial compression test—is typically pre-
sented (Fig 2.36) in a plot of shear modulus (usually, regrettably, secant modu-
lus) against strain, with the strain plotted on a logarithmic scale because much
of the initial variation of stiffness occurs at very small strains. Tangent stiff-
ness varies with strain much more rapidly than secant stiffness (Fig 2.36)—and,
of course, if the stress:strain response reveals strain softening after some peak
then the tangent modulus will actually become negative. This indicates neg-
ative incremental stiffness which sounds, rightly, as though it might be rather
important for the response of a soil element or an entire geotechnical system
but is concealed in the secant stiffness which remains resolutely positive.
Technology for measurement of small deformations of soil samples has devel-
oped tremendously over the past two decades or so and, although, for routine
testing, the resolution of strain measurement remains somewhat coarse (Fig
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Figure 2.36: Variation of tangent and secant shear stiffness of soils in monotonic
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Figure 2.38: Range of secant shear stiffness degradation data for Quiou sand
from resonant column and torsional shear tests. Values of shear stiffness G
normalised with shear stiffness at very small strain G,,q. (after LoPresti et al.,
1997)

2.37), high quality research has been able to bridge the gap between the ‘low’
stiffnesses typically measured in traditional laboratory tests and the high stiff-

nesses measured using geophysical techniques in the field or the laboratory (Fig
2.38).

2.5.3 Stiffness and history: stress response envelopes

The S-shaped curves of Figs 2.36, 2.37, 2.38 are typically presented for mono-
tonically increasing strain amplitudes and this is evidently a first stage towards
the description of the evolution of the stiffness matrix D in (2.63). However,
soil elements in geotechnical systems will be subjected to nonmonotonic paths
following long term geological and shorter term construction histories and we
will expect to use the laboratory testing possibilities that are available to us to
explore the incremental effects of stress changes in a very general way. We need
to have a coherent strategy for the conduct of this testing—one which is not too
much prejudiced by our existing ideas of the way in which we want our soil to
behave.

One way of illustrating the link between strain increments and stress incre-
ments which can be useful both for planning and interpreting programmes of
testing is through the generation of stress response envelopes. Stress response
envelopes were introduced by Gudehus (1979) as a way of illustrating the na-
ture of the characters of response predicted by different classes of constitutive
model. Inevitably, such envelopes will usually be presented as two-dimensional
curves but these curves are sections through stress response hypersurfaces. If
we restrict ourselves to more limited spaces then this will usually be because
of the limitations of the testing apparatus which are available to us. Thus, for
axially symmetric states of stress attainable in the conventional triaxial appa-
ratus, envelopes can be shown in terms of volumetric (mean effective) stress
and distortional stress changes resulting from the application of increments of
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Figure 2.39: (a) Rosette of strain probes and (b) resulting stress response enve-
lope for axisymmetric state of stress

volumetric and distortional strain. For the true triaxial tests to be shown here
the envelopes will be presented in terms of deviatoric stress and strain com-
ponents, neglecting a third dimension, the volumetric (or isotropic) stress and
strain, which will, however, also be relevant.

If, from a given initial stress state, a series of strain probes of identical
normalised magnitude is imposed, then the resulting envelope of stress responses
provides a visual indication of the generalised stiffness of the soil. An example
is shown in Fig 2.39 for an axisymmetric (triaxial) state of stress. The strain
increments are defined in terms of volumetric strain de, (2.21) and distortional
strain de, (2.25). The rosette of strain increments of standard length is shown in
Fig 2.39a. A solid curve joins the resulting stress increments from the common
initial stress, presented in terms of mean effective stress p’ and distortional stress
g, in Fig 2.39b). In this figure, at each point on the stress response envelope a
little line indicates the direction of the corresponding strain probe.

The shape of the stress response envelope is expected to depend on the
stress history of the soil. Simply, near failure we expect the stiffness for con-
tinued loading—increased distortional strain—to be considerably lower than for
unloading—reversal of distortional strain—and the stress response envelope will
be flattened towards the loading direction (A in Fig 2.40). At lower stress ratios
the envelope is likely to be more rounded (B in Fig 2.40) with the generalised
stiffness less dramatically influenced by the direction of the probe though still
indicating lower stiffness for continued loading, higher stiffness for reversal of
loading. There may be some partially unloaded states for which the response is
much more independent of loading direction (C in Fig 2.40). For soil in a state
which tends to lead to strain softening (probably at high stress ratios) the initial
stress state may lie outwith the response envelope (D in Fig 2.40)—this is an
indication that all strain increments imposed on our soil element will lead to re-
duction of stress ratio. We will return to this perplexing response subsequently
(83.4.1, §3.4.2).

The shape of the response envelope and the location of the initial stress state
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Figure 2.40: Schematic expected history dependence of stress response envelopes
(points + indicate initial stress states)

relative to the response envelope will vary with history. As presented in (2.63)
the stiffness matrix D is independent of the magnitudes of the strain incre-
ment and stress increment that it links—strictly it applies only to infinitesimal
increments. However, we have seen that soil stiffness falls with monotonically
increasing strain. Instrumentation does not permit us to determine response
envelopes for ‘zero’ amplitude of strain increments. However, it is instructive,
in gathering data to inspire our constitutive modelling, to look at response en-
velopes determined for different, finite, magnitudes of strain increment from a
given initial stress state. This then provides a more general presentation of the
stiffness variation with strain shown in Fig 2.38.

Results of triaxial stress probes on natural Pisa clay, interpreted as stress
response envelopes, are shown in Fig 2.412. At small strain magnitudes (0.1-
0.2%) the stress response envelopes are strongly linked in position and shape to
the starting stress state. As the magnitude of strain increases the importance
of the starting point apparently reduces. The envelopes are closely bunched for
increasing distortional stress, much more widely separated for reducing stress.
We can present this series of envelopes as a series of variations of generalised

secant stiffness
S = VAp? + Ag*/\/ A2 + Ae?

with strain e = |/AeZ + Ae2 - showing the effect of stress path direction (Fig

2.42).

Stress response envelopes from true triaxial tests on kaolin are shown in
a m-plane deviatoric view of stress space in Figs 2.43 for two different initial
histories—one (Fig 2.43a) has isotropic compression to O followed by shearing

2Data kindly replotted by Luigi Callisto.
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Figure 2.41: Schematic stress response envelopes for natural Pisa clay (contour
values for (Ae2 + Aeg)l/2 from initial stress state +)(data from Callisto, 1996)
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Figure 2.42: Schematic response of natural Pisa clay shown as generalised varia-
tion of stiffness S with strain (¢) for different stress probe directions (data from
Callisto, 1996)
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Figure 2.43: Schematic deviatoric stress response envelopes from true triaxial
probing of kaolin with deviatoric history (a) OA and (b) OAO (inspired by Muir
Wood, 2004)

(at constant mean effective stress) to A; the other (Fig 2.43b) has history OA
followed by unloading back to O. The response envelopes are drawn for different
values of a distortional strain

T \}g\/{(@ - EZ)2 + (e — 696)2 + (ex — 69)2}

which is proportional to the second invariant of the strain deviator tensor (com-
pare 2.52). Again, the small strain envelopes in each case are closely linked to
the recent stress history, OA or OAO respectively. However, as the strain mag-
nitudes increase, the detail of the starting stress state seems to become largely
irrelevant—by the 10% envelope, memory of what has gone before has been
somewhat swept out.

Stress response envelopes from true triaxial tests on Leighton Buzzard sand
are shown in Fig 2.44 (data from Sture et al., 1988). These tests were per-
formed in a cubical cell true triaxial apparatus in which the stresses were im-
posed through flexible boundary cushions: the magnitudes of strains that can
be imposed while still retaining deformational uniformity are limited. Com-
paring deviatoric histories (imposed at constant mean stress) ABC, ABD the
comments made previously are reinforced. Failure is lurking in the w-plane at
some finite distance from the isotropic stress axis, A, so it is to be expected that
the several stress response envelopes will be closely packed together there.

Finally, to demonstrate that the principle of generation of stress response
envelopes is quite generally useful and applicable, envelopes are shown in Fig
2.45 for two stress histories imposed on Leighton Buzzard sand in a directional
shear cell (Fig 2.15) (original data again from Sture et al., 1988). The data
are somewhat sparse but the pattern is familiar. Principal stress rotation is
occurring but, with appropriate choice of deviatoric stress variables, the required
conduct of the tests and interpretation of results is straightforward.
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Figure 2.44: Schematic stress response envelopes from true triaxial probing of
Leighton Buzzard sand with deviatoric history (a) ABC and (b) ABD (inspired
by data from Sture et al., 1988)
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Figure 2.45: Schematic stress response envelopes from directional shear cell
probing of Leighton Buzzard sand with deviatoric history (a) AB and (b) ABC
(inspired by data from Sture et al., 1988)
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Figure 2.46: Schematic stress response envelopes for strain softening soil

In all these examples the picture is similar. There is a strongly kinematic
element to the small strain response envelopes—they are carried around inti-
mately with the most recent stress history. The nonlinearity of stress:strain
response—the way in which incremental stiffness decays with continuing mono-
tonic strain—is encapsulated in the relative positions of the response envelopes
for increasing magnitudes of strain. The larger the strain magnitude the less
the location of the envelope seems to care about the recent stress history and
the more it is aware of other constraints on soil response—such as the limita-
tions that failure criteria might impose. Failure will be discussed subsequently
but, if failure is, simplistically, interpreted as the occurrence of zero incremental
stiffness, then obviously the stress response envelopes for increasing strain mag-
nitudes must pack closely together as they approach the failure boundary. The
strains needed to identify failure may be large but this character of response
is discernible in Figs 2.41 to 2.45. Post peak softening of material response
would reveal itself in intersection of response envelopes at larger strains with
those corresponding to smaller strains (Fig 2.46)—but the results shown have
not extended this far.

2.5.4 Anisotropy of stiffness

Soils are isotropic materials which find themselves in anisotropic circumstances
as a result of their history of deposition and past loading. This anisotropy man-
ifests itself in anisotropic arrangements of particles and in the forces carried by
the contacts between the particles. Since the soil particles are in general neither
spherical nor even sub-spherical, the anisotropy of geometric fabric contains the
layout of the centres of the particles, and the orientations of the particles. In
principle, knowing this geometric fabric together with the information about ori-
entation and activation of contacts between the particles and contact forces—the
kinetic fabric (Chen et al., 1988)—and the characteristics of the interparticle ac-
tions, the mechanical response of the soil system could be anticipated. Progress
is being made on such descriptions of evolving fabric but it is presently more
convenient to work at a larger scale and observe consequences of evolving fab-
ric anisotropy on mechanical response in terms of continuum concepts such as
stress and strain.

Experimental techniques exist by which detailed information about the stiff-
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Figure 2.47: Bender elements used to discover anisotropy of small-strain stiffness
in triaxial test (after Pennington et al., 1997)

ness of soils at very small strain levels can be determined in the laboratory.
Stiffness can be determined from static measurements using sensitive deforma-
tion measuring devices to record strain response to applied stress probes. Stiff-
ness can also be determined from dynamic measurements using laboratory geo-
physics—typically, in element tests, using piezoceramic bender elements which
can be used to generate and detect low amplitude shear waves in soils (see §6.7).

Generally accepted empirical relationships describe the variation of very
small strain stiffness with stress state (kinetic fabric) for (implicitly) unchang-
ing geometric fabric. This implies a particular form of the variation of stiffness
anisotropy with stress state represented, for example, through the ratio of axial
to radial stress or mobilised friction. A combination of static and dynamic data
can be used to deduce all elements of a cross anisotropic stiffness matrix (Lings
et al., 2000) (§3.2.4).

Once the changes in stress (or imposed deformation) from any initial ref-
erence state become sufficient to disturb the geometric fabric then the simple
relationship breaks down—observations of stiffness combine both geometric and
kinetic effects. Experimental observations of soil response in triaxial and other
testing apparatus, as well as numerical analysis of assemblies of regular or irreg-
ular particles, suggest that kinematic hardening constitutive models are likely
to be required in order to simulate observed behaviour. However, theoretical
studies with such models indicate that anisotropy of stiffness influences not only
the pattern of deformation that develops in a geotechnical system but also the
potential for bifurcation of material response and the development of localised
deformation and rupture surfaces.

The techniques for bender testing are well established. The arrangement
used for the tests reported here is shown in Fig 2.47 (Pennington et al., 1997).
Bender elements have been placed both in end platens and through the flex-
ible membrane for cylindrical triaxial specimens so that shear waves can be
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Figure 2.48: Typical anisotropy of stiffness of Gault clay as function of void
ratio (inspired by Pennington et al., 1997)

propagated through the sample either from end to end or from side to side, in
each case with two possible polarisations. While various input waveforms for
the driver elements have been explored, the data here have come from tests in
which a single sine wave pulse has been sent. Appropriate interpretation of the
received signals can then be used to estimate shear wave velocities through the
soil V,p, (for vertically propagated, horizontally polarised waves), and Vj, and
Vi (for horizontally propagated waves with either vertical or horizontal polar-
isation). If the medium through which the waves are travelling is elastic then
corresponding ‘zero strain’ shear moduli Goyp, Gope, Gonn can be estimated:
Goij = pV7, (2.81)

,

where p is the bulk density of the medium through which the waves are travelling
and subscripts ; and ; take the values , or , as appropriate. The stiffness of
soils decreases with strain on any monotonic excursion. The strain amplitude
applied to the soil by a bender element is not zero but sufficiently small that
the resulting deformation—for most of the passage through the specimen—can
be treated as elastic and essentially at ‘zero strain’ amplitude. If the medium
through which the waves are passing is elastic, and strains are small, then it is
axiomatic that Goun = Gone®.

It is found empirically that this very small strain shear stiffness of soils is
influenced in a systematic way by the stress state in the soil, by the volumetric
packing of the soil (through void ratio e), and by the current geometric fabric
through an expression of the form (Roesler, 1979)

Goij
Pr

_s.Eae (D9) 2.82
= SijFij(e) D2 (2.82)

3Pennington et al. (2001) suggest that reported differences between these deduced moduli
may result from roughness of the end platens in which bender elements are typically mounted
in order to estimate V,; and hence Go,p. Arroyo (2001) notes that there may be effects linked
to the way in which shear waves are transmitted in cylindrical samples in addition to effects
of the non-point-like nature of the shear wave source which will tend to lead to an apparent
asymmetry of the deduced stiffness matrix in anisotropic elastic soil.
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where 5;; are elements of a fabric tensor and Fj;(e) are functions of void ratio
e. The first two terms in this expression, S;; and Fjj(e), are two facets of the
tensor geometric fabric, with e related to its first invariant. A reasonable fit to
data can be obtained using

Fij(e) =™ (2.83)

where m;; is a constant for any pair of values of ; and ;. The term in (2.82)
involving the principal effective stresses in the directions of propagation and of
polarisation, o, and O'; respectively, encapsulates the kinetic fabric contribution.
The stress p, is a reference stress (taken by Nash et al. (1999) as 1 kPa for sim-
plicity but logically linked with some property of the soil mineral). Typically
the exponent m;; ~ —2 (though in detail the value depends on ; and ;), and
ni; ~ 0.25. This expression is written for directions of propagation and polar-
isation coincident with principal axes of stress and anisotropy. The analysis of
wave propagation through anisotropic elastic media in which these axes do not
coincide is complex (Crampin, 1981).

Typical data from one-dimensionally compressed and ‘isotropically’ com-
pressed reconstituted Gault clay in Fig 2.48 demonstrate that expression (2.82)
matches the data of shear stiffness Gonn and Gop, satisfactorily. The ‘isotropi-
cally’ compressed material has been consolidated one-dimensionally from slurry
and then subjected to isotropic stresses. Even consolidation stresses five times
higher than those imposed during the initial one-dimensional preparation do not
erase the initial anisotropic geometric fabric of the clay. Consequently the stiff-
ness characterisation in Fig 2.48 does not greatly distinguish between these two
consolidation histories once the effects of void ratio and magnitudes of principal
stresses have been taken into account.

Bender elements mounted in triaxial samples give limited information about
the anisotropic stiffness properties of the soil. In combination with high reso-
lution measurement of strains full characterisation is possible assuming a sym-
metry of anisotropy matching the symmetry of loading of the specimen: cross
anisotropy. The complete anisotropic description of the Gault clay is presented
by Lings et al. (2000) (see §3.2.4). Here we will use the simpler treatment of
cross anisotropy presented by Graham and Houlsby (1983) in which just one
extra parameter « (instead of the theoretical three extra parameters) is intro-
duced. This model implies that the ratio of the two shear stiffnesses under
consideration is

Ghnh
— 2.84
G, (2.84)
and the ratio of direct horizontal and vertical drained stiffnesses
FE
E—’: =a? (2.85)

By subsuming a five parameter material into three parameters some infor-
mation about the material is lost and implicit relationships between elastic
parameters are imposed. However, Lings et al. found the simplified three pa-
rameter representation serendipitously successful for matching the Gault clay
data. Ignoring effects of geometric fabric change, (2.82), with n;; = 0.25, and
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Figure 2.49: Dependence of anisotropy parameter a on stress ratio for recon-
stituted Gault clay (data from Pennington et al., 1997) and dense Hostun sand
(data from Gajo et al., 2001): solid line is equation (2.86)

(2.84) and (2.85) can be used to link « and stress ratio n (2.36).

B () () ()T e
Ev N B Ghv B Shv 3+ 277 -
This is shown in Fig 2.49 with data for the Gault clay, taking the value of
Shn/Shy from the data in Fig 2.48. The value of Ej/E, = o falls as the stress
ratio increases: the degree of anisotropy is decreasing.

Elastic anisotropy can also be estimated by performing small cycles of un-
drained unloading and reloading during a drained test. The slope of the ef-
fective stress path depends only on measurements of changes in stress and of
pore pressure (Fig 2.50). The slope of the effective stress path can be deduced
from the observed changes in pore pressure and known changes in applied total
stresses (2.102) and this is independent of resolution of strain measurement. For
the Graham and Houlsby (1983) description of anistropic elasticity (§3.2.4) the
slope of the stress path in an undrained unloading-reloading cycle is

oq 73272V*74a1/*+a2
p' 2 1—v* 4 av* —a?

(2.87)

where a value of Poisson’s ratio v* = 0.2 has been assumed in order to convert
stress path slopes to values of a.

Data from a triaxial test on Hostun sand are shown in Fig 2.49 (Gajo et al.,
2001). Samples were prepared by dry pluviation: one test was performed with
constant cell pressure the other with constant axial stress. The implied stiffness
ratio (2.85) changes significantly as stress ratio increases: a typical history of
variation is shown in Fig 2.51. Under initial isotropic stresses the material
has only slight depositional anisotropy, but « and E}/E, fall as stress ratio
increases. The stress-strain response for this dense sand shows a peak stress
ratio and Fig 2.49 shows that E,/E, is still falling. Stress ratio alone is not
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Figure 2.50: Stiffness anisotropy deduced from slope of effective stress path for
undrained unload/reload cycle within drained test

sufficient to deduce the evolution of anisotropy. The continuing irrecoverable
strain produces particle rearrangement (and also changes in void ratio) and an
associated change in geometric fabric.

Evolving anisotropy of small strain stiffness—which provides the anchor for
data such as those shown in Fig 2.38—is a significant characteristic of soil re-
sponse which has only begun to be understood in the laboratory as experimental
techniques have improved. Anisotropy of small strain stiffness may potentially
have a significant influence on the response of geotechnical systems—especially
systems where it is intended to keep deformations to a minimum (for example,
tunnels in urban areas) so that the nonlinear (irrecoverable, plastic) deformation
of the soil does not so easily swamp the small strain (elastic?) deformation.

We have supposed—reasonably—that the anisotropy that we are investigat-
ing and describing has a symmetry that coincides with the symmetry of the
triaxial test. We are dealing with soil samples which have been deposited in a
gravitational field by consolidation from slurry (clay) or by pluviation (sand)
and then subjected to radial stresses and axial strains in the triaxial apparatus.
This is cross anisotropy or transverse isotropy: horizontal stiffness differs from
vertical stiffness but every horizontal direction is identical. If the soil has only
ever experienced stresses and strains with this symmetry then it is appropriate
that the anisotropy of stiffness should be of this form. The anisotropy reflects
the current fabric of the soil and this has obviously resulted from the history of
that soil. Sedimentary soils that have been deposited over areas of large lateral
extent, and have always known a horizontal ground surface, know only this axial
symimetry.

There are plenty of other histories which depart from this symmetry: any
soil in a slope, any soil which has been pushed around by ice or by man or
by local tectonic action. Every geotechnical construction will start imposing its
own local asymmetry on the fabric of the soil and hence on the evolving stiffness
characteristics. If we place in the triaxial apparatus a sample which possesses
either cross anisotropy—but with axes that do not happen to coincide with the
axes of the testing apparatus—or anisotropy of some more general type, then,
subjected to the only loadings that the triaxial apparatus is able to impose,
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axial strain: %

Figure 2.51: Evolution of anisotropy with strain during cycle of drained triaxial
compression of dense Hostun sand (e, = 0.63 — 0.67) (data from Gajo et al.,
2001)

the soil will have to break out in some way and respond in a non-axisymmetric
manner. Confined between rough ends, the sample will have to flex (Fig 2.52b);
confined between smooth ends it will skew as it is compressed (Fig 2.52¢). Either
way the sample will do things that we will not normally discover unless we are
conscious that they may be there. It is tempting to assume that things that we
choose not to observe do not exist.

Various ways have been proposed to characterise the anisotropy of soils.
The terms inherent anisotropy and induced anisotropy (sometimes qualified as
stress-induced anisotropy) have been used implying that there is some difference
in quality between two types of anisotropy: the anisotropy of a soil as it is
discovered in the ground contrasted with the anisotropy that develops as a result
of some subsequent perturbation. Alternatively one might use the terms initial
and subsequent anisotropy to indicate the sequence of events. The process
of formation of a soil (by sedimentation or by glacial transport or by in-situ
weathering) will imply certain stress changes (and other effects) which will leave
the soil in an anisotropic state. At the simplest level, one-dimensional deposition
implies an anisotropy of stress state and of deformation and hence an anisotropy
of particle arrangement (and orientation) and fabric that is expected to lead to
cross-anisotropic deformation properties. Truly isotropic fabrics are likely to
be rare—every soil is aware of a reference direction that is the direction of
gravitational acceleration.
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Figure 2.52: Effect of nonalignment of axes of material anisotropy with axis of
symmetry of triaxial apparatus: (a) response under uniform state of imposed
stress; (b) loading between rough platens; (b) loading between smooth platens
(after Saada and Bianchini, 1977)

2.6 Dilatancy

The chief characteristic which distinguishes most soils from other engineering
materials (such as metals and plastics) is the high proportion of the volume of
the material which is made up of void filled with single or multi-phase fluid. For
a typical medium dense sand about a third of the volume is void; for a normally
consolidated clay voids might make up towards half of the volume. Naturally,
if anything is done to disturb the arrangement of the soil particles by distorting
the boundary of the soil sample then it is to be expected that rearrangement will
be accompanied by some change in the volumetric packing: this is dilatancy.

A simple illustration of the ‘need’ for, or inevitability of, dilatancy, is pro-
vided by the thought experiment in Fig 2.53a. A loose, two-dimensional packing
of circular particles is sheared. This shearing implies that the particles in each
row move sideways over the particles in the row below—as they do so they fall
into the gaps between those particles and the volume occupied by the soil re-
duces. The relationship between horizontal movement (shear displacement) and
vertical movement (volume change) is shown in Fig 2.53c.

A complementary result is obtained if the two dimensional set of circular
particles is initially in its densest possible packing (Fig 2.53b). Now as the
particles in one layer are displaced sideways they are forced to climb over the
particles in the underlying layer and the volume occupied by the soil increases
(Fig 2.53¢). We note that the nature of the volume change that occurs is strongly
influenced by the density of the packing.

Consider a classic shear box in which a soil sample is sheared by the relative
movement of the top and bottom halves of the box (Fig 2.54). Most of the
deformation of the soil occurs in a thin zone around the interface between the
two halves of the box. When sands are sheared in a shear box they change
in volume so that a typical set of data obtained from a shear box test might
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Figure 2.53: (a) Shearing of loosely packed layers of circular discs; (b) shearing
of densely packed layers of circular discs; (c) volume change in shearing of loosely
and densely packed layers of circular discs

o

S 0

X

e

Figure 2.54: Direct shear box
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Figure 2.55: Shear load:displacement response and volume changes in direct
shear test on Ottawa sand (data from Taylor (1948))

look like Fig 2.55. The incremental work done in a shear box in shearing a soil
sample which is currently supporting vertical load P and horizontal load @ and
is undergoing horizontal (shearing) displacement dz and vertical (volumetric)
displacement dy is:

OW = Péy + Qdx (2.88)

Taylor (1948) proposed that this work was entirely dissipated in friction at
all stages of a shear test so that:

Péy + Qéx = pPéx (2.89)
or
oy Q
==X 2.
5. M P (2.90)

The ratio of vertical to horizontal movements indicates the rate at which
volumetric expansion occurs with continuing shearing

oy
5. tan (2.91)
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Figure 2.56: Inclined shear surfaces causing dilatancy ¢ and consequential mo-
bilised friction ¢,

where 1) is the angle of dilation. The ratio of shear load @) to vertical load P is
an indication of the currently mobilised angle of shearing resistance ¢,,

Q_
5 = tandy, (2.92)

So expression (2.90) can be written alternatively as
tany = tan ¢,, — tan ¢, (2.93)

to indicate that the angle of dilation varies with the mobilised angle of shearing
resistance and has the value zero when the mobilised angle of shearing resistance
has the special value ¢, = tan~!p. This value, corresponding to constant
volume shearing, is called the critical state angle of shearing resistance.

A similar result can be obtained by thinking of the relative deformation of
the two halves of the shear box occurring between soil particles on a sort of
sawtooth interface (Fig 2.56). The available friction on the inclined surfaces
is ¢. but, because of the inclination of the sliding surfaces, at angle v to the
horizontal, the friction that is generated on horizontal surfaces is actually ¢,,
where

Gm = Qe+ (2.94)

Both expressions (2.93) and (2.94) suggest that there should be some link
between dilatancy and mobilised friction. Either expression is able to provide
at least a first approximation to the observed response. When the mobilised
friction Q/P is less than u the sand is contracting; when the mobilised friction
is greater than p the sand is expanding. The ratio —dy/dx gives an indication
of the tendency to volume increase for the sand: the dilatancy. Expressions
such as (2.93) and (2.94) which link dilatancy with mobilised friction are called
stress-dilatancy relationships or flow rules and they describe the link between
mobilised friction and mobilised dilatancy.

Data from Taylor’s shear box tests on samples of Ottawa sand prepared
either dense (initial specific volume 1.562) or loose (initial specific volume 1.652)
can be interpreted in this way using the observed vertical movements of the top
half of the shear box to estimate the critical state angle of shearing resistance
¢. which, according to these simple flow rules, should be a soil property and
hence constant throughout the test. Results are shown in Fig 2.57. The simple
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Figure 2.57: Ottawa sand: link between dilatancy and mobilised friction in
direct shear tests (data from Taylor, 1948)

model appears to work reasonably well indicating a value of p = 0.49 in (2.90)
corresponding to a critical state angle of friction ¢, ~ 26°%.

A direct analogy can be drawn between the behaviour observed in the shear
box and the behaviour to be expected in the triaxial apparatus. The shear
and normal displacement increments in the shear box become the distortional
and volumetric strain increments and the shear and normal loads become the
distortional and volumetric effective stresses:

dx — deg (2.95)
dy — dep (2.96)
Q — q (2.97)
P - (2.98)

and the stress-dilatancy relationship or flow rule (2.90) becomes

O _ g4y 4
deq /

=M-n (2.99)

where M is the critical state stress ratio at which constant volume shearing can
occur.

2.6.1 Critical states: state variable

The concept of ‘critical states’ has been mentioned (§2.6). These are asymp-
totic states in which shearing of the soil can continue without further change in
effective stress or density. The exact nature of the fabric of the soil at a critical
state is not clear. It is certainly intended that any initial interparticle bonding

4There are reasons why one might expect the experimental data to lie below this line in
the early stages of the test: see section §3.4.1.
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Figure 2.58: Schematic critical state line deduced from triaxial tests on Chat-
tahoochee River sand (data from Vesi¢ and Clough, 1968)
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Figure 2.59: Definition of state variable ),

should have been broken down so that the particles are all individually free to
move and rotate. However, it is not clear whether or not the particle orien-
tations should all be random and the structure isotropic—in fact the evolving
anisotropy shown in Fig 2.51 rather suggests that the soil reaches a limiting
but non-zero degree of anisotropy of stiffness (and hence, by implication, of
fabric) as shearing proceeds. From an experimental point of view, there may
well be good reasons why dense soils with strength dependent on density or
bonded soils (in other words soils which might be expected to show some post-
peak strain softening of strength) will not reach homogeneous critical states in
laboratory tests so that accurate deduction of critical state conditions may be
difficult—especially if internal deformations of the sample can only be deduced
from external measurements.

Experimental evidence suggests that the density of soils which have reached
a critical state is dependent on stress level: the higher the stress level the higher
the density and lower the void ratio or specific volume. The idea of a critical
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state line emerges (Fig 2.58) and, no matter what the detailed shape of the
critical state line, we can define a state variable 1, (Fig 2.59)

Yy =V — Ves (2.100)

as an indication of the distance of the current specific volume v of our soil away
from the critical state specific volume v.s at the current mean stress. The spread
of the data in Fig 2.57 suggests that perhaps the link between mobilised friction
and dilatancy in (2.93) or (2.94) should be somehow moderated by the current
value of state variable which changes continuously throughout each test.

2.6.2 Pore pressure parameter

Let us conduct another thought experiment. We have a sample of soil contained
in a special testing apparatus which allows us complete freedom to change all
the components of stress or strain. There are some stress perturbations that we
can impose which imply purely distortional strain responses. The link between
the stress changes and the imposed strain changes is the subject of constitutive
modelling. However, there are obviously many stress perturbations which imply
a strain response containing a compression component. The volume of the
sample subjected to any of these would have to change in order to accommodate
the new stress state. If the volume is prevented from changing, either because
we have physically closed the drainage lines from the sample, or because the
sample consists of a soil which has such low permeability that it is not possible
for the water to move around and out of the pores and the sample during the
time interval in which the external stresses were changed, then the prevention of
movement of the pore water implies that the pore water is meeting a resistance
and hence that a pore water pressure develops (the pressure may be positive if
the water is trying to escape because the soil wants to compress, or negative
because the sample is trying to expand and draw in water). This pressure acts
to partition the externally imposed stresses: part is carried by the pore pressure
and part by the interparticle forces within the soil (§2.4). The resulting stresses
carried by the soil particles are the effective stresses whereas the externally
applied stresses are the total stresses.

Returning to axisymmetric triaxial conditions, for an increment in external,
total, stresses dp, dq leading to corresponding changes in effective stresses dp’, dq,
in order to maintain the undrained, constant volume condition, we know from
the principle of effective stress (2.19) that the change in pore pressure du is

du = ép — dp’ (2.101)

The change in mean effective stress 0p’ is a material response to the change in
distortional stress §g° so we can write

op' = —adq (2.102)

and
ou = dp + adq (2.103)

5See §3.3.4, §3.4.1, §3.4.2 for exploration of the undrained response of some candidate
constitutive models.
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Figure 2.60: Total and effective stress paths: pore pressure parameter a

linking change of pore pressure with change in applied total stresses through
a pore pressure parameter a (§1.2.2) ¢ which indicates the current slope of the
undrained effective stress path (Fig 2.60). We have already seen in the earlier
discussion of anisotropy (§2.5.4) that a = 0 for isotropic elastic soil: the effective
stress path for an undrained test on such a soil is vertical in the p’, ¢ effective
stress plane. Although we do not expect undrained effective stress paths to be
straight, we could use an average value of a to characterise soils: a > 0 implies a
contractive soil which will tend to develop positive pore pressures when sheared;
and a < 0 implies an expanding soil which will tend to develop negative pore
pressures.

However, (2.103) divides the observed pore pressure change into two parts:
one, dp, over which we have full control, choosing the total stress change to which
the soil will be subjected; the other, adq, over which we have no control—it is
an indication of the way in which the soil chooses to keep its volume constant.
The pore pressure that we actually observe is the sum of these two elements and
it is only if we take away the part that we control (6p—which can arbitrarily be
positive or negative according to our whim) that we can understand what the
soil is trying to tell us about its volume change proclivities.

2.7 Strength

We can define strength as the ability of soils to carry stress. Usually we are
concerned with carrying shear stress, although for cemented (or interlocked)
soils (and rocks) there will also be some actual more or less reliable tensile
strength. In general, the stress:strain response of a soil (Fig 2.61) will show a
rapid climb to a peak shear stress followed by some softening to a large strain
shear stress. (In some soils the softening may be very slight or absent.)

If we try to follow such a softening stress:strain response then it is clear
that, if we control the test by successively adding shear load, then the sample
will ‘run away’, following the dashed line in Fig 2.61, when the peak stress is

64 is actually a variable rather than a parameter since it will not usually be a soil constant.
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Figure 2.61: Typical shear stress:shear strain relationship for soils

reached. Even if the test is controlled by progressively increasing the boundary
shear strain v (in whatever test device we are using), it is likely that there will
be imperfections in the sample which will start softening ahead of other slightly
stronger regions, leading to concentration of shear deformation into a localised
shear band. (The detailed analysis of the onset of localisation need not concern
us here.)

We have already seen that the term ‘critical state’ is used to describe the
states of soils which are able to continue shearing to large strains without chang-
ing stresses or density, and have seen that the critical state specific volume—or
density of packing—is expected to be a function of stress level. The critical
state is thought of as a state in which the soil is being continuously reworked
at a scale which involves many particles. We could imagine this applying, at
least, to the soil in the shear band even if the entire sample does not remain
homogeneous. Observations show that shear bands in rather uniform sands
have a typical thickness of 10 — 15d5o where dsg is the mean particle size (Muir
Wood, 2002). Where it has been possible to estimate the deformations within
the shear band itself it seems that conditions have tended towards a plausible
critical state (Fig 2.62).

However, in a soil which is formed of platey, clay mineral particles, locali-
sation leads to reorientation of the particles parallel to the shear band which
ends up as a sliding surface between slickensided, polished layers of soil, gen-
erating a much lower residual frictional resistance than would be expected for
a shearing process that was continuously churning up the soil particles. It is
thought that the possibility that such residual strength may be important will
depend on whether it is possible to form a sub-planar failure surface through the
soil. If a soil is predominantly formed of rotund particles (a sand or gravel) or
contains many such particles in a clay matrix (a glacial till or residual soil) the
residual strength is not an issue: Lupini et al. (1981) link this to the granular
specific volume of the soil (Fig 2.63)—the volume occupied by unit volume of
granular material, treating the clay mineral present together with the actual
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Figure 2.62: (a) Mobilised friction and (b) dilation to critical state in shear
band within biaxial test on Karlsruhe sand (data from Vardoulakis, 1978)

voids. If the granular specific volume is high (or even infinite for a clay) then
failure planes through the non-granular material are expected and the concept
of residual strength is important.

Peak strength is more dependent on initial conditions in the soil. We expect
that, at a given stress level, the denser the soil the higher will be the strength.
Data from sands suggest that it is useful to link peak strength with a state
variable (2.100) (Fig 2.59) in order to introduce a link with stress level as well
as with density. As the state variable 1, becomes more negative the peak
strength increases (Fig 2.64)—but equally, if we shear the soil to an eventual
critical state, then its strength tends to the critical state strength as the state
variable rises to zero. There is a hint here at a route to constitutive modelling
which will be picked up in section §3.4.1. It should not surprise us, given our
discussion of stress-dilatancy relationships in section §section:dilatancy, that the
peak angle of dilation also correlates well with state variable (Fig 2.65).

Because most of the soils with which we are dealing are—at least eventually—
unbonded, we have presented strength as a purely frictional phenomenon. A
link between peak frictional strength and state variable implies that for soils of
a given density or specific volume the strength will increase as the stress level
falls and the state variable becomes more negative (Fig 2.66). If we assume
a critical state line which is locally straight in a semi-logarithmic compression
plane (v : Inp’) with slope A (though the principle of the argument is not depen-
dent on the specific form of this relationship), then a linear relationship between
peak friction ¢, and state variable 1, (Fig 2.64, Fig 2.67b: solid line) can be
converted into a failure relationship in the p’ : g effective stress plane (Fig 2.67a:
solid lines). If interpreted without thought about its origin—particularly if the
data do not cover a sufficiently wide range to reveal significant curvature—we
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Figure 2.65: Dependence of peak dilatancy of sands on state variable (inspired
by Been and Jefferies, 1986)
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Figure 2.66: States of samples with identical state variable but different stress
levels

might be tempted to assume that the soil is telling us that it possesses some
cohesion.

The Hvorslev strength relationship invoked to describe the peak strengths
of clays (Schofield and Wroth, 1968) comes to an essentially similar result. A
locally linear strength relationship for soil of a given density is assumed in the
p’ : ¢ plane—implying a nonlinear dependence of peak strength on state variable
1, (Fig 2.67b: dotted line), and again giving an apparent cohesion (Fig 2.67a:
dotted lines). Each line in Fig 2.67a is dependent on the density for which it is
determined: peak strength data for soils cannot be properly understood unless
they are corrected for the values of state variable at the moment of failure.

The language of friction in the context of soil strength implies a limiting
ratio of shear stress to normal stress and defines a limiting Mohr circle (Fig
2.68). For a purely frictional soil, we can write the failure criterion as

Z < tang/ (2.104)
g

or, in terms of major and minor principal effective stresses of and o} respectively

oy _1+sing o) — o}
— or

!/ — 3 / /! /
o5 — 1—sing oy + o

<sing¢’ (2.105)

The intermediate principal stress ¢ does not enter this equation.

For conventional axisymmetric triaxial tests the definitions of our stress vari-
ables p’ (2.23) and ¢ (2.24), the former of which does include the intermediate
principal stress, imply that the lines of constant ¢’ will have different slopes
(Fig 2.69) for triaxial compression (o), = o; o). = o = o4) and for triaxial
extension (¢, = o%; ol = o] = 0gb). In compression (2.39)

6 sin ¢’
=" 2.1
3 —sing¢’ (2.106)
and in extension (2.42)
6 sin ¢’
n= (2.107)

3 +sing
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Figure 2.67: Linear dependence of strength on state variable (solid lines) and
Hvorslev strength relationship (dotted lines): (a) failure relationships in p’ : ¢
plane (each line or curve describes strengths of soils with the same density or
specific volume); (b) implied or assumed link between peak strength and state
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Figure 2.68: Mohr circle and Mohr-Coulomb frictional failure criterion
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Figure 2.69: Mohr-Coulomb failure criterion in p’ : ¢ effective stress plane
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Figure 2.70: Mohr-Coulomb failure criterion in (3 : 7., deviator stress plane
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Figure 2.71: Failure criteria in m-plane deviatoric view of principal stress space
(TC: triaxial compression; TE: triaxial extension)

In the stress plane 8 = (o, — 0,)/2 : 7., which was introduced (Fig 2.21)
to display stress paths for simple shear, directional shear and torsional hollow
cylinder tests, for a given mean stress a line of constant angle of friction is a
circle of radius s'sin ¢’ (Fig 2.70), where s’ = (0] + 0%)/2 is the mean effective
stress in the plane of shearing. The radius of this circle, the length of the stress
vector from the origin of this plot, is (o] — 0%)/2.

In the 7w-plane view of stress space, used for display of deviatoric stress paths
for true triaxial tests, the Mohr-Coulomb failure criterion plots as an irregular
hexagon for a constant mean stress section (one 60° segment is shown in Fig
2.71). This shows us immediately why a model generalisation based on the
second stress invariant Jy (2.54) will not be particularly satisfactory for soils.
In fact, failure data for sand tend to lie somewhere between the Mohr-Coulomb
hexagon and the Jy circle. Two alternative failure criteria have been quite
widely used to better describe the deviatoric failure conditions.
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The Matsuoka-Nakai criterion (Matsuoka and Nakai, 1982) states that

Lb = constant (2.108)
I3

where I, Iy and I3 are the three invariants of the stress tensor defined in (2.45),
(2.46), (2.47). This gives a curved failure locus which circumscribes the Mohr-
Coulomb hexagon, passing through the vertices of that hexagon.

On the other hand, some experimental data suggest that the frictional
strength of sands in triaxial extension is slightly higher than that in triaxial
compression. Lade’s (Lade and Duncan, 1975) failure criterion is expressed as

3
L = constant (2.109)
I3
This is also plotted in Fig 2.71. Evidently the common characteristic of both
these failure criteria is that, unlike the Mohr-Coulomb criterion, they include
the intermediate principal stress. Different sands, tested in different labora-
tory devices, show strength data which favour one or other of these criteria.
Both are in agreement in proposing that, for states of stress lying between
triaxial compression and triaxial extension, the available friction is somewhat
higher—perhaps at its maximum as much as 10% higher—than that in triaxial
compression. Plane strain conditions tend to fall in this intermediate region:
plane strain frictional strengths will usually be underestimated if the angle of
shearing resistance is determined using triaxial compression tests.
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Constitutive modelling

3.1 Introduction

It will be seen in discussing numerical modelling in Chapter 4 that analysis of any
problem requires noncontroversial statements of equilibrium and of kinematics
or compatibility (the definition of strain) but that the link between these is
provided by some statement of the much more uncertain link between stress
change and strain change: the constitutive response.

Geotechnical journals and conferences abound with constitutive models. The
choice of model is to some extent a matter of mathematical aesthetics and sub-
jective judgement. We cannot hope to describe all possible constitutive mod-
elling proposals here. However, there are some models which have been so widely
used that they are rather generally available in all numerical analysis programs
that are intended for application to geotechnical problems: isotropic elasticity;
elastic-perfectly plastic Mohr-Coulomb; and Cam clay. We will present not only
these models but also modest developments from these models. Our thesis is
that engineers are more likely to make use of models which can be clearly seen
as incrementally different from models with which they have some familiarity
than to make use of models which adopt a completely different language. Thus
a hardening plasticity model will be presented which is an obvious and logical
extension of the perfectly plastic Mohr-Coulomb model.

The choice of model to be used for analysis is in the hands of the modeller.
The second, rational proposal is that the modeller should develop some aware-
ness of the particular features of soil history and soil response that are likely to
be important in a particular application and ensure that the constitutive model
that is adopted is indeed able to reproduce these features. As in all modelling,
adequate complexity should be sought. It is too easy to discover that key ele-
ments of response are obscured by unnecessary and detachable elements of the
constitutive model.

Much of the presentation and description of constitutive models in this chap-
ter will concentrate on conditions that are accessible in the conventional triaxial
apparatus. This is, and is likely to remain, the most commonly used soil test-
ing apparatus and hence the source of data against which constitutive models

97
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Figure 3.1: Linear relationship between stress and strain for (a) compression
and (b) shearing of elastic element

have to be tuned. Geotechnical engineers have a familiarity with the triaxial
apparatus and with triaxial test results so perhaps by presenting the models
in this way there is a chance that some confidence in the concepts of constitu-
tive modelling can be created. Once again we choose compressive stresses and
compressive strains to be positive.

3.2 Elastic models

A linear relationship between stress and strain (Fig 3.1) is the simplest link that
can be proposed, implying a constant proportionality between general stress
increments and strain increments. For an isotropic, linear elastic material the
full link between general stress increments and strain increments can be written
as a compliance relationship
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indicating a dependency of strain increments on stress increments. Alterna-
tively, this can be written as a stiffness relationship, showing stress increments
as a function of strain increments’.
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If we compress an element of isotropic elastic material without providing any
lateral constraints (Fig 3.1a) there will in general be some lateral strain. At the
same time that we can determine a direct stiffness, Young’s modulus F, we can
also discover a strain ratio, Poisson’s ratio v. It turns out that for the isotropic
elastic material there are only two constitutive degrees of freedom which, as
shown in (3.1) and (3.2), could be Young’s modulus and Poisson’s ratio.

These expressions describe Hooke’s law of elasticity for general states of
stress. We can specialise these expressions for principal stresses and strains,
referred to orthogonal axes x, y and z, in compliance form:

O€y 1 1 —v —v oo,
dey | = ol 1 —v 50; (3.3)
J€, v v 1 do’,

and in stiffness form:

dol, B 1-v v v Oy
do, | =——— v 1—-v v dey (3.4)
JJZ 1+ -2v) v v 1—-v O€,

It may be remarked that, when expressed in terms of all 6 general stress
and strain components, (3.1) or (3.2), or in terms of the principal stress and
strain components, (3.3) or (3.4), the elastic compliance and stiffness matrices
are symmetric: this is an inevitable property of the elastic material. In fact we
can attach thermodynamic requirements to an elastic (strictly, a hyperelastic)
system. The system is conservative or path independent, which implies that
the strains obtained are independent of the sequence in which the stresses are
applied or removed and that we can superpose independent systems of stresses
in order to deduce the result of applying combinations of stresses. There exists

1Recall that it was seen in §2.5.1 that it appeared to be more secure to move from strain
to stress than from stress to strain—and this will be seen to be a feature of several of the
models that are described in this chapter.
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Figure 3.2: Definition of strain energy density (U) and complementary energy
density (V)

a strain energy density function U(e) which describes the strain energy per unit
volume as a function of a general strain state, referred to some origin of strain
(Fig 3.2). There is no generation or loss of energy in any closed stress path.

By definition, an increment of strain energy U is the sum of all products of
stress components and corresponding work-conjugate strain increment compo-
nents. Restricting ourselves to principal stress conditions for simplicity, we can
write:

oU = Z (aiéei) (35)
and thus
_ou
- 861'
where the index ; takes the values x, y and z in turn. Differentiating this one
more time, we recover the components D;; of the stiffness matrix:

05

(3.6)

0?U

D;; =
“ (“)ei(“)ej

(3.7)

and the symmetry of the stiffness matrix is anticipated.
For the isotropic linear elastic material, and working in terms of principal
stresses and strains, the strain energy density function is:

E 2,2, 2
U= ST E) [(1—v) (46 +e) +2v(eyex + 62+ €x€y)]  (3.8)
There is a parallel between compliance and stiffness formulations, inter-
changing stresses and strains. We can similarly define a complementary energy
density function V' (Fig 3.2) such that

oV =" (eiboy) (3.9)

and thus
oV

80'1'

(3.10)

€; =
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Differentiating this one more time, we recover the components C;; of the sym-
metric compliance matrix:

0%V
Cij = 3.11
J 60’1‘603 ( )
For the isotropic linear elastic material
1
V=2 [(0f+ 0y +02) = 2w (00, + 0.0, +0,0,)] (3.12)

2F

We can specialise (3.3) and (3.4) further for the axisymmetric conditions
of the triaxial test, so that the x and y axes are interchangeable horizontal or
radial axes and z is the vertical, axial direction:

deg 1 1 —2v oo,
<6GT>E(—V 1—u)(6a;> (3.13)

()= (0 1) (e ) e

and, paradoxically, we have lost the symmetry that we had come to expect from
elastic compliance and stiffness matrices. However, in writing these expressions
in terms of axial and radial components of stress and strain we are no longer
using work conjugate quantities.

In introducing appropriate quantities with which to describe conditions of
stress and strain in soils in section §2.4 we suggested that there was some
advantage in separating soil response into compression—change of size—and
distortion—change of shape—and then choosing stress and strain variables ac-
cordingly. For the axisymmetric conditions of the triaxial test, we introduced
mean effective stress (volumetric stress) p’ = (o7, +207.)/3 and distortional stress
q = (0}, — ol) and corresponding work-conjugate strain increments: volumet-
ric strain Jde, and distortional strain de,. Transforming (3.13), from equations
(2.28) to (2.31)

(e )=2(3 2)(2 ) A)(%) v
(giﬁ,’)—é(?’“ﬁm guim)(%@l) (3.16)

(i )=(5 2)(5) 011

()= (5 %) (i)

and we have now discovered an alternative (but not independent) pair of elastic
degrees of freedom: bulk modulus K

or

and in stiffness form

E
K=3i-m (3.19)
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Figure 3.3: Relationship between G/ K and Poisson’s ratio v for isotropic elastic
material

and shear modulus G B
G = 72(1 ) (3.20)

These are evidently functions of Young’s modulus and Poisson’s ratio and know-
ing any two elastic quantities we can recover any other elastic parameter.

IKG

E = G+ 3K (3.21)

3K —2G 3-2¢
_ - 3.22
YT 2(G+3K) T 2(E +3) (3:22)

and G 3(1-w)
—2u
D S 2
K 2(1+4v) (3.23)
so that Poisson’s ratio is a direct indication of the ratio of shear and bulk moduli
(Fig 3.3).

Working in terms of these properly work-conjugate volumetric and distor-
tional quantities the symmetry of the compliance (3.17) and stiffness matrices
(3.18) has been regained. The strain energy density function is:

1 3
U= Ke+5Ge (3.24)
and the complementary energy density function
V=c—o+-= (3.25)

and it can be confirmed that the elements of the compliance and stiffness ma-
trices can be obtained by appropriate differentiation.



3.2. Elastic models 103

TSP

Figure 3.4: Total stress path for conventional triaxial compression test

Writing the elastic relationships in terms of p’,¢ and de,, e, makes clear
the absence of any coupling between volumetric and distortional effects for the
isotropic elastic model. Thus, if the mean effective stress p’ is changed without
change in distortional stress, the shape of the soil element remains unchanged.
Conversely, if the soil element is subjected to a distortional strain (change in
shape) without change in size or volume (undrained deformation) then there
will be no tendency for the effective mean stress p’ to change.

3.2.1 Conventional drained triaxial compression test

In a conventional triaxial compression test, the cell pressure (radial total stress)
is kept constant and the axial strain (and hence for much of the time the axial
stress) is increased. From the definitions of our stress variables we deduce that
the imposed total stress path has gradient dq/0p = 3 (Fig 3.4). In a conventional
drained triaxial compression test this will also be the effective stress path. If
dq = 36p’ then, from (3.17),

Ocp = ¢ (3.26)
deg K
More generally, if dg/dp’ = A then de,/de; = 3G/AK.

If we plot the results of a drained triaxial compression test in terms of dis-
tortional stress ¢ and volumetric strain €, as functions of distortional strain ¢,
(Fig 3.5a) then we can rapidly recover the values of the two elastic soil proper-
ties. However, it might be more common to plot ¢ and ¢, as functions of axial
strain, ¢, (Fig 3.5b). Then the slope dg/de, = E and de,/de, = 1 — 2v and
again we have sufficient information to discover any of the elastic properties. By
implication, in drawing Fig 3.5 we are assuming that we might adopt an elastic
treatment for the incremental response of the soil even if the overall stress:strain
response is far from linearly elastic.

3.2.2 Conventional undrained triaxial compression test

We have already observed that there is complete uncoupling of volumetric and
distortional effects for an isotropic elastic soil. Consequently, in an undrained
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K 1/(1-2v)

Figure 3.5: Elastic properties deduced from initial stages of conventional drained
triaxial compression test: (a) plotted in terms of distortional strain e,;; (b)
plotted in terms of axial strain €,

test, since the volumetric strain is always zero de, = 0, the effective mean stress
remains constant dp’ = 0. The change in pore pressure du is given by the
principle of effective stress (§2.4):

du = ép —dp’ = ép (3.27)

and thus the pore pressure change merely reflects the (arbitrary) imposed change
in total mean stress—and may be positive or negative depending on the chosen
total stress path (Fig 3.6a). For the isotropic elastic material the soil has no
intrinsic desire to change in volume as it is sheared and hence the pore pressure
parameter @ = 0 (§2.6.2). In a conventional triaxial compression test, following
a total stress path dq/dp = 3 there will be a pore pressure Au = Ag/3 at all
stages of the test.

Under undrained conditions, distortional strain and axial strain are identical
deq = d€q so it matters not whether we think of plotting distortional stress g
against €; or €,. The slope of the stress:strain response for the elastic material
is 0q/dey = 6q/de, = 3G. We are not able to determine K from an undrained
test—because there is by definition no volume change.

We have noted that the stress:strain response of soils is controlled by changes
in effective stress. That dp’ = 0 in an undrained test is the response of the soil
to certain imposed constraints: the drainage valve is closed. Evidently the
constitutive response must be unaffected by the setting of the drainage valve.
However, we could choose to take an external, total stress view of our sample
and seek a total stress elastic response introducing ‘undrained’ elastic properties
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Figure 3.6: Undrained triaxial compression test on elastic soil: (a) effective
(ESP) and total (T'SP) stress paths; (b) elastic stiffness from initial stress:strain
response

E., v,, G, and K, such that

< fsii ) - < 1/é<u 1/:(3)Gu > ( ?; ) (3.28)

Now, if we imagine (reasonably) that we are free to control dp and dq as we
will, the fact that drainage is prevented so that de, = 0 can only mean that
K, = oo as expected for an incompressible material. From the definition of bulk
modulus (3.19) this implies that the undrained Poisson’s ratio v, = 0.5: again,
as expected from our prior knowledge of properties of incompressible materials.

The shear stiffness must be the same whether we are thinking in terms of
total stresses or effective stresses: the distortion of the sample is the same, and
distortional stress ¢, as a shear stress, or difference between two normal stresses,
is the same whether thought of as a total stress or an effective stress quantity.
Thus G, = G and we can deduce from (3.20) that

E, E

—G= (3.29)

0"22(1+uu) 2(1+v)

or

3E
2(1+v)
We conclude that the ‘undrained’ elastic properties of the soil are in no

way independent but are directly related to the real effective stress stiffness
characteristics of the soil.

E,=3G = (3.30)

3.2.3 Measurement of elastic parameters with different
devices

We have already noted that drained triaxial tests can be interpreted to give both
of the elastic parameters needed to describe the isotropic elastic soil model—
provided that the imposed effective stress path involves changes in both p’ and ¢
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Figure 3.7: Oedometer

as indeed occurs in conventional triaxial compression with constant cell pressure.
Other devices can be interpreted to give elastic properties but often these are not
individual properties (E, v or G, K) but rather some composite quantity which
can only be interpreted in terms of one of these quantities if an assumption is
made about, for example, v or G/K.

For example, the oedometer (Fig 3.7) imposes one-dimensional deformation
on the soil. We can manipulate (3.3) or (3.4) to discover that for this situation
of zero strain in the x and y directions:

oo’ v 3K -2G

L = = 31
oo, 1—-v 3K+4G (3.31)
and that the one-dimensional, oedometric stiffness E,.q is
oo’ (1-v) 4
Epg=—-—"2=E—r-——— " =K+ -G 3.32
1% Clrwni-2) T3 (3:32)

We cannot deconstruct this any further to discover any of the usual individual
elastic properties.

In-situ geophysics (or laboratory geophysics using bender elements §2.5.4,
§6.7) can be used to determine shear modulus G directly from the shear wave
velocity Vs

Ve=1|— (3.33)

where p is the density of the soil. However, the compression wave velocity V,,
is concerned with the speed of propagation of a one-dimensional deformation
through the soil and the corresponding link with stiffness is

K +ia Eoeaq
Vv, = 3° — o 3.34
» =1/ 5 ) (3.34)

In soils saturated with water the compression wave transmission is dominated
by the effect of the pore water (which has more or less zero shear stiffness so the
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Figure 3.8: Plate loading test

compression wave transmission is governed by the bulk modulus of the water)
and it may be difficult to detect the arrival of a compression wave which has
travelled through the soil skeleton. Anyway, if we wished to deduce individual
values of shear or bulk modulus from the compression wave velocity alone we
would—as for the oedometer—have to assume a value of G/K or Poisson’s ratio.
The pressuremeter (§1.2.4) generates pure shear in the surrounding ground
as its cylindrical cavity is expanded (§8.8). Elastic properties, from interpre-
tation of unload-reload cycles, give a direct indication of shear modulus G.
However, it is common practice (Baguelin et al., 1978) to quote a pressuremeter
modulus E, = G/2.6 calculated assuming a value of Poisson’s ratio v = 0.3.
There is no particular reason why Poisson’s ratio should have this value and
it is evidently rather vital that, if values of shear modulus and bulk modulus
are subsequently required, given only a value of E,, then the same value of
Poissons’s ratio should be used for their calculation.
A loading test on a rigid circular plate on the surface of an elastic soil (Fig
3.8) gives a stiffness
¢ 4G

R T (3.35)

where ( is the average pressure on the plate of radius R and p is the settle-
ment. Again this is a composite stiffness and interpretation of any one of the
conventional elastic properties requires some assumption about another one.

3.2.4 Anisotropy

An isotropic material has the same properties in all directions—we cannot dis-
tinguish any one direction from any other. Samples taken out of the ground
with any orientation would behave identically. However, we know that soils
have been deposited in some way—for example, sedimentary soils will know
about the vertical direction of gravitational deposition. There may in addition
be seasonal variations in the rate of deposition so that the soil contains more
or less marked layers of slightly different grain size and/or plasticity. The scale
of layering may be sufficiently small that we do not wish to try to distinguish
separate materials, but the layering together with the directional deposition
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may nevertheless be sufficient to modify the properies of the soil in different
directions—in other words to cause it to be anisotropic.

We can write the stiffness relationship between elastic strain increment de®
and stress increment do compactly as

0o = Dée® (3.36)

where D is the stiffness matrix and hence D™' is the compliance matrix. For
a completely general anisotropic elastic material

a b ¢ d e f
b g h i j k
-1 c h I m n o
D™ = d i m p q r (3.37)
e j n q s t
fk o 7 t u
where each letter a, b, ... is, in principle, an independent elastic property and the

necessary symmetry of the stiffness matrix for the elastic material has reduced
the maximum number of independent properties to 21. As soon as there are
material symmetries then the number of independent elastic properties falls
(Crampin, 1981).

For example, for monoclinic symmetry (z symmetry plane) the compliance
matrix has the form:

(3.38)

QL oo0 o
Q@ OO0 o
SO O T 0
oxs. oo o
O~ 00O0O
S oo sw

and has thirteen elastic constants. Orthorhombic symmetry (distinct z, y and
z symmetry planes) gives nine constants:

a b ¢ 0 0 O

b d e 0 0 0

1 _| ¢c e f 0 0 O
D = 000 g 00 (339)

0 0 0 0 A O

00 0 0 0 14

whereas cubic symmetry (identical z, y and z symmetry planes, together with
planes joining opposite sides of a cube) gives only three constants:

0 0

(3.40)

S OO TR
oo oo o
oo o oo
SO0 OO O
o0 O oo
o OO oo
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Figure 3.9: Independent modes of shearing for cross-anisotropic material

If we add the further requirement that ¢ = 2(a — b) and set « = 1/E and
b = —v/E then we recover the isotropic elastic compliance matrix of (3.1).

Though it is obviously convenient if geotechnical materials have certain fab-
ric symmetries which confer a reduction in the number of independent elastic
properties, it has to be expected that in general materials which have been
pushed around by tectonic forces, by ice, or by man will not possess any of
these symmetries and, insofar as they have a domain of elastic response, we
should expect to require the full 21 independent elastic properties. If we choose
to model such materials as isotropic elastic or anisotropic elastic with certain
restricting symmetries then we have to recognise that these are modelling deci-
sions of which the soil or rock may be unaware.

However, many soils are deposited over areas of large lateral extent and
symmetry of deposition is essentially vertical. All horizontal directions look the
same but horizontal stiffness is expected to be different from vertical stiffness.
The form of the compliance matrix is now:

(3.41)

OO OO0 oR
oo o0 o o
S oo O 0
OO0 OO O
O OO oo
—- O O O OO

and we can write a = 1/Ey, b= —vpp/En, ¢ = —vyp/Ey, d =1/E,, e = 1/Gyp,
and f=2(a—b) =2(1+vpp)/En:

D' =
1/Eh _th/Eh _Vvh/Ev 0 0 0
—vnn/En 1/Ey, —von/Ey 0 0 0
*Vvh/Eu *Vvh/Ev I/EU 0 0 0
0 0 0 1/Gon 0 0
0 0 0 0 1/Gn 0
0 0 0 0 0 2(1 + th)/Eh

(3.42)
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This is described as transverse isotropy or cross anisotropy with hexagonal sym-
metry. There are 5 independent elastic properties: FE, and Ej are Young’s
moduli for unconfined compression in the vertical and horizontal directions re-
spectively; G, is the shear modulus for shearing in a vertical plane (Fig 3.9a).
Poisson’s ratios vy, and v, relate to the lateral strains that occur in the horizon-
tal direction orthogonal to a horizontal direction of compression and a vertical
direction of compression respectively (Fig 3.9¢, b).

Testing of cross anisotropic soils in a triaxial apparatus with their axes of
anisotropy aligned with the axes of the apparatus does not give us any possi-
bility to discover G, (= 1/e) since this would require controlled application of
shear stresses to vertical and horizontal surfaces of the sample—and attendant
rotation of principal axes. In fact we are able only to determine 3 of the 5
elastic properties. If we write (3.42) for radial and axial stresses and strains for
a sample with its vertical axis of symmetry of anisotropy aligned with the axis
of the triaxial apparatus, we find that

( Sea ) B ( 1/E,  —2vn/Es ) ( 5o ) 5.13)
(SGT o _Vvh/Ev (1 - th) /Eh 50’;‘ ’
The compliance matrix is not symmetric because, in the context of the triaxial
test, the strain increment and stress quantities are not properly work conjugate.
We deduce that while we can separately determine FE, and v, the only other
elastic property that we can discover is the composite stiffness Ej,/(1 — vpp).
We are not able to separate Ej, and vy, (Lings et al., 2000).

On the other hand, Graham and Houlsby (1983) have proposed a special
form of (3.41) or (3.42) which uses only 3 elastic properties but forces certain
interdependencies among the 5 elastic properties for this cross anisotropic ma-
terial.

D™ = 7
1/a?  —v*/a? —v*/a 0 0 0
—v*/a?  1/a® -] 0 0 0
v /o -/ 1 0 0 0
0 0 0 21+ v/« 0 0
0 0 0 0 2(1+v")/a 0
0 0 0 0 0 2(1+ v*)/a?

(3.44)

This is written in terms of a Young’s modulus E* = E,,, the Young’s modulus
for loading in the vertical direction, a Poisson’s ratio v* = vy, together with
a third parameter a. The ratio of stiffness in horizontal and vertical directions
is E,/E, = o? and other linkages are forced: v,, = vpn/a; Ghy = Gup/a =
aE*[2(1 + v*).

For our triaxial stress and strain quantities, the compliance matrix becomes

dep, \ 1 (3G —J op’
(i) =aa (%5 ) (5 o2
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Figure 3.10: Effect of cross-anisotropy on direction of undrained effective stress
path

where

det = 3K*G* — J? (3.46)

and the stiffness matrix is
o\ [ K* J dep
( 5q ) = ( J 3G ) ( 5e, (3.47)

1 —v* + dav* + 202
K*=FE* 3.48
9(1 + v*)(1 —2v¥) (348)

where

2 — 2 — dav* + a?
G*=FE* 3.49
6(1+v*)(1 —2v¥) (349)

2

ATt art —a

T = =

(3.50)

The stiffness and compliance matrices (written in terms of correctly chosen
work conjugate strain increment and stress quantities) are still symmetric—
the material is still elastic—but the non-zero off-diagonal terms tell us that
there is now coupling between volumetric and distortional effects. There will be
volumetric strain when we apply purely distortional stress, ép’ = 0, distortional
strain during purely isotropic compression, d¢ = 0, and there will be change in
mean effective stress in undrained tests, de, = 0.

In fact the slope of the effective stress path in an undrained test is, from
(3.45),

op’ J 2(1 — v* + av* — a?)

— = = 3.51
0 3G*  3(2—2v* —dav* + a?) (3.51)
From our definition of pore pressure parameter a (§2.6.2) we find
op’ J
= (3.52)

T 8q 3G+
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Figure 3.11: Relationship between anisotropy parameter a and pore pressure
parameter a for different values of Poisson’s ratio v*.

which will, in the presence of anisotropy, not be zero.

A first inspection of (3.51) merely suggests that there are limits on the pore
pressure parameter of a = 2/3 and a = —1/3 for « very large (E, > E,) and
a very small (E, > Ej) repectively (Fig 3.10), which in turn imply effective
stress paths with constant axial effective stress and constant radial effective
stress respectively. The link between a and « is actually slightly more subtle.
In fact, for v* # 0 the relationship is not actually monotonic and the effective
stress path direction overshoots the apparent limits (Fig 3.11). The deduction
of a value of a (and hence E},/E, = a?) from a is not very reliable when a is
around —1/3 or 2/3 (recall the data presented in Figs 2.51 and 2.49, §2.5.4). For
v*=0.5a=—(142a)/[3(1 — a)] or a« = (14+3a)/(3a—2). These relationships
satisfy the expected limits for &« = 0 and a = oo but there are singularities in
the inversion of (3.51) for a = 1 and v* = 0.5.

3.2.5 Nonlinearity

We will probably expect that the dominant source of nonlinearity of stress:strain
response will come from material plasticity—and we will go on to develop elastic-
plastic constitutive models in the next section. However, we also have an expec-
tation that some of the truly elastic properties of soils will vary with stress level
and this can be seen as a source of elastic nonlinearity. Our thoughts about
elastic materials as conservative materials—the term ‘hyperelasticity’ is used to
describe such materials—might make us a little cautious about plucking from
the air arbitrary empirical functions for variation of moduli with stresses. For
example, if we were to suppose that the bulk modulus of the soil varied with
mean effective stress but that Poisson’s ratio (and hence the ratio of shear mod-
ulus to bulk modulus) were constant then we would find that in a closed stress
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Figure 3.12: Cycle of stress changes which should give zero energy generated or
dissipated for conservative material

cycle such as that shown in Fig 3.12 energy would be created (or lost) creating a
perpetual motion machine in violation of the first law of thermodynamics—this
would not be a conservative system. We need to find a strain energy (3.7) or
complementary energy density (3.11) function which can be differentiated to
give acceptable variation of moduli with stresses.

Such a complementary energy function can be deduced from the nonlinear
elastic model described by Boyce (1980):

1 1 [q]?
_ . In+1 I
V=p ((n + 1)K, + 6G1 {P’} > (3:53)

where K and GG are reference values of bulk modulus and shear modulus and
n is a nonlinearity parameter. The compliance matrix can then be deduced by
differentiation

(1-n)(2—n) 1—
< Ocp ) N I e e ( o' ) (3.54)
0eq —3a,1 3G, dq

where ) = ¢/p’. There is again (as for the anisotropic model) coupling between

volumetric and distortional effects. The stiffnesses are broadly proportional to
/1—n

P .

Because the compliances are now varying with stress ratio n the effective
stress path implied for an undrained (purely distortional) loading is no longer
straight. In fact, for a reference state p’ = p/, n = g = 0, the effective stress
path is

/

%‘; = (1-82)" (3.55)

where § = (1—n)K,/6G. Contours of constant volumetric strain (de, = 0) are
shown in Fig 3.13 for n = 0.2 and Poisson’s ratio v = 0.3 implying K;/G; =
2.17—values typical for the road sub-base materials being tested by Boyce for
their small strain, resilient elastic properties.

Similarly the path followed in a purely volumetric deformation (de, = 0) will
develop some change in distortional stress. For an initial state p’ = pl, ¢ = ¢,
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Figure 3.13: Contours of constant volumetric strain (solid lines) and constant
distortional strain (dotted lines) for nonlinear elastic model of Boyce (1980)

the effective stress path for such a test is

4 _ <p?;>n_1 (3.56)

do p

Contours of constant distortional strain are also shown in Fig 3.13 for n = 0.2.

It is often proposed that the elastic volumetric stiffness—bulk modulus—
of clays should be directly proportional to mean effective stress: K = p'/k.
Integration of this relationship shows that elastic unloading of clays produces
a straight line response when plotted in a logarithmic compression plane (e, =
—Inv : Inp') (Fig 3.14) where v is specific volume. But what assumption
should we make about shear modulus? If we simply assume that Poisson’s ratio
is constant, so that the ratio of shear modulus to bulk modulus is constant, then
we will emerge with a non-conservative material (Zytynski et al., 1978). If we
assume a constant value of shear modulus, independent of stress level, we will
obtain a conservative material but may find that we have physically surprising
values of implied Poisson’s ratio for certain high or low stress levels. Again we
need to find a strain or complementary energy function that will give us the
basic modulus variation that we desire.

Houlsby (1985) suggests that an acceptable strain energy function could be

3
U= p;eep/*i (/{ + 20[63) (3.57)

Incrementally this implies a stiffness matrix which, once again, contains off-
diagonal terms indicating coupling between volumetric and distortional elements
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Figure 3.14: Linear logarithmic relationship between v and p’ for elastic material
with bulk modulus proportional to p’

()= (o e ) (o) @59

It can be deduced that

of deformation:

q 3aeq
== =——— 3.59
p/ 1+ 3%63 ( )

so that contours of constant distortional strain are lines of constant stress ratio n
(Fig 3.15). Constant volume (undrained) stress paths are found to be parabolae
(Fig 3.15):

¢* = 6arp; (p' — p}) (3.60)

All parabolae in this family touch the line n = \/3axr/2.

The nonlinearity that has been introduced in these two models is still asso-
ciated with an isotropic elasticity. The elastic properties vary with deformation
but not with direction.

Although it tends to be assumed that nonlinearity in soils comes exclusively
from soil plasticity—as will be discussed in the subsequent sections—we have
seen that with care it may be possible to describe some elastic nonlinearity
in a way which is thermodynamically acceptable. Equally, most elastic-plastic
models will contain some element of elasticity—which may often be swamped
by plastic deformations. It must be expected that the fabric variations which
accompany any plastic shearing will themselves lead to changes in the elastic
properties of the soil. The formulation of such variations of stiffness should
in principle be based on the differentiation of some serendipitously discovered
elastic strain energy density function in order that the elasticity should not
violate the laws of thermodynamics. Evidently the development of strain energy
functions which permit evolution of anisotropy of elastic stiffness is tricky. Many
constitutive models adopt a pragmatic, hypoelastic approach and simply define
the evolution of the moduli with stress state or with strain state without concern
for the thermodynamic consequences. This may not provoke particular problems
provided the stress paths or strain paths to which soil elements are subjected
are not very repeatedly cyclic.
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Figure 3.15: Contours of constant volumetric strain (solid lines) and constant
distortional strain (dotted lines) for nonlinear elastic model of Houlsby (1985)

3.2.6 Heterogeneity

Anisotropy and nonlinearity are both possible departures from the simple as-
sumptions of isotropic linear elasticity. A rather different departure is associated
with heterogeneity. We have already noted that small scale heterogeneity—
seasonal layering—may lead to anisotropy of stiffness (and other) properties
at the scale of a typical sample. Many natural and man-made soils contain
large ranges of particle sizes (§1.8)—glacial tills and residual soils often contain
boulder-sized particles within an otherwise soil-like matrix. If the scale of our
geotechnical system is large by comparison with the size and spacing of these
boulders then it will be reasonable to treat the material as essentially homoge-
neous. However, we will still wish to determine its mechanical properties.

If we attempt to measure shear wave velocities in situ, using geophysical
techniques, then we can expect that the fastest wave from source to receiver
will take advantage of the presence of the large hard rock-like particles—which
will have a much higher stiffness and hence higher shear wave velocity than the
surrounding soil (Fig 3.16). The receiver will show the travel time for the fastest
wave which has taken this heterogeneous route. If the hard material occupies a
proportion A of the spacing between source and receiver, and the ratio of shear
wave velocities is k (and hence, neglecting density differences, the ratio of shear
moduli is of the order of k2?), then the ratio of apparent shear wave velocity Vi
to the shear wave velocity of the soil matrix Vj is

k

v,
V. At k_FA (3.61)
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Figure 3.16: (a) Soil containing boulders between boreholes used for measure-
ment of shear wave velocity; (b) average stiffnesses deduced from interpretation
of shear wave velocity and from matrix stiffness

The deduced average shear modulus G is then greater than the shear stiffness
of the soil matrix G by the ratio

G k ? 1
G:<>\+k—k/\) RETEE (3.62)

Laboratory testing of such heterogeneous materials is not easy because the
test apparatus needs itself to be much larger than the typical maximum particle
size and spacing in order that a true average property should be measured. At
a small scale, Muir Wood and Kumar (2000) report tests to explore mechanical
characteristics of mixtures of kaolin clay and a fine gravel (dso = 2 mm). They
found that all the properties of the clay/gravel system were controlled by the
soil matrix until the volume fraction of the gravel was about 0.45-0.5. At that
stage, but not before, interaction between the ‘rigid’ particles started rapidly to
dominate. For A < 0.5 then, this implies a ratio of equivalent shear stiffness G
to soil matrix stiffness G:

1
— 3.63
T—x (3.63)
These two expressions, (3.62) and (3.63), are compared in Fig 3.16 for a modulus
ratio k% = 10000.

¢
G

3.3 Elastic-perfectly plastic models

Elastic descriptions of soil behaviour are useful for the wide range of quick
analytical solutions to which they give access. If we need some idea about the
stress distribution around a footing or wall or pile then at least a first estimate
can be obtained using an elastic analysis (§7.2). Many of these analyses are
either available as closed form results or have been previously published in
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Figure 3.17: (a) Typical irreversible stress:strain response and (b) typical mod-
ulus variation for soil

the literature (for example, Poulos and Davis, 1974). Elastic analyses are also
useful to give a first estimate of the deformations that may be expected for a
geotechnical structure under working loads—structures which are therefore not
loaded to anything approaching the failure conditions.

However, a quick comparison of the stress:strain response implied by a lin-
ear elastic description of soil behaviour with the actual stress:strain response
of a typical soil shows that there are many features of soil response that the
simple model is unable to capture (Fig 3.17). In particular, it is clear that most
soils show nonlinear stress:strain relationships with the stiffness falling from a
high initial value. If a soil is unloaded from some intermediate, prefailure con-
dition then it will not recover its initial state but will be left with permanent,
irrecoverable deformation—which we will call plastic deformation to distinguish
it from the recoverable, elastic elements of deformation. During this unloading
process the tangent stiffness increases initially, typically to a value higher than
the initial stiffness and then falls—a similar pattern is seen on reloading (Fig
3.17).

Most soils develop significant volume changes even when they are subjected
only to changes in shear stress. Most soils, if sheared to sufficiently large strains,
reach a state of continuing shearing with no further change in stresses—zero in-
cremental or tangent stiffness—at large strains. This type of behaviour, in which
the tangential stiffness has fallen to zero, is described as perfect plasticity and
the next stage in development of simple models is to use an elastic-perfectly plas-
tic description of soil response (Fig 3.18). This elastic-perfectly plastic model
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Figure 3.18: Elastic-perfectly plastic model: (a) stress:strain response and (b)
modulus variation

is the first of a series of models which we will describe which gradually im-
prove the degree with which the richness of behaviour shown in Fig 3.17 can be
reproduced.

3.3.1 General elastic-perfectly plastic model

The underlying assumption of the soil models that are being developed is that
the strain increments that accompany any change in stress can be divided into
elastic (¢) (recoverable) and plastic (P) (irrecoverable) parts

0€ = Je® + 0€P (3.64)

The strain tensor is thought of here as a six element vector of cartesian strain
components since in this form the presentation and programming of stiffness
relationships involves nothing more than straightforward matrix multiplication
and manipulation. In many applications it will be a subset of this vector that
will be of interest. This division of strain clearly reflects the observation that
removal of loads from a sheared soil sample in general leaves the sample with
some permanent changes in shape and size.

The elastic strain increment §e® occurs whenever there is any change in stress
do (where the stress is also thought of as a six dimensional vector of cartesian
components).

0o = Dée® (3.65)

where D is the elastic stiffness matrix. The first ingredient of the model is there-
fore a description of the elastic behaviour which may be isotropic or anisotropic
as appropriate.
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Figure 3.19: Elastic-perfectly plastic model: yield surface separating elastic and
inaccessible regions of stress space

In the elastic-perfectly plastic model there is a region of stress space which
can be reached elastically, without incurring any irrecoverable deformations (Fig
3.19). However, as soon as the boundary of this elastic region is reached then
the material yields (or fails) at constant stress. The boundary of the elastic
region is called a yield surface (Fig 3.19) and is mathematically described by a
yield function: this is the second ingredient of the model.

flo) =0 (3.66)

The plastic strain increment deP (in (3.64)) occurs only when the stress state
lies on—and remains on—the yield surface during the load increment so that

o

f(o) =0; 5f—870_

0o =0 (3.67)
where T indicates the transpose of the vector. This relation is known as the
consistency condition.

The perfectly plastic soil model has been discussed so far only in terms
of a limiting set of stress states which can be reached—defined by the yield
function f(o). For the model to be useful in more extensive numerical analysis
it is necessary to be able to make some statements about the nature of the
deformations that occur when this limiting stress state is reached. Before we do
this it may be helpful to digress in order to discuss the behaviour of a perfectly
plastic structural system where the nature of the plastic deformations is rather
clear.

3.3.2 A digression: collapse of portal frame

At this point a digression may be helpful in order to explore the deformations
that occur in a simple perfectly plastic structural system: the collapse of a steel
portal frame under combinations of vertical and horizontal loading (Fig 3.20a).
The collapse of this frame is governed by three mechanisms (Fig 3.20b, c, d):
beam collapse, which occurs when the vertical load is the dominant loading (Fig
3.20b); sway collapse, which occurs when the horizontal load is the dominant
loading (Fig 3.20c); and a combined mechanism (Fig 3.20d).
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Figure 3.20: (a) Steel portal frame; (b) beam collapse; (c) sway collapse; (d)
combined collapse mechanism (o indicate locations of plastic hinges)

The standard methods of plastic structural analysis can be used to demon-
strate that for the beam mechanism (Fig 3.20b) the limiting load is given by

Ve _

8 3.68

For the sway mechanism (Fig 3.20¢) the limiting load is given by

Hh

i 4 (3.69)

and for the combined mechanism (Fig 3.20d) the limiting loads are given by

Hh v

—— =6 3.70
M, o, (8.70)

These three expressions define a collapse locus—or interaction diagram—in
the plot of vertical and horizontal loads (Fig 3.21). The collapse locus defines
the boundary of the region of safe combinations of loads?.

If a change in the loads applied to the structure brings the load combination
to the collapse locus then collapse of the frame will occur according to one of
the three mechanisms. The particular choice of mechanism will depend on the
load combination at which the collapse locus is reached, according to equations
(3.68)-(3.70), and not on the route by which that boundary is reached. This is
obviously a difference from the response of an elastic material or elastic system
for which the incremental deformation depends on the changes in loads and not
on the values of the loads themselves?.

2The collapse locus cannot be strictly described as a yield locus because, by extension
from the analysis of the plastically collapsing cantilever (§2.5.1), the frame will start to yield
and generate irrecoverable plastic rotations as soon as the yield moment is reached at any
section. The extent of this plastic region inside the collapse locus will depend on the ratio
of yield moment to full plastic moment of the structural sections from which the frame is
constructed. For rectangular sections the ratio is 2/3; for more practical I sections the ratio
is more typically of the order of 0.87.

3For a conservative nonlinear elastic material (§2.5.1) the incremental stiffness will depend
on the current state of stress but consideration of (3.54) and (3.58) shows that the mechanism
of elastic deformation is always dependent on the accompanying increments of stress.
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Figure 3.21: Collapse locus for steel portal frame

By appropriate choice of variables it is possible to indicate the mechanism
of plastic collapse on the same diagram as the collapse locus. For the perfectly
plastic system brought to collapse by changes in the applied loads, there is
at collapse no possibility of determining the magnitudes of the deformations—
failure, according to the simple model, just continues indefinitely. (The collapse
could be contained if the structure were loaded using some sort of deformation
control.) The three mechanisms do, however, indicate the relative magnitudes of
the vertical movement d, at the centre of the beam and the horizontal movement
0, at the top of the columns.

The work done in any deformation of the structure (d,,d,) while it carries
loads V and H is

SW = V6, + Hb), (3.71)

The work conjugacy of (V, H) and (,, d) is obvious. However, for convenience
the collapse locus has been plotted in terms of normalised loads V¢/M,, and
Hh/M,. A work conjugacy can be deduced between (V¢, Hh) and (6, /¢, 6x/h).

The three mechanisms of collapse can be described in terms of the ratios of
these two displacement variables. The beam mechanism gives:

0y /L
= . 2
on/h 00 (3.72)
The sway mechanism gives:
%/t 0 (3.73)

sn/h
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and the combined mechanism gives:

5,/ 1
57T 2 (3.74)

These three expressions define the directions of three vectors which can be plot-
ted on the corresponding segments of the collapse locus to indicate the resulting
collapse mechanisms (Fig 3.21). It is found in this case that these collapse
vectors are normal to the corresponding segments of the collapse locus.

The important result is that the mechanism of collapse (by which is meant
the ratio of the several components of plastic deformation) is in some way linked
with the shape of the collapse locus (which indicates whether or not collapse is
taking place) and is independent of the route by which the collapse locus was
reached. Thus the quite different paths AX and BX in Fig 3.21 both end up at
the same point on the collapse locus and will both lead to the same mechanism
of collapse—by the combination of sway and beam modes—even though one is
reaching collapse by applying only increments of horizontal load and the other
by applying increments of vertical load.

3.3.3 General elastic-perfectly plastic model (continued)

In order to be able to calculate the plastic deformations we make the assumption
that there exists a plastic potential function g(o) which can be evaluated at the
current stress state such that the plastic strain increment is given by

p_
0€? = p e (3.75)

where p is a scalar multiplier whose magnitude is essentially arbitrary since this

expression merely defines the mechanism of plastic deformation—the ratio of

the several components of plastic deformation. It is thus only the gradient of the

plastic potential function g(o) that is required, the actual value of the function

is not relevant.

Combination of (3.64), (3.65) and (3.75) gives

_ 09
do = Dde — uD% (3.76)

and combination of (3.76) with (3.67) allows us to determine p

ﬂTD56
__ 0
9o Dao

and hence generate an expression for the elastic-plastic stiffness matrix D®P
giving do as a function of Je:

D D
o = lD — MTC“’U&] de = Db (3.78)
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Figure 3.22: Elastic-perfectly plastic Mohr-Coulomb model (a) yield/failure lo-
cus; (b) plastic potentials

from which the stress increment can be calculated from any total strain incre-
ment that is causing yield.

Note that, as before(§2.5.1), we will expect that we can always deduce incre-
ments in stress from imposed increments in strain (the operation indicated in
(3.78)) but that the reverse operation will not always be possible if our current
state of stress is already on the yield /failure boundary of the elastic region (Fig
3.19). This will become clear when we consider a particular example.

3.3.4 Elastic-perfectly plastic Mohr-Coulomb model

To demonstrate how this final expression can be used we can look at the special
case of the elastic-perfectly plastic Mohr-Coulomb soil model. We will apply
the model to axisymmetric conditions. We introduce this model first because
Mohr-Coulomb failure is something which is familiar to all undergraduate civil
engineers and because elastic-perfectly plastic Mohr-Coulomb models are gener-
ally available in most finite element programs that might be used by practising
civil engineers. There is a familiarity in some of the ingredients of the model.
First we define the elastic properties as usual using an isotropic elastic model:

(5 )= (0 a6 ) (3) 619

Next we define the yield function as (Fig 3.22a)

flo)=fW,q) =q— My (3.80)

If f(p',q) < 0 the soil is behaving elastically; if f(p’,q) = 0 the soil is yielding
(failing) and generating plastic deformations. To have f(p’, ¢) > 0 is impossible:
this defines an inaccessible region of the (p’,q) stress plane (Fig 3.22a). The
value of the soil property M can be related to the angle of shearing resistance
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¢ of the soil in triaxial compression:

6sin ¢

M:
3 —sing

(3.81)

Finally we require some constraint on the plastic deformations in the form
of a flow rule which defines the plastic deformation mechanism at the current
stress state. We define a plastic potential function (Fig 3.22b)

9(@) =90 q) =q-M"p' +k=0 (3.82)

where k is an arbitrary variable to allow the plastic potential function to be
defined at the current state of stress and M™ is another soil property. This
implies that the plastic strain increments are given by normality to the plastic
potential function at the current state of stress (Fig 3.22b)

deb '\ dg/op’ '\ _ —M*
< oe ) =H < ag/oq ) =M\ 1 (3:83)
where p is a scalar multiplier which merely indicates the magnitude of the plastic
strain increments. The ratio of the two components of plastic strain is:

S|

i e
5eb =-M (3.84)

The link between M™* and angle of dilation is not so simple as the link
between M and angle of shearing resistance ¢ (3.81) because, while the inter-
mediate principal stress plays no role in the latter (Mohr-Coulomb failure is
concerned only with the ratio of major and minor principal stresses), the in-
termediate principal strain certainly influences the former. Angle of dilation is
essentially a plane strain concept (§2.6) and is thus directly relevant to many
geotechnical applications—but the intermediate strain is then conveniently zero.
In plane strain the angle of dilation 1 has a geometrical meaning as the tangent
to Mohr’s circle of strain increment (Fig 3.23a). Under conditions of triaxial
compression (de, > 0) we can define a similar tangent angle 1. (Fig 3.23b). We
find that the link with the triaxial strain increment ratio is:

ol 3
P _ .
E = Z (3 Sln'(/)c — 1) (385)
and sin . < 1/3 implies dilation. Then, while we can define an angle of dilation
1 as a material property for use in analysis from:

6 sin vy

M = ———
3 —siny

(3.86)

for triaxial compression to be exactly similar to (3.81), the direct geometrical
interpretation has been lost. Angles v and ). are linked through:

1—3siny

P (3.87)

siny. =
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Figure 3.23: Mohr circles of strain increment and angles of dilation in (a) plane
strain; (b) triaxial compression. (c¢) Link between 1 and v,

This relationship is plotted in Fig 3.23c.

However, with this loose definition of ¢, for M* = 0 plastic deformation
occurs at constant volume (zero dilatancy, ¥ = 0). Soils that contract when
they are sheared plastically have negative angles of dilation: 1 < 0 and M™* < 0
(Fig 3.24c¢); soils that expand have positive angles of dilation: ¢ > 0 and M* > 0
(Fig 3.24c). It is generally found that for most real soils ¢ < ¢ and M* < M.
A special (though physically unrealistic) case is obtained when M* = M and
Y=o

The energy that is dissipated during an increment of plastic deformation is
SWP =o€’ = p'deb + qdel (3.88)

Since the soil is yielding the stresses are related by
q= Mp (3.89)

and the plastic strain increments are related by (3.84). The plastic energy thus
becomes
SWP = (M — M*)p'oeh (3.90)

It is evident that if M™* = M there is no plastic energy dissipation which seems
likely to provide an unsatisfactory description of soil behaviour.

The complete elastic-plastic stiffness matrix (3.78) for this perfectly plastic
model can now be generated:

K 0 1 MM*K> —3M*GK
ep _ _ —
b= [( 0 3G ) KMM- + 3G ( “3MGK  9G )} (3:91)

The second term in (3.91) is only included if the soil is yielding. In stiffness
form the link between stress increments and strain increments, when the soil is

yielding, is
6¢ )~ KMM*+3G\ M MM~ d€q '

The elastic-plastic stiffness matrix is in general asymmetric unless M* =
M which, as has been shown, is physically unreasonable. However, certain
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Figure 3.24: Elastic-perfectly plastic Mohr-Coulomb model: (a) stress:strain
response; (b) constant p’ effective stress path; (¢) volumetric strain, dependence
on M*

numerical analysis programs require the stiffness matrix to be symmetric for
solution purposes and it is for these programs that the assumption M* = M
is often forced upon the user—or else some numerical subterfuge is needed to
overcome the limitation of the program.

Although it is often easier to think of stress changes producing changes in
strain—and physical considerations of the behaviour of soils often encourage us
to move in this direction—if we look at the diagram of the (p/, q) stress plane (Fig
3.22a) we can see that this will not provide a secure route for analysis because
a large part of the stress plane is in fact forbidden territory. On the other hand,
working from strain increments to stress increments carries no such problem:
all strain increments are permitted even when the current stress state sits on
the yield (failure) locus. Some of these strain increments will produce purely
elastic changes in stress which take the stress state away from yield; others will
force the stress state to move up or down along the yield (failure) locus in such
a way that the elastic component of the strain caused by the change in stress
uses up that part of the total strain increment which cannot be ascribed to the
plastic strain mechanism given by (3.84) or (3.75).

We saw in section §2.5.3 that one way of illustrating the link between strain
increments and stress increments is through the generation of stress response
envelopes. For each of the strain increments of a rosette of increments of similar
magnitude but different direction we can use the elastic-plastic stiffness form
of the model ((3.79) or (3.91) depending on whether the soil is responding
elastically or elastoplastically) to calculate the stress increment response (Fig
3.25). This stress response envelope consists of two parts.
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Figure 3.25: Elastic-perfectly plastic Mohr-Coulomb model: stress response
envelope (calculated with M = 1.2, M* = 0.2 and initial stresses p’ = 100,
qg= Mp =120)

If the strain increment can be supported by elastic unloading then the stress
increment is directed away from the yield locus. For these increments the re-
sponse envelope takes the form of half of an ellipse (Fig 3.26). If the strain
increment requires the soil to yield then the stress state has to lie on the yield
locus—all plastic stress states are, in this perfectly plastic model, confined to
this one line. For these increments the stress response envelope consists of a
straight line tangent to (in this case coincident with) the yield locus at the given
initial stress (Fig 3.26).

Two limits may be noted. If the ratio of strain components is given by (3.84)
then the stresses remain unchanged as the soil yields:

dep \ —M* '\ (0
(ie)=(77) = (0)-(0)  ow
It is of course possible for the stress state to move along the yield locus
purely elastically without incurring plastic deformation. In this case

( ZEZ ) - A( J\%é(c; ) (3.94)

and this ratio defines the boundary of elastically attainable strain states in the
corresponding strain increment plane. It should be clear from the stress response
envelope in Fig 3.25 that, not only is there a part of the stress plane that is
inaccessible (anywhere implying a value of ¢/p’ > M), even for stress changes
which lie along the boundary of the elastic region (d¢/0p’ = M) there is an
infinite number of possible causative strain increments and we cannot even tell
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Figure 3.26: Elastic-perfectly plastic Mohr-Coulomb model: elastic and plastic
sections of stress response envelope

whether the soil is behaving elastoplastically or purely elastically. The ambiguity
in trying to work from stress increments to strain increments is emphasised.
A particular case is given by undrained constant volume shearing for which

/ *
<gep>_)\<0> <5p>_ 3GKM*\ (1) (3.95)
€q 1 dq KMM~*+3G\ M
and the stress path ascends or descends the line ¢ = Mp’ for M* > 0 (Fig 3.25)
or M* < 0 respectively (assuming that 3G + KM M* > 0 always).

The principal application of elastic-perfectly plastic models is to the calcu-
lation of collapse loads for geotechnical structures: such as the ultimate bearing
capacity of a foundation, or the limiting stresses on a retaining structure. A
discussion of the ultimate limit state analysis of such problems is given in sec-
tion §7.3. In such analyses it is assumed that the soil has been sheared so
much that all elements that combine to form a failure mechanism around the
structure have reached the perfectly plastic failure condition. In this state the
pre-failure response is of no further concern and there is a sound theoretical
basis for judging the reliability of the collapse loads that are thus calculated.

The response of a geotechnical structure—for example, a footing—to in-
creasing load or increasing deformation, calculated using an elastic-perfectly
plastic soil model (§4.10.4), shows a steady transition from the initial linear
elastic response to the ultimate zero stiffness perfectly plastic collapse condition
(Fig 3.27). This may appear to be an entirely reasonable description of the
behaviour of the system and arises because the failure of the soil propagates
steadily from the stress concentrations at the edge of the footing until an over-
all failure mechanism can form. Once failure has started anywhere in the soil
the stresses that are generated by the continuing loading must be redistributed
through the remaining unfailed soil: the stiffness for continuing loading thus
falls.

For each individual element of soil, however, the elastic-perfectly plastic de-
scription looks less convincing (Fig 3.28). The model can only at best describe
the final failure condition together with either the initial stiffness or some aver-
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Figure 3.27: Numerical analysis of settlement of strip footing on elastic-perfectly
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Figure 3.28: Elastic-perfectly plastic Mohr-Coulomb model compared with typ-
ical soil response in conventional drained triaxial compression test

age stiffness corresponding to a stress state intermediate between the beginning
and end of the test. Evidently such an average stiffness will not give an accurate
description of the behaviour at any soil element—mno soil element will actually
experience combinations of stress and strain which fall along this assumed no-
tional linear elastic prefailure relationship. The volumetric response is also only
crudely represented (Fig 3.28b).

This deficiency of the elastic-perfectly plastic model is slightly obscured when
soil behaviour is described in terms of secant stiffness. It is standard practice
to show variation of shear stiffness with shear strain both for monotonic testing
(Fig 3.29a)—where the stiffness falls as failure is approached—and for cyclic,
or more generally non-monotonic testing—where the average stiffness in any
cycle reflects the strain level at which the direction of loading was reversed (Fig
3.29a). Typical experimental data show a reduction in average cyclic (secant)
stiffness with increasing strain amplitude. An elastic-perfectly plastic model
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Figure 3.31: Variation of secant stiffness with strain amplitude for cycles of
loading of elastic-perfectly plastic material

will also show a reduction in average stiffness with increasing strain amplitude
(Fig 3.30) but when the response is considered in terms of tangent stiffness it is
very clear that the secant response is the combination of a constant prefailure
stiffness with varying amounts of strain imposed while the soil is at failure and
hence has zero tangent stiffness (Fig 3.31).

If the shear strain to failure of an elastic-perfectly plastic soil with shear
modulus G is vy then at a strain of v, the shear stress is G, and the secant
stiffness G is

G, =Gc L (3.96)
Ym
This is plotted in Fig 3.30.
The damping ratio £ can be calculated similarly. This is defined as

w

= AW (3.97)

§

where W is the energy dissipated in each cycle (shown stippled in Fig 3.32),
and AW is the maximum elastic energy stored in each cycle (shown shaded in
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Fig 3.32). For the elastic-perfectly plastic material

Ym

W = 4G~? ( — 1) 3.98
\5; (3.98)

and .

Ym
AW = G2 ™2 3.99
27y (3.99)
so that

™ Ym

e=2 <1 - W) (3.100)

and this is also plotted in Fig 3.30.

Elastic-perfectly plastic models are widely used because of their simplicity.
They are available in every computer program that is seriously intended for
numerical analysis of geotechnical problems. They require definition of elastic
properties—of which there will be two for an isotropic model as in any linear
elastic model; and of some failure property—for example, a limiting angle of
shearing resistance for a frictional model to be used for description of drained
soil conditions or a limiting shear stress for a cohesive model to be used for
description of undrained soil conditions; together with some statement about
the volume changes that accompany failure—for example, an angle of dilation.
There is obviously need for care in the selection of the elastic properties. Not all
programs give the freedom to select angles of dilation which are different from
the angle of shearing resistance.

3.4 Elastic-hardening plastic models
Constitutive models form an essential link in the numerical or theoretical pre-

diction of deformation of geotechnical structures. Perfect plasticity provides
some possibilities for matching certain aspects of observed mechanical response
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Figure 3.33: Elastic-hardening plastic model: yield surface separating elastic
from plastic regions of stress space, and plastic potential for definition of plastic
strain increments

of soils but in a rather limited way. Hardening plasticity opens up further mod-
elling possibilities. Perfect plasticity enables us to reproduce the inelasticity of
soil behaviour—the accumulation of irrecoverable strains. Hardening plasticity
enables us in addition to describe prefailure nonlinearity.

Hardening models are natural extensions of the perfectly plastic models that
have been described in section §3.3. The additional feature is that the yield
function is no longer merely a function of the stresses but also introduces a
hardening parameter which characterises the current size of the yield surface.
An extra hardening equation is then required to define the way in which this
hardening parameter changes as plastic strains occur—or in other words the
penalty in permanent deformation of the material which is necessary in order
to increase the size of the elastic region and harden the material. The general
form of the ingredients of the hardening plastic model will be introduced first
and then specific hardening plastic models will be developed.

There are four ingredients of the hardening plastic models—three of these
are common to the perfectly plastic models.

1. Elastic properties: Whenever the stresses change elastic strains will oc-
cur. We may assume isotropic elastic behaviour for convenience but this is not
essential.

0o = Dée® (3.101)

2. Yield criterion: We need to define the current boundary in stress space to
the region of elastic behaviour (Fig 3.33). Within this region all stress changes
can be applied without incurring irrecoverable deformations. The definition
of the yield function allows us to answer the question: are yield and plastic
deformation occurring? For a hardening model the boundary is not fixed but
will depend on the history of loading of the soil.

We write the yield criterion as a function of a hardening parameter y*:

fle.x)=0 (3.102)

4There could in general be more than one hardening parameter.
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Figure 3.34: Combined tension and torsion of annealed copper tubes: yield locus
and plastic strain increment vectors (o, is yield stress) (inspired by original data
from Taylor and Quinney, 1931)

There is the usual constraint that the current stress state cannot lie outside the
current yield surface but the yield surface is no longer of fixed size (as it was
in the perfectly plastic model) but is able to expand in order to accommodate
the imposed stress changes. The consistency condition (3.67), which states that
the stress state must remain on the yield surface when plastic strains are being
generated, now becomes:

T
of 60’—1-%

floox) =0 6f =5 axéx =0 (3.103)

3. Flow rule: We require some way of describing the mechanism of plastic
deformation. We can conveniently do this in just the same way as for the
perfectly plastic model using a plastic potential to indicate the ratio of the
several strain components (Fig 3.33) and to show that the plastic strains are
controlled by the current stresses at yield and not by the stress increment which
brought the soil to yield:

99
Hoo
where p is again a scalar multiplier which we have to find. It may sometimes
be convenient to assume that the functions f and g are the same: the material
then obeys the hypothesis of associated flow (the flow is associated with the
yield criterion) or normality (the strain increment vectors are normal to the
yield surface at the current stress state) but this is certainly not a necessary
assumption and certainly not an assumption of which soils are aware (although
the analysis of the collapse of the steel portal frame demonstrated normality
and normality can also be observed in the combined tension and torsion of
thin-walled annealed metal tubes: Fig 3.34).

4. Hardening rule: The hardening rule links the change in size of the yield
surface with the magnitude of the plastic strain and hence provides a link be-
tween x and p.

deP = (3.104)



136 3. Constitutive modelling

load

A[I extension A/ Aly Al
P

Figure 3.35: Repeated tension of annealed copper wire (inspired by original data
from Taylor and Quinney, 1931)

For a perfectly plastic material, once the stress state reaches the yield surface,
plastic straining can continue indefinitely: the incremental (tangent) plastic
stiffness is zero. The uniaxial tension of annealed copper wire provides a simple
example of a hardening plastic material (Fig 3.35). Each time the axial load is
increased beyond the previous maximum load there is some further irrecoverable
extension of the wire but linked with this is an increase in the yield strength
of the material: the elastic region has been increased at the expense of some
further irrecoverable rearrangement of the metal crystals. The elastic stiffness
of the copper can be deduced from the slope of the elastic loading and unloading
relationship, for changes of load and length 6 P and §¢:

_ §P/A

E = 50t (3.105)

where A and /¢ are cross-sectional area and length of the wire respectively.
The plastic hardening stiffness can be defined in just the same way:

AN (3.106)

where Af; and Afy are the irrecoverable changes in length of the wire that are
left when the successive maximum (yield) loads P,; and Py, are removed (Fig
3.35¢). It is evident from Fig 3.35b that the plastic stiffness of the copper wire
is not a constant but falls steadily with increasing plastic extension of the wire
(Fig 3.36).

For our more general hardening plasticity model we must suppose that the
hardening parameter is some general function x(€P) of the plastic strains. The
combination of the consistency condition (3.103) and the flow rule (3.104) then
gives:

of af ox " 9dg
S 1
00 + 1 \ Der 0 (3.107)
and if we write
= _Hox 99 (3.108)

Ox Oe? 0o
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Figure 3.36: Tension of annealed copper wire: schematic variation of plastic
hardening stiffness with extension

a procedure exactly similar to that used for the perfectly plastic model can be
used to generate the stiffness relationship between stress increments and total
strain increments:

posor”
— 0090 " | 5e = D%ge (3.109)

oo =|D T
Dgs+H

of
oo
3.4.1 Extended Mohr-Coulomb model

The elastic-perfectly plastic Mohr-Coulomb model (§3.3.4) is widely used for
geotechnical analysis. It provides a very crude match to actual shearing be-
haviour of soils (Fig 3.28). A natural extension is to create a hardening version
of the Mohr-Coulomb model in which the size of the yield surface varies in
some nonlinear way with the development of plastic strain. In the model to be
described here the hardening will be linked only with distortional strain: such
a distortional hardening model is found to be quite useful for the modelling
of sands where it is rearrangement of the rather hard particles that dominates
the response at typical engineering stress levels and irrecoverable volumetric
changes are essentially linked with this rearrangement. We will present the four
ingredients of the model in turn and restrict ourselves in this presentation to
the stress and strain conditions that can be attained in the conventional triaxial
apparatus.

1. Elastic properties: The elastic properties are assumed to be described by
a linear isotropic elastic model which requires two stiffness properties such as
shear modulus G and bulk modulus K

(-(58)() o

In fact for many granular materials it might be reasonable to assume that the
shear stiffness is not in fact constant but varies in some way with stress level—for
example:

Goxp'? (3.111)
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Figure 3.37: Elastic-hardening plastic Mohr-Coulomb model: (a) yield locus
and failure locus separating elastic, plastic and inaccessible regions of stress
plane; (b) normality of plastic strain increment vectors to yield loci

However, we have seen that cavalier introduction of nonlinear elasticity risks
thermodynamic unacceptability and that if we want the shear stiffness to vary
with stress level then we should really invoke an elastic strain energy function
to achieve this.

2. Yield criterion: The yield criterion is now taken to be a generalisation of
the yield criterion assumed for the perfectly plastic model

flo,x)=f0' qa.ny) =q—nyp' (3.112)

where 7, is a hardening parameter which indicates the current size of the yield
locus (Fig 3.37a). It will be seen when the hardening rule is introduced that
the yield locus is allowed progressively to expand until it reaches some limiting
failure size.

3. Flow rule: As for the perfectly plastic model it is not particularly satis-
factory to assume normality of plastic strain increment vectors to the current
yield locus. Normality would imply

% =— (3.113)
Seb My '
with the directions of plastic strain increment vectors shown in Fig 3.37b. These
imply that volumetric expansion accompanies shearing at all non-zero stress
ratios and that the rate of volumetric expansion—possibly characterised by an
angle of dilation—increases steadily as the yield stress ratio increases. A more
suitable description of the plastic volume changes can be developed from the
interpretation of the results of conventional direct shear tests on sand that was
presented in section §2.6.

Following Taylor’s (1948) proposal of a link between dilatancy and mobilised
friction in a shear box test, we emerged with a stress-dilatancy equation (2.99)
expressed in terms of fotal strain increments. Since we are now engaged in the
development of elastic-plastic models we need to think of this rather as a flow



3.4. Elastic-hardening plastic models 139

Figure 3.38: Elastic-hardening plastic Mohr-Coulomb model: plastic potential
curves (solid lines) and yield loci (dashed lines)

rule which controls the ratio of plastic strain increments:

5657 o aq

M —n, (3.114)

Seb P
where M is the critical state stress ratio at which constant volume shearing can
occur. Evidently this flow rule is only invoked when the soil is yielding so that
the stress ratio ¢/p’ is then of necessity equal to n,°.

It will be recalled that for the perfectly plastic model we introduced the
concept of a plastic potential function g(o) passing through the current stress
state to which the plastic strain increments are normal. It can be deduced that
the flow rule (3.114) corresponds to the plastic potential function

P
g(a)zq—Mp’ln? =0 (3.115)

where p/. is an arbitrary variable introduced in order to allow us to create a
member of this general class of plastic potential curves passing through the
current stress state. Then

(§§§>:M<%§>=M<Ml_”> (3.116)

which is consistent with (3.114).

These plastic potential curves are plotted in Fig 3.38 together with a set of
yield loci. The directions of the plastic strain increment vectors are also shown:
the difference from the directions implied from normality (Fig 3.37b) is dramatic.
Now yielding at low stress ratio implies volumetric compression but the rate of

5At low stress ratios, far from failure, we can expect elastic strains to be important and
hence a stress-dilatancy interpretation using total strain increments (§2.6) will be different
from that calculated using plastic strain increments (3.114). So the discrepancy in Fig 2.57
could be anticipated if the soil does indeed know about the flow rule of (3.114). As failure
is approached, plastic strains will dominate and the neglect of the difference between elastic
and total strain increments becomes less important.
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volumetric compression steadily decreases as the stress ratio increases. For stress
ratio ¢/p’ = M plastic deformation occurs at constant volume; for stress ratio
q/p’ > M plastic deformation is accompanied by volumetric expansion.

4. Hardening rule: We will assume that the soil is a distortional hardening
material so that the current size of the yield locus 7, depends only on the plastic
distortional strain €f. We are trying to describe using our model a mechanical
behaviour in which the stiffness falls steadily as the soil is sheared towards
failure. One of the simplest ways in which such a stiffness degradation can be
described is using a hyperbolic relationship between stress ratio and distortional
strain )

Dy ‘4 (3.117)
Mp a+ €q

or incrementally

2
Mp — 1N
5y = (panpy)aeg (3.118)

( g%g ) - ( (np _773)2 Jan, ) (3.119)

where 7, is a limiting value of stress ratio and a is a soil constant—which
essentially just scales the plastic strain since (3.117) and (3.118) are actually
functions of €b/a.

We now have all the information that we need to produce the complete

elastic-plastic stiffness relationship (3.109):
< — K2y (M —1y) 3GK (M —1,) >

or

opl \
dq |
—3GKn, 9G>

([0( 3%)_3G—Kny(M—ny)+p’(np—ny)2/(anp) (§:§>

(3.120)

Writing the stiffness relation in this way (compare also (3.78), (3.91), (3.109))
is convenient because it divides the stiffness into an elastic part and a plastic
part. In application of the model, the elastic stiffness can be used to predict
the stress change resulting from a given strain change. If this computed stress
change lies outwith the current yield surface then the plastic stiffness can be
applied as a corrector to bring the calculated stress state back onto the (possibly
hardened) yield surface.

It can be checked that, when the yield stress ratio reaches the asymptotic
value 1, = 75, this stiffness relationship becomes identical with that generated
for the perfectly plastic Mohr-Coulomb model(3.91) if we write n, = n, = M
and (M —n,) = (M —np) = —M*. As then, the stiffness matrix is not sym-
metric because we have assumed a nonassociated flow rule: the plastic potential
function (3.115) is quite different from the yield function (3.112).
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Figure 3.39: Elastic-hardening plastic Mohr-Coulomb model: triaxial compres-
sion tests with constant mean effective stress: (a) stress:strain response and (b)
volumetric response for different values of M and 7, (K = 5000 kPa, v = 0.25,
a = 0.005, p’ = 100 kPa)

The information about yielding and hardening for this model can also be used
to generate the plastic compliance relationship linking plastic strain increments
with stress increments.

(8)- e (O 7)) o

As before, however, this relationship is not always useful because, as the
stress state nears the asymptotic stress ratio g/p’ = n,, there is once again a
region of the (p/, q) effective stress plane into which it is impossible for the stress
increments to stray. However, as expected, we can see that as the yielding stress
ratio tends to 77, so the plastic stiffness tends to zero and the compliance tends
to infinity.

The volumetric response depends on the relative values of 7, and M. If
7, > M then the model predicts compression followed by expansion (Fig 3.39b).
If n, = M then the model predicts compression reducing until a critical state of
constant volume shearing is reached (Fig 3.39b). (If n, < M the model predicts
continuing volumetric compression as failure is approached: Fig 3.39b.) In this
simple form we cannot describe strain softening with this model. In practice,
pre-peak response may be adequate since working loads are not intended to pro-
duce significant amounts of failure and we are interested in pre-failure response
of our geotechnical structures. If much of the soil around a structure has been
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Figure 3.40: Elastic-hardening plastic Mohr-Coulomb model: variation of secant
and tangent shear stiffness and damping ratio with strain

brought to failure then the overall deformations of the structure are likely to be
unacceptably large.

The variation of stiffness with strain in monotonic straining and the variation
of damping ratio in cyclic shearing are shown in Fig 3.40. Obviously the tangent
stiffness now falls more gradually than for the elastic-perfectly plastic model (Fig
3.30).

The elastic-plastic stiffness relationship (3.120) can be used to generate the
envelope of stress responses to a rosette of applied total strain increments. These
are shown in Fig 3.41 for two different values of stress ratio. As the stress
state approaches the peak stress ratio so the stress response envelope (which
is composed of two separate elliptical sections for the elastic and elastic-plastic
strain increments) becomes more and more distorted. It is evident that the
stress response envelope for the elastic-perfectly plastic model (Fig 3.25, 3.26)
is a degenerate version of the response envelope for the hardening model: the
elastic-plastic ellipse has collapsed to a line segment.

Extended Mohr-Coulomb model: undrained effective stress path

An example of the application of this extended Mohr-Coulomb model is pro-
vided by the calculation of the effective stress path that will be followed in an
undrained test. An undrained test provides a direct deformation constraint:

dep = b€, + dep =0 (3.122)

The sum of the elastic and plastic volumetric strain increments is zero: any
tendency of the particle structure to undergo permanent rearrangement and
change in volume—for example, collapse—has to be countered by a change in
mean effective stress which leads to a balancing elastic volumetric expansion. (A
tendency of the volume to undergo irrecoverable expansion will correspondingly
be accompanied by an elastic compression.) The shape of the effective stress
path can be most easily found by requiring the elastic and plastic volumetric



3.4. Elastic-hardening plastic models 143

" initial
stress state

5 +

~initial

stress state

! ’

op dp

Figure 3.41: Elastic-hardening plastic Mohr-Coulomb model: stress response
envelopes for (a) n, =n = 0.8 and (b) n, = n = 1.3 (K = 1500 kPa, v = 0.3,
a=0.01, M =12, n, =1.5, p; = 100 kPa)

strain increments to be equal and opposite at all stages which from (3.110) and
(3.121) implies

5p/ a
=+ T [~ (M~ ) nsp + (M — 1) 6q] =0 (3.123)

K P (77p —n)

(writing n for n, since we are assuming that the soil is yielding throughout).
Noting that from the definition of stress ratio n

dq = p'dn + nép’ (3.124)

equation (3.123) can be rewritten

/

M _ /
o' amp ( 777)1; m_y (3.125)
K P (np—n)

and integrated to give

pi—p _ (M=) =) (=
K" =) (np—m) : (np—mﬂ (3.126)

where p} and 7, are the initial values of mean effective stress and stress ratio.
For a soil which is initially isotropically compressed with 7; = 0 this can be

written , , (M/ ) )
P —p; p) — n
= — + In (1 — ) 3.127

aKny, (mp/m) — 1 Mp ( )

and this is plotted in Fig 3.42 for different values of M and n,. Asn — 7,
the change in mean effective stress tends to infinity but the sign of the change
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Figure 3.42: Elastic-hardening plastic Mohr-Coulomb model: undrained effec-
tive stress paths (K = 2000 kPa, a = 0.02, p; = 200 kPa)

in mean effective stress (and hence broadly the sign of the pore pressure that
develops) depends on the sign of the difference between M and n,. If M > 1,
then the mean stress falls steadily (and pore pressure is expected to build up). If
M < n, then the mean stress first decreases (pore pressure build up) and then
increases (pore pressure decrease). The model suggests that this increase in
mean stress continues indefinitely but on the one hand the model is defective in
suggesting that shearing accompanied by dilation can continue to large strains
and on the other hand an undrained test would reach a physical conclusion when
the pore pressure reaches a negative value of about -100 kPa and cavitation of
the pore water occurs. (There is similarly a physical limit for low values of
7Mp in that an effective stress of zero is reached as the pore pressure continues
to increase.) These limitations simply indicate some of the deficiencies of this
simple model which would need to be rectified if it were to be used for analyses
in which accurate representation of such response were reckoned to be essential.

Extended Mohr-Coulomb model: worked example

A sample of Mohr-Coulomb soil with hyperbolic hardening rule and with prop-
erties:
¢p =40°, a=0.01, G=3MPa

has not been presheared. As a result the initial yield stress ratio 7, = 0.
It is subjected to an initial isotropic stress state ¢; = 0, p; = 100 kPa and
then tested in triaxial compression with the mean effective stress maintained
constant: dp’ = 0.

1. Calculate the shear strain required to bring the soil to a stress ratio 50%
of the peak value.

2. Calculate the secant shear stiffness at this stress ratio (q/3¢,).
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3. Calculate the tangent shear stiffness at this stress ratio (dq/3d¢,).

4. Compare these stiffnesses with the initial tangent stiffness of the soil and
with the unloading elastic stiffness G.

The given angle of friction must be converted to an equivalent peak stress
ratio: 65in 6

sin ¢,
=——"—=1.636
o 3 —sing¢,

1. From the hyperbolic hardening relationship, for n, = n,/2, the plastic

shear strain is given by:

1 €y
5= ara & =a=1%
a

With p’ = p}, ¢ = n,p}/2 and elastic strain is:
e_ 4 _ WP}
= 4 _TePi _gq
“T3G T 6G %

2. The secant stiffness is:

/
Gao = L = —Pi 1498 kPa
S 6 (at )

3. The plastic tangent stiffness can be deduced from the differentiation of
the hyperbolic hardening rule with n, = n,/2:

2
on _(p—m)” _mp 09 _ Py

6ch T am,  4a 3de  12a

The elastic tangent stiffness is G. The total combined stiffness is therefore:

5 5 /
Giso = wrrpreor = 4 - P _ 937 pa
3O +0c)  3(dmey ) (1204 2)

4. The initial tangent stiffness can be calculated in exactly the same way.
The plastic stiffness is:
2
o _ (p—m)” _ 5q _ pitip

deb T am, a 30¢h  3a

and the combined stiffness:

/
Gy = paq _— 04 = WP _ 1935 kPa
3 (ef +0¢eg) 3 (% + 3%) (3a + %)

The collected values are:
initial tangent (and secant) stiffness Gy 1935 kPa

secant stiffness at 50% peak stress ratio Gss0 1428 kPa
tangent stiffness at 50% peak stress ratio Gy 937 kPa
elastic unloading stiffness G 3000 kPa
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Figure 3.43: Conventional drained triaxial compression tests on Hostun sand:
loose (initial void ratio = 1.0), dense (initial void ratio = 0.69), confining stress
o). = 200 kPa (data from Benahmed, 2001)

Note that, even at the start of the test, the occurrence of plastic strains leads
to a significant decrease in stiffness from the elastic value. This elastic value
is only encountered for stress changes which head back below the current yield
locus on unloading.

Note also that, in the hyperbolic hardening rule, 1, is the peak stress ratio
(which can only be attained at infinite strain) and «a is the shear strain required
to reach a stress ratio 50% of the peak. This hardening rule is evidently most
useful where the soil is not expected to be loaded close to failure since real sands
are expected to soften post peak towards a critical state.

Mohr-Coulomb model with post-peak softening

The Mohr-Coulomb model that has been described is able to reproduce some
nonlinearity of initial response but is unable to describe the strain softening that
is a familiar feature of the behaviour of dense sands (Fig 3.43). An adaptation
of this model can be devised introducing a trilinear ‘hardening’ rule linking 7,
and eb.

For low strains, up to the peak strength 7,, the soil is assumed to behave
elastically and the size of the frictional yield locus is kept fixed:

n<np=ny =1y =0 (3.128)
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Figure 3.44: Elastic-plastic Mohr-Coulomb model with post-peak plastic soft-
ening

Once the peak strength is reached the soil starts to soften and the size of the
yield locus reduces (Fig 3.44). A linear relation between the yield stress ratio
and the distortional shear strain is assumed:

_-n eP
Z"_gjzf for 0<el<b (3.129)
g

where b is a soil constant which describes the distortional strain required to
bring the soil to the critical state stress ratio M. For plastic distortional strains
beyond this value the soil behaves as a perfectly plastic material, and plastic
distortional strains continue to occur without change in volume:

ny =M for e >b (3.130)

It is assumed that the flow rule is identical to that introduced in the previous
section ((3.114) or (3.116)) so that, as the soil is sheared from the peak strength
to a critical state, volumetric expansion occurs at a rate which decreases as the
critical state is approached. Typical response described using this version of the
Mohr-Coulomb model is shown in Fig 3.45.

Since all that has changed by comparison with the previous hyperbolic hard-
ening model is the ‘hardening’ rule, the complete elastic-plastic stiffness rela-
tionship changes only through the form of the term H in (3.108).

__ofdnog _ __ \(_m—M
— L (<25 ) (3.131)

_KQUy(M - ny) 3GK (M — 77y)
) —3GKn, 9G? ( ey
b

3G~ Ky (M —ny) —pp 30076 | \ e, ) (3.132)
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Figure 3.45: Elastic-hardening plastic Mohr-Coulomb model with post-peak
softening: (a) stress:strain and (b) volumetric strain response for conventional
drained triaxial compression test (do, = 0, p, = 100 kPa) (K = 3000 kPa,
G = 1500 kPa, n, = 1.2, M = 1, b= 0.2)
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Figure 3.46: Elastic-hardening plastic Mohr-Coulomb model with post-peak
softening: stress response envelopes for (a) pre-peak elastic response and (b)
post-peak softening response
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Figure 3.47: Elastic-hardening plastic Mohr-Coulomb model with post-peak
softening: undrained effective stress path (K = 3000 kPa, n, = 1.2, M = 1,
b=0.2, p, =100 kPa)

The stress response envelopes for a rosette of strain increments applied be-
fore and after the peak strength are shown in Fig 3.46. Before the peak stress
ratio is reached the response is purely elastic for all strain increments and the
stress response envelope is a single complete ellipse (Fig 3.46a). In the softening
regime (Fig 3.46b) it is evident that the same stress increment can be generated
by either purely elastic unloading or by elastic plus plastic softening response
and it is not just that there is a region of the stress plane which is inaccessible
but there is even an ambiguity about the ‘unloading’ response. Such behaviour
is a reality for geotechnical materials and leads to bifurcation of response and lo-
calisation of deformations in shear zones or failure surfaces. It becomes difficult
to maintain uniformity of deformation of samples of such materials as they are
sheared. This is a further indication of the advantage of working from strain in-
crements to stress increments—the response is unambiguous—rather than from
stress increments to strain increments—there are two choices of response, elastic
unloading or plastic softening.

The undrained effective stress path followed after the peak in this model
is found in the same way as for the previous hardening model by setting the
plastic and elastic volumetric strain increments equal and opposite:

_n n _ oM
p/—P§ (1 np>(1+77p 217,,)

= 3.133)
b, 2 (1 - M) (
p
with the limit, when the soil has softened to the critical state:
P-pi 1 M
by P _1 (1 - ) (3.134)
bKn, 2 Mp

The path is plotted in Fig 3.47. Because the soil behaves elastically until
the peak stress ratio is reached the mean effective stress does not change during
this initial elastic phase of the test.
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Figure 3.48: Definition of state variable 1

Mohr Coulomb model with strength dependent on state variable

This softening model is still defective in not allowing nonlinear stress:strain re-
sponse before the peak stress ratio is reached; the previous model was defective
in not allowing softening. Evidently the two models could be combined, intro-
ducing a switch to softening when some designated peak stress ratio had been
attained. This is rather the strategy adopted by Nova and Wood (1979). How-
ever, failure switches seem somewhat unsatisfactory from a physical point of
view. A slightly more subtle way of achieving a similar result is described here.

We have described two models which can be seen as simple additions of
hardening plasticity to the perfectly plastic Mohr-Coulomb model. These mod-
els can be seen as examples of some of the possibilities which the framework
of hardening plasticity opens up. We can develop models which are able to
reproduce those features of mechanical response that we feel are important in
a particular application. This is not as arbitrary a process as it may seem: the
features that we are including are certainly inspired by experimental observa-
tion. Each of the models so far described has its merits: the second model
certainly introduces features of strain softening and reducing dilatancy which
will be relevant at large deformations of sands but does so by incorporating
a switch to turn off the softening process once the critical state stress ratio
has been reached. A way in which both hardening and softening can be rather
simply—and elegantly—combined in a single model, which is again clearly a de-
velopment from the Mohr-Coulomb family, has been described by Muir Wood,
Belkheir and Liu (1994) and by Gajo and Muir Wood (1999). A slightly simpler
version of this model will be briefly presented here.

Strength of soils is linked with density (§2.7). If the density of a soil changes
as it is sheared then we expect the strength to change as well. Let us make the
current peak strength 7, in the hardening model a variable which is a function
of the current density—or more appropriately a function of state variable
combining information of density (through specific volume v) and mean stress
(Fig 3.48) (§2.6.1, §2.7). Formally we should write

My =M —kip=M—k(v—T+ Anp) (3.135)

where k is a soil constant linking state variable and strength. It is assumed that
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the critical state line can locally be described as a straight line of slope A in
a semilogarithmic compression plane (Fig 3.48); and v and p’ are the current
values of specific volume and mean effective stress which will in general vary
during a test from their initial values v, and p}. This can be written in terms
of the initial specific volume (related to the initial density of the sand) and the
volumetric strain €, which has occurred from the start of the test which can be
divided into elastic and plastic components, €; and €l :

np, = M—klv,(1—¢€,)—T4Anp']

/
- M-k {(vo ~T+Anp)) + <)\ mZ M;) - voeg} (3.136)

Do
We will neglect the second term in parentheses and thus assume for simplicity
that the elastic volumetric strain roughly balances the effect of the change in
mean effective stress. (But the model developed by Gajo and Muir Wood (1999)

does not make this simplification.) Then

any Ony Onp My fo
0 Vo
771/;( 9cp );( Onp Ocy );( 2 > (3.137)
OeP "y My Up—1y)”~

Oely el anp

and the hardening expression H (3.108) becomes

af oxTag 1y (np — )’
L2 2= M —n,) 2 ~r T 1
Ox Oer Jo al ) Mp oo anp (8-138)

H =

The yield function, flow rule and hardening rule are chosen as before ((3.112),
(3.114) and (3.117)) and consequently the other elements of the elastic-plastic
stiffness matrix (3.120) remain unchanged.

This model now homes in on a critical state condition, heading always to-
wards the current peak strength following the hyperbolic hardening law but this
peak strength is itself changing as the soil compresses or dilates with shearing.
Thus, even though the hardening law appears to be a simple hyperbolic mono-
tonically increasing function of strain, nevertheless the stress:strain response
is able to introduce strain softening and the accompanying smooth transition
between compression and dilation. The peak strength is thus a moving target
which can only be attained at infinite distortional strain (it remains the asymp-
tote of the hardening law) by which time it is identical with the critical state
strength.

Typical stress-strain and volumetric strain responses calculated using this
model are shown in Fig 3.49. The behaviour depends strongly on the initial
value of state variable: a positive initial state variable indicates an initially
loose material which tends to compress as it is sheared and shows little in the
way of a peak strength; a negative initial state variable indicates an initially
dense material which dilates as soon as the critical state stress ratio is exceeded
on the initial loading and then shows a peak with subsequent strain softening.
Evidently the stress response envelopes that are calculated (Fig 3.50) depend
on whether the current state is pre-peak—in which case the response is similar
to that shown for the hardening model (Fig 3.41)—or post-peak—in which case
the response is similar to that shown for the softening model (Fig 3.46).
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Figure 3.49: Response of elastic-hardening plastic Mohr-Coulomb model with
current strength dependent on state variable in conventional drained triaxial
compression tests (0o, = 0): (a) stress:strain response (dotted curves indicate
variation in current peak strength; solid curves indicate mobilised strength)
and (b) volumetric strain response dependent on initial density (initial value of
state variable in range —0.5 < ¢; < 0.5, p; = 100 kPa) (K = 1500 kPa, v = 0.3,
M=1.2,a=0.01, k =2)
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Figure 3.50: Elastic-hardening plastic Mohr-Coulomb model with strength de-
pendent on state variable: stress response envelopes (a) pre-peak (hardening
€ = 0.04); (b) post-peak (softening ¢, = 0.2) (all constitutive parameters as in
Fig 3.49, ¢, = —0.5)

3.4.2 Cam clay

Historically it is probably reasonable to describe Cam clay as the first hardening
plastic model that has become generally adopted for soils. It has formed a basis
for much subsequent development of soil models. Originally developed in the
early 1960s, models of the Cam clay form have been widely and successfully
used for analysis of problems involving the loading of soft clays. It has been less
successful in describing the behaviour of sands for which models which make
use of distortional hardening and nonassociated flow (§3.4.1) have generally
been reckoned to be more satisfactory. A detailed description of the Cam clay
model and of the behaviour of soils—especially clays—seen against the patterns
of behaviour that the Cam clay model reveals is given by Muir Wood (1990);
here we will present the model within the general framework of elastic-hardening
plastic models that has been developed in section §3.4.

We can quickly identify a defect of the various extended Mohr-Coulomb
models. For clays, an important aspect of the observed mechanical behaviour
is the large change in volume that occurs during compression (Fig 3.51) when
the stresses acting on a sample of soil are all increased in proportion—isotropic
compression and one-dimensional compression are obvious examples. Clearly if
the model is to be used to reproduce the loading of soft clays then this volumetric
response must be included. However, applying such proportional stress paths
to any of the Mohr-Coulomb models, as presently described, will produce solely
elastic response as shown in Fig 3.51c. The irrecoverability of the volumetric
response suggests that a different mechanism of plastic deformation will be
required. This could be achieved by adding extra yield mechanisms to the Mohr-
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Figure 3.51: (a) Large irrecoverable volume changes in oedometer test on clay
subjected to (b) typical compression stress path giving rise to (c) elastic volume
changes in Mohr-Coulomb model

Coulomb models; the Cam clay model that will be described here provides an
elegant alternative route.

As before, for simplicity we will develop the model in terms of the triaxial
strain increment and stress variables and work through the several ingredients
of the model in turn.

1. Elastic properties: We will assume that the elastic behaviour of the soil
is isotropic and defined by two elastic parameters, bulk modulus K and shear
modulus G.

Results of oedometer tests are typically presented in semilogarithmic plots
because it is found that the relationships between stress and volume change
then become somewhat more linear—both during loading and during unloading.
Looking at the typical loading and unloading response in an oedometer (Fig
3.51a) we can easily see the division of the volume changes into elastic and
plastic parts just as for the uniaxial loading of the copper wire in Fig 3.35. It is
logical then to use the average slope x of an unload-reload line to characterise
the elastic volumetric response (Fig 3.52) and to assume that x is a soil constant:

v=uv, — klnp (3.139)

where v,, is a reference value of specific volume on a particular unloading-
reloading relationship. We can convert this to an incremental relationship
v Kkop

e __ _YY _
(56p— =

3.140
v v p ( )

which implies that the bulk modulus K is not constant but is dependent on
stress level (and on current packing)

/ /
k= v (3.141)

€
5ep K

In this form the value of « is directly related to swelling index Cj:

K= Cs
" In10

(3.142)
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Figure 3.52: Cam clay: linear normal compression and unloading-reloading lines
in semilogarithmic compression plane

An alternative possibility is to propose a linear link between volumetric strain
(rather than change in volume) and log of mean stress so that then the bulk
modulus depends only on p’ (for example, (3.58)) which leads to slightly more
elegant expressions. However, the important result is that the elastic stiffness
is nonlinear and depends on the current stress level.

Having chosen one elastic property we require one more (the elastic prop-
erties of our material may be nonlinear but the material is still assumed to be
isotropic). We may often find it convenient to choose a constant shear modulus
G because we will see this directly from the initial behaviour in any compression
test. 5

e q
deg = 3G (3.143)
An alternative will be to choose a constant value of Poisson’s ratio v, thus
forcing a constant ratio of shear modulus and bulk modulus.

3(1—-2v)

=KSary

(3.144)

Clearly if GG is constant then the variation of bulk modulus K with stress will
lead to a varying v (and as the effective mean stress and hence the bulk modulus
fall towards zero the value of Poisson’s ratio will tend towards —1). However,
if Poisson’s ratio v is assumed to be constant then G changes together with
bulk modulus and we have seen that there are thermodynamic problems if we
make both G and K functions of p’—it becomes possible to generate or dissipate
energy on supposedly elastic cycles of stress change (Zytynski et al., 1978). It
is not possible to define an elastic potential which implies a constant Poisson’s
ratio if the bulk modulus is a function of mean stress alone (§3.2.5).
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Figure 3.53: Elliptical yield locus for Cam clay model

With certain reservations then, we have the elastic stiffness and compliance

relationships:
'\ _ [ w/k O dep
(5 ) =07 s ) (5 3119

()% )() o

2. Yield criterion: In the triaxial stress plane (p’, q) it is assumed that the
yield locus has an elliptical shape passing through the origin of the stress plane
(Fig 3.53). This introduces two variables: the aspect ratio of the ellipse M which
controls the shape of the ellipse, the ratio of the vertical (¢) axis to the horizontal
(p') axis; and the size of the ellipse p/, which is the hardening parameter x for
the Cam clay model. The equation of the ellipse can be presented in various
different ways. To fit in with the general presentation of hardening plastic
models we can write:

bS]

2
q
flowps) = 35 =7 (0, = p') (3.147)
so that, as usual, f < 0 indicates elastic behaviour, f = 0 indicates that yielding
is occurring and f > 0 is not permitted.
However, the equation of the ellipse can also be written

p/ M2

r_ M7 14
A M?2 + n? (3 8)
or
q2 / / /
2z =P (p, —p') (3.149)

Different forms of the equation are useful in different circumstances.
For stress changes (dp’, dq) causing yield, the change in size of the yield locus
can be written:

/
op, = (2p" — p},) o Ty (3.150)
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or

M? —n? 2n
5p/0 = (Wép/ + W5q> (3151)
or
op, _ op' 2

o + M2+7725n (3.152)
and from these expressions the change in size of the yield locus required to
accommodate any change in effective stress which causes yielding can be calcu-
lated.

It is often convenient to work in terms of mean stress p’ and stress ratio
n and expressions (3.148) and (3.152) are then obviously appropriate. As the
size of the yield locus changes the shape remains the same and the locus grows
from the origin. Along any line at constant stress ratio n = ¢/p’ the angle of
intersection with any yield locus is always the same.

3. Flow rule: Tt is assumed that Cam clay obeys the hypothesis of associated
flow (normality) so that the plastic strain increment vector is assumed to be
normal to the yield surface at the current stress state (Fig 3.53). The plastic
potential function then has the same form as the yield criterion:

2
9(@)=I(0.p)) = 15 0 (0, ~p) =0 (3.153)

The plastic strain increments are given by

deP 99 20" — p!
(5)(F) (7)o
q dq M?2

Alternatively, using form (3.148) of the equation of the elliptical yield lo-
cus, the ratio of plastic volumetric strain to plastic distortional strain, which
characterises the plastic deformation mechanism, can be written:

JeP M2 2
o (3.155)
0€q 2n

The mechanism of plastic deformation depends only on the stress ratio at
which yielding is occurring and changes continuously as the stress ratio changes.
Several particular cases are of interest:

e for n = 0, deb/deh = oo which implies compression without distortion
and this is appropriate for isotropic consolidation without application of
distortional stresses;

e for n = M, dep/deh = 0 which implies distortion without compression—
this is the critical state condition;

e yielding with low values of stress ratio n < M gives deb/del > 0 which
implies compression plus distortion; and

e yielding with high values of stress ratio n > M gives deb/deb < 0 which
implies expansion plus distortion.
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The implications of these different cases for the overall response of the model
will be explored subsequently.

4. Hardening rule: The hardening rule describes the dependence of the size
of the yield locus p] on the plastic strain. Cam clay is a volumetric hardening
model in which it is assumed that the size of the yield locus depends only on
the plastic volumetric strain through an expression

( gifgf ) = ( e/ =) ) (3.156)

This hardening rule introduces one additional soil parameter A. During isotropic
normal compression we have change in mean stress p’ with distortional stress ¢
kept constant at zero. There will be elastic volumetric strains given by (3.140)
and, because the mean stress is always at the tip of the yield surface p’ = p/,
there will be plastic volumetric strains given by a rearrangement of (3.156):

)\—/@51);_)\7/157])’

deb = T o (3.157)
The total volumetric strain is then
. kép.  (A—k)dp" AP
56p = (Sﬁp + 665 = ’Up/ + ’Up, = ;? (3158)
Noting that the definition of the volumetric strain is
]
Sep = %’ (3.159)

expression (3.158) can be integrated to give the form of the normal compression
relationship linking specific volume v and mean effective stress p':

v=N-—Alnp (3.160)

where N is a reference value of specific volume for unit value of mean effective
stress. This is a linear normal compression relationship with slope A in the
semi-logarithmic plot (Fig 3.52). It may be noted that

A= Ce

In10

and the plastic compressibility A can be directly related to the compression
index C..

Now that all the ingredients of the model are in place the overall plastic
compliance relationship can be deduced:

P — M?2 —n? 2 /
( geg ) - A - R ( fsp ) (3.162)
€q vp' (M? +1?) 2n MZ—? q

and the full stiffness matrix linking the stress increments with the total strain in-
crements can be obtained by substitution in (3.108) and (3.109). The hardening
quantity H is given by

df Op, dg ’ vp; / /

vl Dk oy (=P) | 5= ) (20" = 1) (3.163)

(3.161)
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and the full elastic-plastic stiffness relationship is given by

'\
oq )
K2 (3 —pp? K r)

M2
6GKq(2p'—p, 36G202
K0 - A Sep
O 3G - 2 12Gq? up’ /(2 _ ,) 56 (3164)
(K (pr —py)? + 282 1 wmlrom] | \ deq

where K = vp//k.

Whether the compliance form (3.162) or the stiffness form (3.164) is used
it is evident that the controlling matrix is symmetric: this results from the
assumption of associated flow in which the vectors of plastic strain increment
are assumed to be normal to the yield locus at the current effective stress causing
yield.

Study of (3.162) shows that the magnitude of the plastic strains is controlled
largely by A — k. It will be the difference between these two soil parameters
(rather than the absolute value of either of them) that will have to be varied in
order to match available experimental data. Some qualitative statements about
the nature of the stress:strain response can be made.

What happens as 1 — M ? The top line of the compliance matrix (3.164)
shows that as the stress ratio approaches the value M so the plastic volumetric
strains become smaller and smaller. Since the plastic hardening depends only on
the plastic volumetric strain it can be deduced correspondingly that the change
in p/ in any stress increment has to tend to zero as the stress ratio approaches
M. The bottom line of the compliance matrix shows that the shear compliance
tends to infinity, or in other words the shear stiffness tends to zero. In fact, an
asymptotic perfectly plastic condition is predicted in which distortional strains
continue but with no further changes in size of yield locus, stresses or volumetric
strains. Such an ultimate state has been termed a critical state (§2.6.1).

oeP
n—M: b —0; dp,—0; 5—q—>oo (3.165)

q
The value of the soil parameter M can therefore be related to the ultimate
value of the angle of shearing resistance for the soil ¢, in triaxial compression:

6 sin ¢,

M=—
3 — sin ¢,

(3.166)

The Cam clay model responds stably to yielding with stress ratio n < M
and under such conditions it does not matter whether the problem is driven by
stress changes or by strain changes: it is often conceptually easier to think of
the response to stress changes because the model has been described in terms
of a yield locus in a stress plane. In a typical compression test the deviator
stress rises steadily towards the ultimate value (low overconsolidation ratio in



increasing overconsolidation ratio

il
_ M=12
1t
fiormally consolidated
a.
00 0:05 0.1
&q
0.05r
normally consolidated
€p
0
b.
-0.05 increasing
overconsolidation ratio

Figure 3.54: Cam clay: (a) stress:strain and (b) volumetric strain response in
drained triaxial compression tests with constant mean stress (ép’ = 0) (k = 0.05,
G = 1500 kPa, A = 0.25, M = 1.2) (overconsolidation ratios p/ /p} in range 1-5,
pl, = 100 kPa)
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Figure 3.55: Cam clay: stress response envelopes (a) n < M, p./p., = 0.75;
(b) n > M, pi/p, =025 (k =01, v =03, A = 025, M = 1.2) (v; = 2.5,
pl, = 200 kPa)

Fig 3.54). A typical stress response envelope for this regime is shown in Fig
3.55a. The two elliptical segments are now tangential to each other for stress
increments which imply neutral loading with the stress increment tangential to
the yield locus. This is a consequence of the assumption of associated flow.

However, if the soil is yielding with stress ratio n > M then study of (3.162)
shows that the distortional compliance is negative and continuing shearing with
del > 0 implies deb) < 0, opl, < 0 and g < 0 which implies strain softening (high
overconsolidation ratio in Fig 3.54). The stress ratio n = M is still an ultimate
asymptote but the soil now approaches this stress ratio from above rather than
from below. Consideration of the equation for the yield locus (3.148) shows
that yielding with stress ratios greater than M is only possible for values of
9’ /p) less than 1/2—overconsolidation ratios greater than 2. Such behaviour
is characteristic of dense or heavily preloaded materials which are so tightly
packed that they have to expand in order that the particles should be able to
move relative to each other and allow the material to distort (§2.6).

This is a real phenomenon, but as noted in §3.4.1, it can lead to numerical
problems because of the uncertainty: does a reduction in shear stress imply an
elastic unloading or a continuing plastic strain softening? The stress response
envelope (Fig 3.55b) illustrates this ambiguity—as for the Mohr-Coulomb mod-
els with strain softening (Figs 3.46b and 3.50b) the response envelope is folded
over on itself. All strain increments are possible and each strain increment
implies an unambiguous stress increment. However, certain stress increments—
those which attempt to escape from the current yield locus—are not possible
and the section of the stress plane lying outside the yield locus in the region for
which n > M is inaccessible (Fig 3.56). Stress changes which move inside the
current yield locus can be associated with either purely elastic or with elastic
plus plastic strains. In analysis of such situations the soil response has to be
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softening / hardening with n < M
withn > M

Figure 3.56: Cam clay: hardening of yield locus with n < M, softening of yield
locus with n > M

driven by strain increments—which will make it quite clear whether unloading
or plastic softening is implied—rather than stress increments precisely because
many stress increments will in fact be physically either impossible or ambiguous.
Numerically and physically such behaviour leads to the occurrence of localisa-
tion: as the material softens it becomes weaker and natural inhomogeneities
lead to strain concentrations and formation of ruptures or shear bands through
the material.

The Cam clay model has five material properties. There are two elastic
properties £ and G or v. The volumetric parameter « is linked with swelling
index Cs (3.142). There are two plastic properties M and A which can be
linked with angle of shearing resistance in triaxial compression ¢. (3.166) and
compression index C, (3.161) respectively.

The final soil parameter is a reference for volume in order that volumetric
strains can be calculated. We have defined the equation of the isotropic normal
compression line using a reference parameter N to indicate the specific volume
for unit mean stress (Fig 3.52). However, results of predictions made using Cam
clay are not usually very sensitive to plausible variations of N—so the reference
volume can just as well be taken from one-dimensional compression data.

The isotropic normal compression line defines the values of specific volume
when the stress state is always at the tip of the yield locus, p’ = p, and the soil
is always yielding. More generally, for stress states inside the yield locus there
is some implied elastic expansion from the normal compression line (Fig 3.52)
and the specific volume is given by

/
v=N—Alnp, +xln (p,> (3.167)
p
or, if the soil is yielding with stress ratio n
M2 2
v=N-—Alnp, +kln (]\/;;n> (3.168)

The value of N depends on the units used for measurement of stress. Users
of Cam clay need to be vigilant. Here we will always take the value of N to
correspond to a mean stress p’ = 1 kPa.
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Cam clay: effective stress path in undrained test

The effective stress path followed in an undrained test can be calculated in
exactly the same way as for the Mohr-Coulomb models by requiring the elastic
and plastic volumetric strain increments to be always equal and opposite. From
(3.140) and (3.157) and the definitions of p!, ((3.148) and (3.152)) and of stress

ratio n = ¢/p’:

/ — K 2 2 / / _
Kop' + e [(M?+n?) 6p" + 2np'dm] =0 (3.169)
Integrating this expression, from an initial yielding stress state p, and 7;, and

substituting

A\ —
A= r (3.170)
the effective stress path is found to be
v} M? + n? A
=3 (3.171)

ending at a failure state with mean effective stress p} and stress ratio equal to
M: A

4 2M?
pTZ = ( YoR) 2) (3.172)
Py M= +n;

For elastic stress changes the constant volume condition requires, for an isotropic
elastic material, that there should be no change in mean effective stress. Effec-
tive stress paths for initially normally consolidated, lightly overconsolidated and
heavily overconsolidated Cam clay are shown in Fig 3.57. For the isotropically
normally consolidated soil (n; = 0) the ratio of mean effective stresses at the
start of the test (p;) and at failure (p is 22, The undrained strength of the soil
¢y 1s given by: )
ar Py _ Mp;

_2_M2_22A (3.173)
and hence for isotropically normally consolidated soil the ratio of undrained
strength to initial effective stress is a function only of soil constants M and A:

Cu

Cy M

Cam clay: worked example

For the purposes of hand calculation using the Cam clay model it is usually
easiest to consider problems as stress driven processes—though obviously this
will break down unless special precautions are taken if yielding is occurring
with n > M. The relevant equations are then the elastic and plastic compliance
relationships: (3.146) and (3.162).

To use any elastic-plastic model we need to know about:
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Figure 3.57: Cam clay: undrained triaxial compression tests conducted with
constant total mean stress (dp = 0): (a) effective stress paths; (b) stress:strain
response; (c¢) development of pore pressure (k = 0.05, G = 1500 kPa, A\ = 0.25,
M = 1.2) (overconsolidation ratios p}/p} in range 1-5, p/, = 100 kPa)
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the past—because we must know how big is the current yield surface
P

the present—because we need to know what are the current stresses
(which must lie inside or on the yield surface) pl, ¢;; and

the future—because we are trying to calculate the response of the
model to some imposed perturbation.

A sample of Cam clay with properties M = 1.2, A =0.3, k = 0.06, N = 3.5
(at p" = 1 kPa), G = 2000 kPa has been subjected to past stresses leaving it
with a yield locus of size given by p/, = 100 kPa. The sample is in pore pressure
equilibrium under initial stresses ¢; = 0, p; = 75 kPa and is then subjected to a
conventional drained triaxial compression test.

1. What stress changes can be imposed before plastic strains start to occur?

2. What are the elastic strains at this stage?

3. What is the ratio of plastic strain increments (the mechanism of plastic
deformation) immediately after yielding occurs?

4. What are the magnitudes of the strains for a further change of stresses
0q = 3 kPa, ép’ = 1 kPa?

1. The past is controlled by the size of the yield locus which is indicated
by the initial value of p/. The present is indicated by the given initial effective
stresses p; and ¢;. The future is indicated by the specified test: in this case we
are told that it is a conventional drained triaxial compression test. We need to
use all three of these pieces of information in order to answer the first question.

From the specified drained stress path, the yield point is at:

p=pit+a; ¢=3z

but also lies on the initial yield locus (3.149) with size p/, = 100 kPa.

This equation can be solved either directly or by iteration to give a value of
z—moting that only one of the two roots is plausible (the other root corresponds
to a drained triaxial extension test at constant radial effective stress in which
g < 0). This gives x = 13 kPa and hence p; = 88 kPa; g, = 39 kPa; and the
stress ratio at yield is n, = 0.443.

2. The initial specific volume of the clay is given by (3.167):

/
i

/
vi=N—Alnp, +rln (pO) —2.136

The elastic strains can be calculated in a single increment using (3.146) and
perhaps taking the average value of the initial and yield values of mean effective

stress:
. koD 0.06 x 13
oel =

PT o T 2136 x L (75 + 88)
0q 39
bt = — = —— =0.0065 (0.65
‘= 3G T 6000 (0.65%)
From the definition of the volumetric and distortional strain increments, we
can then deduce the corresponding axial and radial strain increments, e =

=0.0045 (0.45%)
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0.8%; de¢ = —0.175%. The new value of specific volume is 2.126, calculated
from the definition of volumetric strain.
3. The ratio of plastic strain increments after yield is given by the flow rule
(3.155):
deb M2 —n?  1.22 —0.443?
Seb  2p  2x0.443

and the volumetric strains have become more dominant. Note that the ratio of
total strain increments depends on the direction of the stress increment because
this will affect the elastic strains that are generated.

4. Once the actual details of a further stress change have been specified the
strain increments can be calculated. The stress increments are: dq = 3 kPa,
0p’ = 1 kPa. The elastic strain increments are calculated as before:
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The plastic strain increments are calculated using the plastic compliance
matrix (3.162) using appropriate values of soil parameters, stresses and stress
ratio:

A—K
bl = —_—— __[(M*—n?)op + 20
G = o M) '+ 2ndg]
= 024 [(1.2% —0.443%) x 1 +2 x 0.443 x 3]
2.126 x 88 x (1.22 +0.4432) 'V ' '
= 0.0031
0.0031
Sl = = 0.0022
= Ta00 00

The total strain increments are then: de, = 0.34%; de; = 0.27%. These can
be converted to axial and radial increments: de, = 0.38%; de,, = —0.02%. The
resulting deformation is now very nearly one dimensional with almost no radial
strain.

3.5 Modelling non-monotonic loading

In section §2.5.3 we described some of the kinematic aspects of stiffness of soils
and we showed a schematic variation of stiffness with non-monotonic loading
in Fig 3.17. How far have we progressed towards being able to reproduce this
character of response?

Although our elastic-hardening plastic models are an evident improvement
on the elastic-perfectly plastic models in that they provide for a steady decrease
of tangent stiffness after yield occurs, rather than an immediate drop to zero (Fig
3.18), there is still the dramatic fall in stiffness as the stress path crosses the yield
surface (Fig 3.58a) whereas real soils tend to show much more gradual stiffness
changes. There is also a significant difference on unloading (Fig 3.58b). The
elastic-plastic models described here predict that the yield surface will expand
as the stress state pushes it outwards—and the more it expands the larger the
elastic region that remains. In fact, our kinematic observation suggests that,
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Figure 3.58: Comparison of typical capability of elastic-hardening plastic model
with actual soil behaviour (a) variation of tangent stiffness with monotonic
shearing; (b) unload-reload response

though the elastic region may indeed change in size as the stresses push it
around, it is the change in position that is possibly more significant. Unloading
paths develop plasticity in a way that the Cam clay model cannot describe.

Such response can be described using a kinematic hardening extension of
the hardening plasticity models. Our models are essentially isotropic hardening
models: the Cam clay yield locus retains its shape and orientation, and always
passes through the origin of stress space whatever the stress path that interacts
with it®; the yield locus of the Mohr-Coulomb model becomes a progressively
more open cone.

A kinematic hardening extension of a Cam clay-like model is illustrated in
Fig 3.59 (Al-Tabbaa and Muir Wood, 1989). The elastic region is now confined
to an elastic ‘bubble’ which floats around in stress space with the current stress
state. Plastic strains occur whenever the ‘bubble’ moves but the plastic stiffness
is controlled by the separation, b, of the ‘bubble’ and some outer ‘bounding’ sur-
face and falls as the ‘bubble’ approaches this ‘bounding’ surface. A translation
rule is introduced to describe the way in which the ‘bubble’ decides how much
to change in size and how much to change in position as the stress engages with
it. With appropriate formulation this model can be made to behave identically
to Cam clay when the soil is being loaded with the ‘bubble’ in contact with the
bounding surface (which then looks rather like the Cam clay yield surface—but
is not actually a yield surface because it does not control the onset of develop-
ment of plastic strains) (Fig 3.59). There is thus a hierarchical development of
the model, adding desirable features (smooth variation of stiffness, plasticity on
stress reversal) to an already somewhat familiar model, Cam clay.

6Strictly, because the centre of the Cam clay yield locus moves as the soil hardens (or
softens), Cam clay already contains a kinematic hardening element. However, the constraints
imposed by the insistence that the yield locus should always pass through the origin of stress
space and should have its centre on the mean effective stress p’ axis make this model unable
to reproduce the full kinematic character of response seen in experiments.
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Figure 3.59: Kinematic hardening extension of Cam clay: ‘bubble’ bounds elas-
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Figure 3.60: Effect of cementation or bonding as feature added to elastic-
hardening plastic model

3.6 Modelling cementation and structure

We can add further effects in a similarly hierarchical way. Weak rocks have
particles which are bonded together. However, we expect that with mechanical
(or chemical) action these bonds can be damaged and the rock turned eventually
into a soil. Natural soils often contain a certain amount of structure which may
also manifest itself as a bonding between particles which can be destroyed with
mechanical or chemical damage. Quick clay slides occur because a change of
pore water chemistry upsets the particle bonds leaving a metastable structure
which can easily be destroyed. When these quick clays collapse they flow like
liquid—their structure has been entirely lost.

We can postulate that the bonded material might be described by an ex-
tended Cam clay type of model in which the yield surface has an increased size
as a result of the bonding (given a rather general shape in Fig 3.60). With
plastic straining (or chemical weathering) the yield surface gradually shrinks to
the Cam clay-like surface, appropriate to the remoulded, structureless material.
Such an approach is adopted by Nova et al. (2003) as an extension of a Cam
clay-like model to describe effects of chemical weathering of rocks. A similar
approach is adopted as an extension of the ‘bubble’ kinematic extension of Cam
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clay by Rouainia and Muir Wood (1999) and Callisto, et al. (2002) to simulate
the behaviour of natural clays damaged only by plastic straining.

3.7 Modelling rate effects

If we perform a very slow triaxial test on a sample of clay with the drainage
connections open then we can be reasonably confident that no pore pressure
will build up in the soil and we will observe a fully drained response of the
soil. If we repeat this test extremely fast then, even if the drainage connections
are open, there will be no possibility for pore water to move into or out of
the sample and we will observe a more or less fully undrained response of the
soil. Although we seem to have discovered a rate effect—in that the response
that we see depends on the rate at which we apply the load—this is in fact a
system effect and not a material effect. If we were to test an infinitesimally
small element of soil then the drainage path length would be essentially zero
and drainage, even in the very rapid test, would occur instantly. We can explain
this apparent rate effect entirely in terms of restricted pore water flow—which
will obviously be more significant in an impermeable soil such as clay than in a
relatively permeable soil such as a sand. However, what constitutes ‘extremely’
fast can only be determined in relation to the permeability and dimensions of
the material system being tested.

There are other effects which can be ascribed to truly rate dependent ele-
ments of the constitutive response of soils. Clays left at constant effective stress
creep and develop secondary consolidation strains. A helpful picture of the char-
acter of this response can be given using ‘isotaches’ (Fig 3.61) (Suklje, 1957).
For a one-dimensional configuration (such as the oedometer) these form a fam-
ily of curves (in general) linking strain and effective stress with each isotache
corresponding to a specific strain rate but with a somewhat logarithmic spac-
ing. At constant stress, strain develops at a decreasing rate as the clay moves
down across the family of isotaches, AB, and this creep can be assumed to have
occurred over geological time for samples presently in the ground. If the sample
is now placed in an oedometer and the total stress increased, the initial pore
pressure will dissipate allowing the effective stress to increase and, as it does
so, the strain rate to increase (BC). However, the strain rate will subsequently
decrease again as the creep strains dominate over the effects of the deformation
linked with the dissipation of residual pore pressures (CD). Description of an
isotache model and examples of its application to the estimation of creep under
an embankment on soft clay and long term secondary settlement of reclamation
on soft clay can be found in Nash (2001) and Nash and Ryde (2001).

If we perform a compression test at a constant rate of strain then we will track
down one of the isotaches (AB in Fig 3.62). If we suddenly increase or reduce
the strain rate we will jump rapidly across to the isotache corresponding to this
new rate (CDEF). The slope of the path followed in the stress:strain diagrams
of Figs 3.61 and 3.62 is directly related to the stiffness. We might deduce from
the changes in stiffness that are being seen that the clay is yielding—switching
from high stiffness elastic to low stiffness plastic response—but actually this
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Figure 3.61: Family of isotaches for one-dimensional compression of clay

stiffness change is just the result of the interaction of the history of the soil with
the viscoplastic isotache model.

If we collect data of stiffness change for a wider range of probing stress paths
applied to a series of identical samples in a triaxial apparatus (for example) then
we can discern a ‘yield’ locus for the clay with that particular initial history (Fig
3.63). Exploring this ‘yielding’ process with different strain rates will lead to a
family of ‘yield’ loci, each corresponding to a different strain rate (Fig 3.63)—
again we expect a somewhat logarithmic spacing. This implies a viscoplastic
underpinning model for the soil response: there is a rate dependence of the
irrecoverable deformation of the soil (the plasticity) that occurs when the stress
state tries to go beyond the boundary of some region of stiff elastic response
(the yield surface).

The effect of this viscoplastic interpretation of rate effects in clay on the
stress response envelopes that were used to illustrate the history dependence of
stiffness is probably something like that shown in Fig 3.64. With time, the small-
strain stress response envelopes drift away a bit from the current stress state.
Thus if creep equilibrium (the attainment of a tolerably low strain rate) is sought
before probing to determine the response envelope begins, rather similar initial,
very small strain, stiffness will be seen for all directions of stress probes. This
is supported by the careful experimental observations of Clayton and Heymann
(2001).

Sands have classically been regarded as completely free from viscous or rate
effects. However, with increasingly accurate laboratory measurements—and in-
strumentation that is stable over long time periods—it has become evident that
there are small but possibly significant rate effects in such materials too. There
is evidence of the sort of effect shown in Fig 3.64—with sand stiffening when
loads are left for a while so that the sand ages, even over the timescales of
laboratory testing—but this effect is also familiar from set-up of driven piles
in sand. Matsushita et al. (1999) show results from triaxial and plane strain
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Figure 3.64: Effect of viscoplasticity on stress response envelopes for clay
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Figure 3.65: Effects of strain rate on shear stress:strain response of sand

tests on two sands which appear to show that: for testing at constant rate of
strain the stress:strain response is rather independent of strain rate; if the strain
rate is suddenly changed then the response overshoots the constant strain rate
response but reverts to it with time (Fig 3.65); under constant stress creep oc-
curs. The models that are being devised to reproduce these results are complex
(DiBenedetto et al., 2002) and introduce a viscosity which decays with time.

Clearly this is an area of active current research where data need to be gath-
ered for many different soil types and under different test conditions. Physical
explanation might well refer back to the force chains observed in particulate
systems (Fig 2.6). These chains are immediately fragile when first formed and
any small amount of particle movement—encouraged by ambient vibrations or
by local crushing of particle contacts even at a microscopic scale—will allow
adjustment of the chains leaving a more stable arrangement of particles. The
challenge is evidently to build such physical thoughts into applicable constitutive
models.

3.8 Design of programmes of laboratory tests

Parameters for soil models need to be obtained by calibration against laboratory
tests—and perhaps in-situ tests and observations of performance of geotechnical
systems. It should be clear that soils are nonlinear, history-dependent materials
and that it is quite likely that any given soil model will only be able to give
an approximate description of the actual mechanical behaviour of a particular
soil. We may expect that the more complex the model that is adopted the
more extensive will be the range of soil behaviour that it is able satisfactorily to
reproduce. However, the models generally available for application in accessible
numerical analysis programs will usually be at the simpler end of the modelling
spectrum. Typically these would include the elastic-perfectly plastic Mohr-
Coulomb model and the elastic-hardening plastic Cam clay model.

The subtlety of soil response should lead us to try to commission programmes
of laboratory testing that follow stress paths which bear some resemblance to
those that will be experienced by significant elements of soil around a geotech-
nical structure (Wood, 1984)—but, as we have seen in §2.3, the testing possi-
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bilities are in fact somewhat limited. In practice, most of the laboratory data
with which we will be expected to calibrate our models will come from axisym-
metric triaxial tests—very often (conventionally) conducted with constant cell
pressure. However, if we can estimate the stress paths for typical elements in
a prototype geotechnical system then we may have some idea of the sorts of
initial stresses and stress changes that are likely to be relevant, even given the
limited range of laboratory testing configurations that are available.

Just as for application of constitutive models to estimate response of soil
elements—and also for performance of numerical analysis of the response of
geotechnical systems—we have to think about the past, the present and the
future. So far as the present is concerned we will usually be able to make a
reasonably good estimate of the vertical total stress at any point in the ground,
simply from the weight of overburden. To estimate the vertical effective stress
we will then need some additional information about the pore water regime.
Then, in order to estimate the horizontal stress—and hence estimate the in-situ
shear stresses—we need to have some idea about the past history of the soil: how
has it got to its present position? For soils which have had at least a somewhat
one-dimensional history we can use empirical expressions for the earth pressure
coefficient at rest, K,, to estimate the horizontal stress provided we have some
idea about the history of overconsolidation (see Muir Wood, 1990 for a more
detailed discussion). For normally consolidated soils the value of K. is linked
with angle of shearing resistance ¢':

Kone ~ 1 —sing’ (3.175)

For overconsolidated soils, with overconsolidation ratio n = o/, ,../0., we can
obtain an initial estimate using the expression

K, ~ Konev/n (3.176)

The value of K, builds up with increasing overconsolidation: for heavily over-
consolidated soils the value of K, can approach the passive pressure coefficient.

So far as the future is concerned we will consider four examples. In each of
them we are concerned to make order-of-magnitude estimates of many quantities
which we will need to confirm through more detailed testing—but of course we
are concerned to ensure that that detailed testing is as relevant as possible.
There are no precise answers to these examples: the important thing is to think
through the stress changes that are likely and make choices for testing that can
be logically defended.

Example 1: A strip footing of width 2 m is to be founded at a depth of
0.5 m in a sandy soil. The water table is at a depth which will not influence the
response of the footing.

Let us consider typical elements A and B beneath the footing and to the side
of the footing, at a depth equal to half the width of the footing, and hence 1.5 m
below the original ground level, as shown in Fig 3.66a. Of course the influence
of the footing will extend to greater depths but much of the significant action
will occur near the surface and any failure mechanism would be expected to
extend to a depth no more than 1.5-2 times the width of the footing. We have
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Figure 3.66: (a) Shallow footing on sand; (b) stress paths for elements A (abc)
and B (ade)

to estimate a typical unit weight for the sand: we guess about 20 kN/ m® so that
the vertical stress at A and B is about o/, ~ 30 kPa. For a dense sand the angle
of shearing resistance might be about 40° so that, from (3.175), K, ~ 0.35 and
o}, ~ 10.5 kPa. For this plane strain problem we can convert these stresses to
a plane strain mean stress s’ = (o), + 0,)/2 ~ 20 kPa and plane strain shear
stress t = (o], — 0},)/2 ~ 10 kPa. We notice directly that the initial stresses at
this typical element are quite low—much lower than the stresses which might
routinely be used for laboratory testing.

Excavation removes a vertical stress of about 10 kPa. At A the horizontal
stress will also reduce very slightly—we could estimate a new value from (3.176).
The horizontal stress at B will reduce by roughly the same amount while the
vertical stress remains unchanged. The initial stage of the stress paths at A and
B is shown, exaggerratedly, in Fig 3.66b: paths ab and ad respectively.

Loading of the footing increases the vertical stress at A, and also increases
the horizontal stress by some unknown amount. Evidently there will be less
lateral restraint than there would be for one-dimensional oedometric loading so
the stress path (be in Fig 3.66b) will be somewhat steeper than the K, path.
Element B will experience similar changes in horizontal stress with no change
in vertical stress (de in Fig 3.66b).

In designing our laboratory testing programme we accept that we probably
cannot demand plane strain tests. We should choose triaxial tests with initial
stresses corresponding to those estimated—perhaps p’ = 20 kPa, ¢ = 20 kPa.
To model element A we might impose a compression stress path with slope
dq/6p’ =~ 1.5 — 2 (somewhat steeper than K,) and for element B an extension
stress path with constant cell pressure d¢/dp’ = —1.5. We might expect to make
some allowance for the larger strengths expected in plane strain than in triaxial
conditions in interpreting the results of these tests for design. If we wish to model
the kinematic evolution of the incremental stiffness of the soil (§2.5.3), then we
should probably include little excursions in the opposite direction before we set
off on these stress paths because the stiffness always increases after significant
changes in strain path direction.
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Figure 3.67: (a) Flexible retaining wall; (b) stress paths for elements A, B, C

Ezxample 2: A numerical analysis is to be performed in order to estimate the
deformations that might develop in the ground around a flexible retaining wall
propped near the ground surface (Fig 3.67a) which is required to stabilise an
excavation of depth 8 m in a free draining dense sand. The water table is at
great depth. Typical elements A, B and C' are shown.

Element A is at mid-height of the wall. Assume a unit weight v = 18 kN/ m?,
and angle of shearing resistance ¢’ = 35°. Then vertical stress o] = 72 kPa,
K, =1—sin¢’ = 0.43, horizontal stress oj, = 30 kPa, s’ = 51 kPa, t = 21 kPa.
There will be little change in vertical stress, but reduction in horizontal stress
as excavation proceeds: At/As ~ —1, At > 0.

Element C is below the excavated soil, at a depth of 12 m, say. The initial
vertical stress is o], = 216 kPa, horizontal stress o}, = 92 kPa, s’ = 154 kPa,
t = 62 kPa. If the wall does not move then the major effect of the excavation
is to reduce the vertical stress: At/As’ ~ 41, At < 0. However, in fact the
horizontal stress will fall somewhat so that At/As" < 1.

Element B behind the toe of the wall has an initial stress similar to element
C. The vertical stress does not change much with excavation but horizontal
stress falls more or less in step with the horizontal stress for element C: At/As’ ~
—1, At > 0. Hence the stress paths shown in Fig 3.67b.

Triaxial tests with cell pressures between 30 kPa and 90 kPa might be rea-
sonable. It would be a good idea to start with initial stress states matching the
in-situ stress ratio. Conventional compression and extension with constant cell
pressure might be acceptable but really it would be better to perform special
tests in which the vertical stress is held constant while the horizontal stress is
reduced to mimic elements A and B. Elements nearer the surface will of course
have lower stress levels.

Ezxample 3: An excavation is to be made in a clay slope to provide a building
platform as shown in Fig 3.68a. It is anticipated that the retaining structure
may form part of the eventual building. The interaction of soil and structure
will influence the support forces and other structural resultants. Construction
may be rapid and essentially undrained but eventually drainage will occur for
long term effects. Numerical modelling is proposed and a programme of labo-
ratory tests is required in order to obtain data which can be used to calibrate
appropriate constitutive models. Estimate total and effective stress paths for
typical elements A, B and C located approximately as shown.
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Figure 3.68: (a) Schematic diagram of excavation in clay slope; (b) stress paths
for elements A, B, C (full lines: total stress paths; dotted lines: effective stress
paths)

Soil-structure interaction is the central topic of Chapter 8: it is driven by
stiffness or deformation properties rather than by strength and the testing needs
to concentrate on these. We have seen in section §2.5.3 how sensitive stiffness
can be to the detail of recent stress paths.

First ignore the slope. Element A is 5 m deep (say), v = 20 kN/m?*; o, =
100 kPa, u =~ 40 kPa(?), o, ~ 60 kPa, K, = 1 — 1.5(7). Obviously we need
to have a bit more knowledge of how the slope was formed, and of the current
hydrological regime, in order to obtain a better indication of the in-situ stresses.
We expect initial undrained plane strain response, with subsequent drainage as
pore pressure equilibrium is established, probably with a modified flow regime.
Excavation implies reduction in horizontal stress, with more or less constant
vertical stress so that ¢ increases and s decreases and At/As ~ —1. For such a
path we expect the drained strength to be lower than the undrained strength.

Element B is 15 m deep (say), o, = 300 kPa, u ~ 150 kPa?, o/ = 150 kPa,
K, =1—1.57 There will be some reduction in horizontal stress, with more or
less constant vertical stress: ¢ increases, s decreases and At/As ~ —1.

Element C has similar initial stresses to B. There will be reduction in vertical
stress, some reduction in horizontal stress and a resulting passive/extension
path.

So, we might propose a programme of at least consolidated undrained tests
with pore pressure measurement. We should include compression and extension
tests over an initial stress range 60-150 kPa. We should perform tests with
a total stress path with reducing mean stress—this is a key deduction from
consideration of the stress paths for elements A, B, C. Perform tests in which
consolidation (drainage) is allowed at various stages towards the appropriate
total stress path—these will provide data which can be used to calibrate a
constitutive model which can be used to describe the long term response. (We
can assume rough equivalence of s and p, t and ¢/2 in the first instance.)

One of the main problems will be the directions of principal stresses. Even in
the slope before excavation they will not be vertical and horizontal. There will
be the problem of initial anisotropy of samples if they are taken vertically (§2.5.4,
Fig 2.52). There will be the usual problem of interpreting plane strain response
from axially symmetric tests. We will need to think about the significance of
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Figure 3.69: (a) Embankment constructed in stages; (b) stress paths for ele-
ments A, B, C, D, E

divergence of laboratory and field stress paths in the deviatoric m-plane (Figs
2.20b, 2.71).

Example 4: A long embankment with eventual height of 10 m and crest
width 10 m is to be constructed at a site where the soil consists of 10 m of soft
alluvial silty clays underlain by sands and gravels. It is intended to build this
embankment in stages, allowing time for consolidation and strengthening of the
soft soils between each stage of embankment loading.

e Identify typical soil elements within the soft soils which will influence the
performance and design of the embankment and discuss, with appropriate
sketches of stress paths, the changes in effective stress that are likely to
occur at these elements.

e To what extent will tests in a conventional triaxial apparatus be useful for
calibration of constitutive models for this application?

e Design a programme of laboratory tests that could be used to establish
soil properties for this application.

e What other properties of the soil would you wish to explore in some detail
before completing the design of the staged construction of this embank-
ment?

The embankment is sketched in Fig 3.69a and typical elements A, B, C, D,
E are shown. Stress paths are indicated in Fig 3.69b. For all elements there will
be episodes of undrained or partially drained loading followed by consolidation.
Support for the suggested paths can be found in numerical analysis of similar
geotechnical systems (Almeida et al., 1986; Muir Wood, 1990).

At element A the dominant effect is continuing confined compression—which
may be quite close to one-dimensional compression as noted for the footing in
Ezample 1. The eventual vertical stress increase is 10x 18 = 180 kPa, estimating
the unit weight of the fill vy = 18 kN/mB. The change in horizontal effective
stress Ao}, = K,Acl ~ 0.7 x 180 = 126 kPa.
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At elements D and E the dominant effect will be increase of horizontal stress
by something less than 126 kPa with no change in vertical stress. This results
in an extension or passive type of stress path.

Elements B and C' are more difficult. At these locations, under the sides
of the embankment, rotation of principal axes will certainly be important but
we cannot easily study this in the standard laboratory except, to some ex-
tent, using simple shear testing which may not be available. Numerical studies
(Almeida et al., 1986) have shown that the undrained shearing stages for these
elements under the sides of the embankment are much more damaging than
those at A—they come closer to failure. The effect of consolidation after these
undrained loadings will affect the subsequent undrained strength and this will
control how high the next stage of the embankment can be constructed. The
effective stresses reached at these elements after reconsolidation will certainly
see less lateral constraint than one-dimensional compression—perhaps draining
back to an effective stress path with zero horizontal stress change.

So far as our programme of triaxial tests is concerned, we should take samples
from various depths—for example, 3, 6, 9 m—and reestablish in-situ stresses
with an estimate of the in-situ value of K,. Then subject these samples to one-
dimensional compression for element A; constant axial stress extension with
undrained episodes for elements D, E; multistage undrained tests almost to
failure followed by reconsolidation to a constant total horizontal stress path for
elements B and C.

We will certainly need information about in-situ permeability since this will
control the rate at which consolidation occurs and hence the rate at which
additional embankment layers can be added.

3.9 Selection of soil parameters: calibration of
models

As a simple exercise in parameter selection, we will show how soil parameters
might be selected to match the response observed in a single drained triaxial
compression test on normally consolidated Weald clay (Fig 3.70).

The most commonly required parameter selection is certainly the most sub-
jective: the choice of parameters for an elastic-perfectly plastic Mohr-Coulomb
model. We have seen that this model can only decribe a constant linear elastic
response up to yield/failure—and then the tangent stiffness falls to zero. Dur-
ing the (isotropic) elastic phase volume changes only occur if the imposed stress
path includes change in mean effective stress; once plastic failure occurs volume
change occurs at a continuing steady rate—either compressive or expansive—
indefinitely. We have to decide in choosing the soil parameters whether we are
attempting to match the overall response moderately or certain aspects of the
response in detail. One possible fitting is shown in Fig 3.70 (EPP). The elastic
properties are chosen to give a good match on average: the initial stiffness is un-
derestimated. The plastic properties give a slight underestimate of the strength,
and evidently indicate volumetric compression continuing much longer than is
actually observed. There are obviously many perfectly defensible alternative
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Figure 3.70: Conventional drained triaxial compression test on Weald clay (data
from Bishop and Henkel, 1962) and fitting of constitutive models (initial specific
volume v; = 1.64, confining pressure o.. = 207 kPa (EPP: elastic-perfectly plas-
tic Mohr-Coulomb model; MCH: extended (hardening) Mohr-Coulomb model;
CC: Cam clay)

sets of parameters for this model. For the simulation shown: G = 1500 kPa,
K = 2800 kPa, M = 0.8 and M* = —0.15. The value of Poisson’s ratio is
v =0.273.

It turns out that with a hardening plastic model—whether the extended
Mohr-Coulomb model or Cam clay—it is quite possible, by trial and error, to
obtain really quite a good match to both the stress:strain and the volumet-
ric response of the soil in this test. In this particular case the Mohr-Coulomb
model with its hyperbolic distortional hardening law is perhaps slightly better
than Cam clay with its logarithmic volumetric hardening law—but with fur-
ther perseverance in trial and error selection of parameters better fits might be
obtained.

The values of soil parameters used for the Mohr-Coulomb model (MCH in Fig
3.70) are: G = 3800 kPa, K = 6000 kPa, M = 0.91, a = 0.015 and 7, = 0.95.
The value of Poisson’s ratio implied by the elastic properties is v = 0.238. The
elastic stiffnesses are higher because—as seen in the worked example using the
extended Mohr-Coulomb model (§3.4.1)—plastic strains occur right from the
start of the test. Deformations that are being entirely described by the elastic



180 3. Constitutive modelling

properties in the elastic-perfectly plastic model are now being described as a
combination of elastic and plastic effects.

For the Cam clay model (CC in Fig 3.70) the parameters giving a similar
quality of fit are: elastic properties G = 3500 kPa and x = 0.015—implying an
initial bulk modulus K = vp'/k = 22632 kPa and Poisson’s ratio v = 0.426; and
plastic properties A = 0.055 and M = 0.9. The value of the intercept N on the
normal compression line is NV = 1.933. Whereas the values of shear modulus G
are similar for these two hardening plastic models, Cam clay predicts a lot of
plastic volumetric strain at the start of the test—the plastic strain increment,
normal to the elliptical yield locus, indicates only plastic volumetric strain to
start with—and the elastic properties indicate near incompressibility (v — 0.5)
in order to ensure that there is negligible additional elastic volumetric strain.
The values of M are similar.

We conclude that we cannot determine the optimum selection of model by
fitting data for a single test. We have seen that in the simple form presented
here, the Mohr-Coulomb models will not predict significant volumetric strain
for stress paths which load the soil at more or less constant stress ratio. If
we believe that such paths are going to be important in the behaviour of our
geotechnical system then we need to ensure that we have data from special
triaxial tests with which to calibrate our model. The more sets of data that we
attempt to fit simultaneously the less likely it is that we will be able to achieve
a fit as close as that shown in Fig 3.70. Often, faced with data from tests of
varying reliability we may wish to weight differently the several sets of data and
perhaps attempt some algorithmic best overall fit to give greater objectivity
to our parameter selection (see, for example, Muir Wood et al., 1993)—visual
fitting may introduce some unconscious bias.

We deduce the importance of trying to ensure that the paths followed in our
laboratory tests bear some resemblance to the range of significant paths that
will be followed in our geotechnical system (§3.8). The stiffness characteristics
of soils are so sensitive to the detail of history and stress path (§2.5.3) that
using a constitutive model to extrapolate from inappropriate limited laboratory
testing may not lead to reliable estimates of response of geotechnical systems—
especially under working loads, far from failure, where the detail of rather small
strains will be crucial.
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Numerical modelling

4.1 Introduction

There are many books which deal in great detail with the application of nu-
merical methods—usually finite element methods—to engineering problems in
general or to geotechnical problems in particular (eg Zienkiewicz and Taylor,
2000; Cook, Malkus and Plesha, 1989; Cook, 1995; Livesley, 1983; Smith and
Griffiths, 1988; Britto and Gunn, 1987; Potts and Zdravkovié, 1999). It is
intended here to provide merely a brief introduction to numerical modelling:
enough for the reader to be able to understand some of the language of numeri-
cal modelling, some of the issues that need to be confronted when setting about
numerical modelling of a geotechnical problem, and some of the pitfalls that
may confront the numerical modeller.

Chapter 3 has presented in some detail some of the constitutive models
that might be used to describe the mechanical response of soils. It is clear
from the discussion of key aspects of soil behaviour in section §2.5 that elastic
models are unlikely to be especially satisfactory except in limited applications.
If the material can be deemed to be linearly elastic then many of the details
of numerical analysis become rather straightforward—and, in particular, there
are many existing solutions for distributions of stresses and displacements in
elastic systems that can be readily adapted (see, for example, Poulos and Davis,
1974). For more nonlinear and history dependent (elastic-plastic) materials
numerical analysis is almost certain to be required except for the most trivial
of applications.

We start by deriving the governing equations for mechanical and flow prob-
lems in one dimension. This apparently trivial beginning allows us to illustrate
the development of a number of aspects of the finite element approximation
which can be readily extended to two and three dimensions. The governing
equations are also presented for the two-dimensional problem: parallels with
the one-dimensional equations will be drawn. The finite difference approxima-
tion to differential equations will be described briefly—this will often be needed
for solution of problems involving time, such as dynamic loading or transient
flow.

181
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4.2 Field problems

Our concern is with the solution of field problems for which we are able to
write down governing partial differential equations which describe the way in
which quantities of interest (field variables) must vary within a particular re-
gion and must satisfy boundary conditions at the edges of that region. We
will concentrate particularly on problems of stress analysis where the quantities
of interest are stresses and displacements but we might also be concerned with
other geotechnical field problems such as analysis of seepage and flow (where the
field variable is the pressure head) and the coupled flow and mechanical response
that governs the consolidation process (where the field variables now combine
pore pressures with stresses and displacements). More generally we might be
concerned with flow of heat or migration of pollutants, so that field variables
would include temperature or pollutant concentration respectively. And it can
be expected in the end that all of these effects might interact and require ana-
lytical coupling: there will be obvious mechanical consequences of the changes
in dimension that accompany temperature changes; changes in the chemical
constitution of the fluid in the pores of a soil may well influence its mechanical
characteristics. However, provided we can assemble a set of physically reason-
able equations which describe the various interactions and flows then we are
well on the way towards setting up a numerical analysis of the problem.

4.2.1 One-dimensional problem

We start by developing the equations which govern the behaviour of a one-
dimensional problem and can then generalise these equations to a fully three-
dimensional problem. Consider the element shown in Fig 4.1a. Equilibrium
tells us that the gradient of total stress must satisfy the equation:

do,
0z

—7:=0 (41)

where 7, is the body force acting in the negative z direction—in this case the
unit weight of the soil. Throughout this chapter we will regard tensile stresses
and strains as positive. This is not the usual soil mechanics convention but
makes the development of the mathematics more straightforward.

In general the stresses in the soil will be associated with displacements and
the definition of strain allows us to write down a compatibility equation (Fig
4.1Db):

Ou,
0z

where u, is the displacement in the z direction and tensile strains are regarded
as positive.

=e, (4.2)

1When preparing a chapter on the present topic one becomes all too aware of the distress-
ingly finite nature of the Greek and Roman alphabets. In an attempt to reduce confusion
somewhat (but at the expense of inconsistency with other chapters) the symbol ¢ will be used
for pore pressure so that u always represents displacement.
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Figure 4.1: (a) Equilibrium of one-dimensional element; (b) displacements of
one-dimensional element; (c) flow through one-dimensional element

We understand that changes in strains in soils arise because of changes in
effective stresses so we cannot progress without introducing the principle of
effective stress:

o, =0, —0 (4.3)

linking total stress o, effective stress o/ and pore pressure p. Tensile stresses
are regarded as positive but pore pressure is, as usual, positive for pressures
above ambient pressure.

Then we have a constitutive equation which links changes in effective stress
and development of strain which, for this simple one-dimensional problem, in-
troduces a one-dimensional constrained stiffness F,.q (which will, in general,
not be a soil constant but will vary with volumetric compression of the soil):

o’
8: = FEoeq (4.4)
z

Now in general we may have some flow of pore fluid occurring through our
soil element. We can write down one equation describing the conservation of
volume changes of the element linked with this flow (Fig 4.1c):

Ov, Oe., n do

9. "9 o TR o

(4.5)

where v, is the velocity of flow in the positive z direction, @ is the flow per
unit volume 4nto the element (the source), n is porosity and Ky is the bulk
modulus of the fluid. The porosity n indicates the proportion of the volume of
the element that is taken up with the fluid. (Note again that tensile strains are
regarded as positive.) This equation recognises that changes in pore pressure
will lead to changes in the volume of the fluid stored in a soil element. For steady
flow the right hand side of (4.5) is zero. For undrained conditions the left hand
side is zero (no flow into or out of the soil element) and a small volume change
is associated with the small but non-zero compressibility of the pore fluid.
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We assume that the flow of water through the element is governed by the
permeability of the soil k£ and by the gradient of some potential, the total head
H, through Darcy’s law:

OH  k Oow

] (4.6)

T T vf 0z

where Bernoulli’s equation distinguishes the total head H (and corresponding
fluid pressure g,,) that drives flow from the pressure head o/, and the elevation
head z:
H=%_2 ., (4.7)
Tror
where 7y is the unit weight of the pore fluid.

Combination of these equations produces two simultaneous partial differen-
tial equations in the two field variables, displacement u, (or, in fact, strain e,
since the displacement only enters through its spatial gradient) and pore pres-
sure g, which we would need to solve satisfying imposed boundary conditions:
&%u, 0o

oe a_ z — 4.
453 +az+7 0 (4.8)

2 2

Ou:. k00, noo __ (4.9)
0tdz  ~y 022 Ky ot

We have thus combined statements of equilibrium (4.1), strain compatibility
(4.2) and conservation of volume (4.5), with constitutive laws governing the
stress-strain response of the soil (4.4) and the flow characteristics of the soil
(4.6) in order to provide sufficient equations to be able, in principle, to deduce
the values of our field variables. We might in general wish to know the variation
of stress with position and stress is in principle an additional field variable.
However, it is clear from (4.2) and (4.4) that once we know the displacement,
and more particularly the gradient of displacement, we can calculate the stresses
without further ado.

Terzaghi’s equation of one-dimensional consolidation can be deduced from
(4.9). The total stress is assumed constant so that changes in pore pressure and
effective stress are equal (recall the sign convention in (4.3) and

O%u, n 0o 0Oe, n Oo 1 9o, n do 1 n \ do
9toz T Ky 0t Ot K, 0t  Boq Ot K 0t (Eoed Kf> ot

(4.10)
and thence, from (4.9) with @ = 0, if we assume that the pore fluid is incom-
pressible so that K¢ = oo,

b0 _KBnai®o _ 0
ot vy 022 U022

-

(4.11)

where ¢, = kE, /7y is the coefficient of consolidation.
For a drained equilibrium analysis in which flow is of no concern, and hence
H is constant (4.7), the gradient of pore pressure is given by

do
9 f (4.12)
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and the equilibrium equation (4.8) becomes

0%u,
—FEoeq——= . — = 4.1
(T (=) =0 (113)
or .
o’ B B
9% 4 (=) =0 (1.19)

and the difference of unit weights, (v, —7y), would be described as the buoyant
unit weight of the soil.

4.2.2 Two-dimensional problem

Many geotechnical systems can be seen as two-dimensional problems which can
be analysed in plane strain. There are obviously additional degrees of freedom by
comparison with the one-dimensional problem. However, subsequent extension
to three dimensions merely increases the number of degrees of freedom without
particularly influencing the structure of the governing equations.

We assume that the problem is defined within cartesian axes (z y), where
the y axis will typically be vertical but this will not be a necessary restriction.
We start by defining a vector of stresses, o = (042 Ty sz)T and a correspond-
ing vector of strains € = (€z2 €y 'ymy)T. There will in general be a vector of
body forces per unit volume F = (F, F,)T. If the body forces come purely
from the unit weight of the soil then we would expect F' = g where -~y is the
total unit weight of the soil and g is a unit vector in the direction of gravita-

tional acceleration. Typically, with vertical y axis, g = (0 — 1)7. The vector
differential V: 9/
x
oo () s
and the differential matrix 9:
9/0x 0
a=| 0 0/oy (4.16)
0/0y 0/0x

will be useful.
Equilibrium then requires that (compare (4.1)):

o+ F=0 (4.17)
Kinematic compatibility (the definition of strain) implies that (compare (4.2)):
€= du (4.18)

where u = (u; u,)? is a vector displacement.
The definition of effective stress (compare (4.3)) becomes:

o=0"—po (4.19)

introducing the vector u = (1 1 0)T.
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With a constitutive link between stresses and strains, o’ = De our equilib-
rium equation (4.17) becomes:

"DOu - 8" o+ F =0 (4.20)

Flow through a soil is controlled by the permeability of the soil, which in
general can be described by a permeability matrix k linking flow velocities
v = (v, v,)T with the gradient of total head H. In general

k k
k= ey > 4.21
( Kyz  Kyy ( )
to allow for anisotropy of permeability. Then
v=—-kVH (4.22)

where the total head H is given from Bernoulli’s equation:

H=2 474 (4.23)
vr
where ¢ is the pore pressure, v is the unit weight of the pore fluid, and r =
(x y)T is the position vector.

Continuity requires a volume balance (strictly a mass balance but we will
neglect density changes in the flowing fluid). There will in general be sources or
sinks giving a nett flow @ per unit volume into a soil element. The soil element
will change in volume because it undergoes changes in effective stress and the
pore fluid may itself change in volume as the pore pressure changes. Combining
these effects, and invoking (4.22 and 4.23) (compare (4.5)):

Oep, m Op

-v7 =V'kVH+Q= -+ —— 4.24
vie =5 TR, o (424)
We can link the volumetric strain €, with the general two-dimensional strain
€

e&p=pnle (4.25)

Hence (compare (4.9))

ou 1 n 0o
T T

00— - —V'kV ——=——-Q=0 4.26
Sy AT (4.26)

The presence of displacement w in (4.26) and the presence of pore pressure
0 in (4.20) lead to coupling between the flow and mechanical effects in the soil.

Various special cases can be extracted from these general equations. Terza-
ghi’s consolidation equation is obtained if we eliminate sources and sinks, @ = 0,
assume the pore fluid to be incompressible and specify that the total stress is
held constant. The volumetric strain in the element arises because the effective
stress changes directly with the pore pressure:

ep=n"D  po (4.27)
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and . 9
— VT,V =pu"D ' p22 4.28
my o=p Ko, (4.28)
With incompressible fluid Ky = oo and steady state conditions, so that all

time differentials are zero,
1 or
—V'kVo+Q=0 (4.29)
vf

which is Laplace’s equation, as expected.

4.3 One-dimensional finite elements

We take a continuum approach to geotechnical systems and assume that our
field variables vary continuously throughout our region of interest. We know
that in certain circumstances the governing equations (4.8) and (4.9) can be
solved analytically. The situations where this will be possible will be much more
frequent for one-dimensional problems than for fully three-dimensional problems
but even for one-dimensional problems analytical solutions may become tricky
if the stiffness properties (encapsulated in E,eq) are nonlinear and/or history
dependent. However, our concern here is to consider approximate solutions
where, instead of discovering the values of our field variables at every point
within our continuum, we aim to find the values at a finite number of points
only. We will concentrate on equilibrium problems where our aim is to discover
a field of displacements and stresses.

Let us divide the one-dimensional problem up into a series of elements of
typical length ¢ connected at their nodes (Fig 4.2). The displacements at the
bottom and top of a typical element are u,; and u,2 and we assume that we have
some description of the variation of displacement within the element using so-
called interpolation or shape functions N; and Ny such that, within the element

Uz
Uz2

u, = Nyuzy + Nauzg or u=( Ny Ny ) ( ) or u=Nd (4.30)

An obvious simple form for these shape functions, in terms of a local coor-

dinate z for a given element (Fig 4.2b), might be

{—z z

Ny = ;i Nop=-

1 Z ) 2 E

These describe a linear variation of displacement within the element and have

the evidently desirable characteristic that Ny = 0 for z = ¢ and Ny = 0 for

z = 0. The strain at any point within the element is then given by:
0N, ON, _ON d

€, = —Uyl + ——Uyy O €, = —az

0z 0z

(4.31)

(4.32)

Accompanying the nodal displacements there will be nodal forces F; and
F5 at the ends of the elements transferring stresses from one element to the
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Figure 4.2: (a) One-dimensional elements connected at nodes; (b) forces and
displacements at nodes; (c¢) nodal equilibrium of connected elements

next—assuming unit cross sectional area for the one-dimensional elements. We
suppose that all external loads, including body forces, are applied at the nodes in
some appropriately distributed form—for this simple one-dimensional element
we can divide the body force ~.¢ equally between the two ends of the element.
Equilibrium is applied at the node as the force leaving one element becomes
the force entering the next element (Fig 4.2c¢). Equilibrium at the connection
between element ¢ and element ¢ + 1 then tells us that

(F2); + (F1);44 — (7;)z - <’y;£)i+1 =0 (4.33)

In general, the lengths and unit weights of successive elements might be different.

Information can only be passed between elements at the nodes. We take the
displacements of the nodes as the independent variables and therefore have to
look for ways in which we can calculate the nodal forces as dependent variables.
We are searching for a link between the nodal forces and the nodal displacements
in the form of a stiffness matrix K:

Fo\ _ ([ ki ke Uzl —
(B)=(B 5 )(5) wroka ooy
For this simple one-dimensional element it is not difficult to draw the simplest

link between nodal forces and nodal displacements, through the stiffness prop-
erties of the material in the element, and deduce

1 _ EoeqA 1 -1 Uz1 _
<F2>_ 7 (_1 ] )(uzQ or F=Kd (4.35)

maintaining a careful sign convention that forces and displacements are positive
in the positive z direction. The cross-sectional area A is included in (4.35) even
though we are considering a unit section, in order to remind ourselves of the
necessary dimensional consistency of the expression.

For more elaborate elements for analysis of two- and three-dimensional prob-
lems it is not easy to deduce the stiffness matrix by this direct route. A more
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energy strain energy

AE—" ¢ total energy

-

x=W/AE, TS

Figure 4.3: (a) Spring extended by weight W; (b) components of energy for
extending spring

general procedure is obtained by thinking about strain energy in the element.
Imagine a weight W being applied to an unstressed spring of length ¢ and stiff-
ness AF, (Fig 4.3a). As the weight displaces slowly through a distance x it loses
potential energy —Wxz. As the spring extends it stores strain energy %AEOxQ.
The total energy of the system is then

V= %AEO;UQ —-Waz (4.36)

and this has a minimum (Fig 4.3b) at

4
- AE,

x (4.37)

which is the expected stable extension of the spring. (An identical result can
be obtained using a virtual work approach (Livesley, 1983).)

This is an example of a general principle of stationary potential energy which
states that: Among all admissible configurations of a conservative system, those
that satisfy the equations of equilibrium make the potential energy stationary
with respect to small admissible variations of displacement (Cook et al., 1989).
The configurations of interest to us are the values of nodal displacements. The
principle as stated applies to an entire system: we will make the assumption
that the same principle can also be applied to individual elements within the
system.

As for the simple spring in Fig 4.3, we have two components of potential
energy: the strain energy in the element and the work done by the forces acting
on the element. The strain at any point within the element is given by (4.32),

the stress is then
0, = FEyeq—d 4.38
0z ( )

and the strain energy in the element of length ¢ and cross sectional area A is

1(oN \" ON
VE = / 5 (azd> Eoed (fazd> d(VOl) =

vol
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G T

The potential energy of the nodal forces is

Lo
— —Ad
2

Vp=—d'F (4.40)

Seeking a minimum of the total potential energy with respect to the unknown
nodal displacements we find

Abd” { VOZ (%JZ)T Eoca (g) dz] d— F} =0 (4.41)

which must be satisfied by all possible displacements dd. Hence we have a set

of equations
¢ T
ON ON
/0 <a> E““‘(&«)dzld e

This is an expression of the virtual work principle which states that the total
work of internal and external forces must vanish for any admissible infinitesimal
displacement from an equilibrium configuration.

From our definition of IN we know that

O (e ) (4.43)

[ () e (7)) -
EoedAE( _11/5 ) (—1/¢ 1/¢) = E"Z‘iA ( _11 _11 ) (4.44)

which exactly matches the stiffness matrix K defined in (4.35).

F=A

so that
A

4.4 Two-dimensional finite elements

This route to deduction of the form of the stiffness matrix from energy consid-
erations can be extended to two and three dimensional systems. The detailed
demonstration will not be shown here but can be found in standard texts on the
finite element method (see §4.1). We have to note that the expression in (4.44)
from which the stiffness matrix is generated is an integration over the volume of
the element of the product of three terms. The first and third terms (0NN /9z)
represent, in general, the matrix of expressions which convert nodal displace-
ments to strains within the element, where N are now more general shape
functions which describe the variation of displacement within the element in
terms of the values of displacement at the nodes. The term FE,.q becomes a
more general stiffness matrix for the material.
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For example, in a two-dimensional problem we might have a field of dis-
placements u, and u, in the x and y directions respectively. The strains are

then 5 5 5 5
Uy Uy Uy Uy
_ Oug _ Ouy _ Oty 4.4
T g oy’ oy Oy * Oz (4.45)
or
€e=0u (4.46)

Within the element the displacement field u is linked to the nodal displace-
ments through as many shape functions as there are nodes:

Uzl
Uy
up \ (N 0 Ny 0 - Y _
<uy>_( 0 N 0 N ) ve2 | or w=Nd (447
y2
Then
€e=0Nd or e=Bd where B=08N (4.48)

With a stiffness matrix D linking the changes in stresses that result from changes
in strains (developed from one of the candidate models described in Chapter 3,
for example), the stiffness matrix for the two-dimensional finite element be-
comes:

K= / BTDBAV (4.49)
\%

where V is the volume of the element.

For problems involving flow, as in (4.47), we write both displacement and
pore pressure in terms of nodal values of these quantities invoking shape func-
tions for displacement N and for pore pressure N, which will in general be
different:

u=Nd and p= N,g, (4.50)

where g, is the vector of nodal values of pore pressure. Ultimately, through
argument similar to that just adopted (see Smith and Griffiths, 1988 or Potts
and Zdravkovié, 1999), we can convert the governing equations ((4.26) and
(4.20)) into equations involving integrals of soil properties over the elements:

Kd-Tp,+F=0 (4.51)
and 5d 5
79 9w _ 0=
T o 5t Ro,—Q=0 (4.52)

where K was given in (4.49) and

T = / BT uN ,dv (4.53)
\4

n
S = V/ NZ,’K—ngdV (4.54)
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1 T
R= ” V/ (VN k(VN )V (4.55)

The effects of flow have thus been presented in a way that is compatible with
the effects of stress change and the problem is defined in terms of a number of
standard integrals.

Analysis of flow—even steady flow—contains the possible complexity of the
need to model a free fluid surface within the soil separating saturated from
unsaturated or dry soil. The location of this boundary to the flow is initially
unknown—and in unsteady flow this will be a moving unknown boundary. Potts
and Zdravkovié¢ (1999) suggest that this is an area where robust algorithms do
not yet exist and further research is required. The user of a finite element code
is warned to take care in setting up the analysis and interpreting the results.

The choice of shape function is an important consideration. It will very often
be hidden from the user of a finite element program, or there may be very little
choice available. However, the type of element and associated shape function
will have a major influence on the accuracy with which continuous strain fields
can be reproduced and hence on the accuracy of numerical results which are
obtained.

4.4.1 Example: Constant strain triangle

A typical triangular element is shown in Fig 4.4. This element has three nodes
located at its vertices and can be imagined to be attached to adjacent elements
only at these nodes. The displacement field within the element is given by:

Uy = Q1 + 2 + Q3Y; Uy = au + 05T + oY (4.56)

so that the strain field within the element is:

_ Oug Ouy Ouy ~ Oug

€z O = Q2] €y = P = Qg5 Yoy = O + 8y

= a5 + a3 (457)

and components a; and «4 merely generate rigid body displacements. The
displacement varies linearly so that the strains are constant within the element.
The link between the coefficients oy, -+, ag and the nodal displacements is
somewhat tedious to derive (see, for example, Cook et al., 1989) but in the end
the strain:displacement relationship can be written in the form € = Bd:

Ug1

U
€z 1 y3 0 ys1 0 yi2 O uyl
Ey = ﬂ O I32 0 I13 0 o1 ux2 (458)
Vxy T32 Y23 T13 Y31 T21 Y12 y2

Ug3

Uy3

where x;; = 2, —2;;  yi; =vi—Y;; 2,y (¢ =1,2,3) are nodal coordinates,
numbered sequentially anticlockwise round the element as shown in Fig 4.4, and
2A is twice the area of the element, so that 2A = x31y31 — 31y21 (or any other
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Figure 4.4: Constant strain triangle element

expression obtained by appropriate permutation). (If the nodes are numbered
sequentially in the clockwise direction round the element then the area A will
be negative and the sign in (4.58) has to be changed accordingly.) Since there
is no variation of strain within the element, the integral in expression (4.49) for
the element stiffness can be written exactly

K = BT"DBtA (4.59)

where ¢ is the element thickness.

It will be evident that the constant strain triangle is not going to be well
suited to analysis of problems which contain significant gradients of strain: it is
not particularly good for problems which involve bending.

4.4.2 Example: Linear strain triangle

If we want to be able to describe more elaborate variations of strain within
elements then we will usually need to link the elements together at additional
side nodes in addition to the vertices. For example, the linear strain triangle
(Fig 4.5) has additional nodes at the mid-points of each side. This element can
sustain a full quadratic displacement field

Up = oq + aex + azy 4+ aux’ + aszy + agy® (4.60)
Uy = o7+ 0T+ ooy + a102? + apizy + aey? (4.61)
and a corresponding strain field
Ouy

€z = o Qs + 2042 + asy (4.62)
ou

€y = 6—; = ag + a117 + 2012y (4.63)
Ouy  Ouy

Yoy = o oy = (ag + a3) + (a5 + 2a10) ¢ + (206 + a11) y (4.64)
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Figure 4.5: (a) Linear strain triangle; (b) isoparametric coordinates

Because all the nodes of the linear strain triangle have separate degrees of
freedom and are free to move independently, the sides of the triangle do not
necessarily remain straight as the element deforms. However, connectivity be-
tween elements ensures that no gaps open along the curving boundary between
adjacent elements.

We can map the general triangular element of Fig 4.5a onto a general
‘isoparametric’ element defined in terms of ‘natural’ coordinates (§,n), with
non-orthogonal axes as shown. The expressions that link global coordinates and
natural coordinates, interpolating between the coordinates of the nodes (z;,y;),
introduce shape functions which are the same as those used to interpolate the
displacements within the element from the nodal displacements (g, ty;)-

r = ) N y = > Niy
upy =y Niug; uy = > Niuy; (4.65)
where the shape functions NV; are
Ni = (1-&-n)(1-28—2n)
Ny = §(26-1)
N3 = n(2n-1)
4.66

No = dgl-¢-n) (1.66)
Ns = 4&n
Ne = 4n(1-&—n)

Note that N; = 1 at node i and N; = 0 at every other node—this is a general
property of shape functions.
(For the three node constant strain triangle of the previous section:

omitting nodes 4, 5, 6 and their associated shape functions, and leaving a purely
linear interpolation of displacements.)
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In order to calculate the general element stiffness matrix we need, on the
way, to calculate the strain-displacement matrix B = 8N (4.48). However, the
displacements are calculated from (4.65) and (4.66) as functions of (£,n) and
not of (z,y). We have to start by differentiating displacements as a function of
(&,m) and then use the chain rule. For example,

(e (3 S ) (e}

where the 2 x 2 matrix is the coordinate linking Jacobian matrix J:

_( 0x)0c 0y)o
= (oo o) (4.69)

with

P Z o€ x; ete (4.70)

Equation (4.68) can be solved to give the necessary derivatives from which
the strains can be calculated

(et ) <t (Guoc ) an

The element stiffness matrix is obtained by integrating over the volume of
the element. This integration is again performed in terms of natural coordinates

1 1
K:/ / BT DBt |J|d¢dn (4.72)
0 0

where ¢ is the element thickness and |J| is the determinant of the Jacobian
matrix which provides a scale factor between areas: dedy = |J|d&dn.

4.4.3 Quadrilateral elements

We can quickly introduce the shape functions for some of the quadrilateral ele-
ments that are used. The procedures for implementing them in the construction
of stiffness matrices are exactly the same as that just described.

The mapping of global coordinates (z,y) onto natural coordinates (£,7) is
illustrated in Fig 4.6a. For a four noded quadrilateral the shape functions are

" fionoy
No = (1481 -7
Ny = 1§04y )
Ny = (1= +n)

These interpolation functions lead to a linear variation of €, with n and a linear
variation of €, with £. The shear strain +;, has linear variations with both &
and 7.

Because the sides of this four noded element always deform as straight lines
it cannot describe the strain field associated with bending—which would require



Figure 4.6: (a) Four noded quadrilateral element; (b) eight noded quadrilateral
element

Figure 4.7: (a) ‘Bending’ of four noded quadrilateral; (b) desired shape of rect-
angular element subjected to pure bending
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curvature of the sides. If these elements are subjected to pure moment loading
(Fig 4.7) then, although the linear variation of direct strain with position is cor-
rectly described, no right angles in the element are preserved and shear stresses
must be generated on all surfaces. The stiffness of such elements tends to be
too high.

Greater freedom can be obtained by adding additional nodes (Fig 4.6b), al-
lowing the sides of the element to take up general quadratic shapes in conformity
with neighbouring elements. The interpolation functions are now

N = (1= -1 +&+n)/4

Ny = —(14+A-n)(1—-E+n)/4

Ny = —(14+0+n)(1-&—n)/4

Ny = (1-&)(1-n)/2 '
Ne = (148 (1-n?)/2

N = (1-€)(1+n)/2

Ny = (1-¢61+n%)/2

Each of the three strains now contains some quadratic variation—but there is
no variation of e, with €2, for example. In its rectangular form this element can
exactly represent bending states.

4.4.4 Comparison of elements

In order to illustrate the relative advantage of using higher order elements—
those with more degrees of freedom and greater ability to match spatially varying
strain fields—it is convenient to analyse a problem for which the exact analytical
result is known (Livesley, 1983). The deep cantilever of depth d and length L
in Fig 4.8a carries a transverse load W at its tip. The tip deflection § is:

WL3 5 d?

where I, E and v are second moment of area, Young’s modulus and Poisson’s
ratio respectively (Timoshenko and Goodier, 1970).

The calculated fraction of this exact tip deflection is shown in Fig 4.8b as a
function of the number of free nodes in the numerical analysis for different types
of element—including comparison of triangular elements laid out on a square
grid or a rectangular grid. The results illustrate clearly that any numerical
approximation of this type will be too stiff—it is not able to deform as freely as
the continuum that it is trying to represent. The higher order elements which
permit internal variation of strain converge rapidly towards the correct result:
in fact using eight noded squares or rectangles a very small number of elements
is required. The six noded triangles are clearly superior to the constant strain,
three noded, triangles and to the four noded squares.

Evidently more complex elements require more computing time for any ele-
ment calculation. However, in general the greatly reduced number of elements
that can be used outweighs this apparent computational disadvantage and leads
to a lower overall computing time for a given accuracy of result.
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Figure 4.8: (a) Rectangular cantilever subjected to tip loading; (b) comparison
of tip deflections predicted using different element types; (c¢) comparison of
distributions of o, at y = 0.375d for different element types; (d) comparison
of distribution of shear stress 7., on vertical plane for different element types
(after Livesley, 1983)
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It is often tempting in assessing results of numerical analysis to look only
at the output quantity of direct interest—in this case perhaps just the tip de-
flection. It is, however, always instructive to probe more deeply. The difference
between the different elements can be seen more strikingly when internal stresses
within the deep beam are investigated. Fig 4.8c shows the variation of the longi-
tudinal stress o, along the beam at a position y = 0.375d for three distributions
of elements, all using the same nodal positions. Only the eight noded square is
able to produce a displacement field which matches the result o,, = Wzxy/I:
the numerical calculation for these elements is indistinguishable from the exact
result. It proves even harder to match the shear stresses shown in Fig 4.8d for
a transverse plane near the centre of the cantilever. The shear stresses vary
with y2, but even the eight noded square element has none of the y? terms in
the displacement field that could provide this desired variation. Nevertheless
these elements are still very much superior to the other elements used in the
comparison.

4.5 Integration - Gauss points

The element stiffness matrix is obtained in (4.49) or (4.72) by integration of a
possibly quite elaborate function over the volume of the element. While this
may be possible for simple models and simple geometries, in general it may
be computationally exhausting. For a nonlinear material—such as soil—the
components of the material stiffness matrix D will vary from point to point.
Gauss quadrature provides an efficient route to numerical integration. The exact
integral is replaced by the sum of a number of weighted terms

+1 n
I= ¢d¢  becomes x> wig; (4.76)
1 1

The function ¢ is evaluated at n carefully chosen points and each value of the
function is weighted by a corresponding factor w;. If ¢ = ¢(§) is a polynomial,
then use of n sampling points gives an exact result for polynomials of degree not
greater than 2n—1. The locations of one, two and three sampling points and the
corresponding weightings for this one-dimensional integration are shown in Fig
4.9. Evidently sampling at the centre is sufficient—and exact—if the function is
linear. For non-polynomial functions the accuracy will improve as the number
of sampling points increases.

The locations of the Gauss points can be identified in just the same way in
two dimensions (Fig 4.10). The metamorphosis (4.76) is now

1 41 W m
Iz/_1 /_1 ¢d&dn  becomes INZZwij¢(§i7nj) (4.77)

i=1j=1

Usually n = m and the same numbers of sampling points are used in each
direction. For a single central Gauss point n=m=1,£=0,n7=0, w =4 and
I =~ 4¢,. For four point and nine point quadrature the summation rules are:

I'~¢1+¢2+d3+¢a (four) (4.78)
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Figure 4.9: Gauss integration points: (a) I = fjll @d¢; (b) single point integra-
tion I =~ 2¢1; (c) two point integration I =~ ¢; + ¢, a = 1/4/3; (d) three point
integration I = ggbl + ggi)g + %(;53, 06=1+/3/5

and

I'= % (014 2 + d3 + ¢a) + ;L(l) (¢5 + b6 + &7 + ¢5) + gill% (nine)  (4.79)

4.5.1 Reduced integration

Given a particular form of shape function describing the internal variation of
displacement within an element, we will obtain an accurate calculation of the
stiffness matrix of the element if we use a Gaussian integration rule which is
compatible with the polynomial degree of the shape function. Thus with the
eight noded quadrilateral element (Fig 4.6b, (4.74)) the shape functions imply
polynomial interpolation of degree 3 and the integral of (4.72) implies a polyno-
mial of degree 4 which requires a 3 x 3 Gauss point formula (Fig 4.10b) for exact
evaluation of the stiffness matrix. (In fact, once this element deforms and the
sides are no longer straight, then the Jacobian J varies across the element and
there are polynomial terms in the denominator of J~! which enter the terms of
B through (4.71). Numerical integration can then never be exact.)

Because a finite element model only permits a finite number of degrees of
freedom it will be usually be stiffer than the continuum reality that it is try-
ing to describe (see Fig 4.8). This excessive stiffness is usually worsened when
additional Gauss points are used because these resist higher order deformation
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Figure 4.10: Gauss integration points in two dimensions: (a) four point, a =

1/4/3; (b) nine point, § = \/%
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Figure 4.11: (a) Instability mode for four node square elements with single
Gauss point; (b) ‘hourglass’ instability mode for eight node rectangular element
with four Gauss points (after Cook, 1995)

modes which are released in lower order integration rules. Paradoxically, in-
creased accuracy in the computation of the element stiffness matrix K can lead
to reduced accuracy in the outcome of the finite element analysis (as well as
involving more cumbersome calculation). ‘Reduced integration’ then implies
using a lower order Gaussian integration rule than would apparently be asso-
ciated with the interpolation function (shape function) of the element. It is in
fact common practice to use a 2 x 2 Gauss point formula to compute K for four
and eight node quadrilateral elements.

The disadvantage of using lower order integration rules is that there is the
possibility of the introduction of spurious element deformation modes which
are able to occur without any change in strain energy—-‘zero energy modes’—
because the nodal displacements are somehow dissociated from the displace-
ments of the Gauss points, and hence there is no stiffness associated with these
mechanisms. Classic examples are shown in Fig 4.11 for 4-noded elements in-



202 4. Numerical modelling

tegrated with a 1-point Gauss rule, and for 8-noded elements integrated with a
4-point Gauss rule. Cook et al. (1989) note that the instability mode shown in
Fig 4.11b is not communicable in a mesh of such elements and may therefore
not be of concern. However, it can generate problems at an interface between
materials of widely differing stiffness. Sudden jumps in material properties can
often lead to numerical problems anyway.

Strains and hence stresses calculated from the displacement field within an
element are often most accurate at Gauss points: Gauss point values of strains
and stresses will typically be presented as the output of a numerical, finite
element analysis. To calculate the stresses at nodes or other points in an element
it is then necessary to extrapolate from the known values at Gauss points. This
extrapolation can be achieved using a polynomial of degree appropriate to the
number of Gauss points that is available and, if reduced integration has been
used, may not necessarily contain as much nonlinearity as is contained in the
shape functions NV; which were used to build up the element stiffness matrix in
the first place.

4.6 Nodal forces and external loads

Finite elements can only convey information to each other, and to the boundaries
of the problem being analysed, at their nodes. It has already been mentioned
(§4.3) that body forces have to be divided among the nodes bounding an ele-
ment. Any external loading then also has to be converted into equivalent nodal
quantities even if it is conceived—in the design of the problem—as a distributed
load. As in the generation of other aspects of finite element theory, considera-
tions of work control the conversion of distributed loadings to nodal quantities.

For an element having only two nodes on each boundary we can at most
describe a linear variation of transverse displacement u, and a linear variation
of loading ¢ (Fig 4.12)2. We require to establish the nodal loads F4 and Fg to
give the correct work:

0
/Oz {(1 - %) uya + %UyB} Kl - %) qa + %QB} dr —

FAuyA + FbuyB (480)

where the linear interpolation functions are evidently those that we previously
used for the one-dimensional proto-element (4.31). Hence:

F L2 1
A) =2 A (4.81)
Fp 6 1 2 qB
2For convenience we associate the z direction with the boundary linking the nodes and
apply the loads and the corresponding displacements in the orthogonal y direction. However,

the result is general so that the same result would also apply for tangential as opposed to
orthogonal boundary loading.




Figure 4.13: Nodal loads for element with three boundary nodes
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For an element with three nodes along its boundary we can exactly reproduce
quadratic variation of displacement and of loading (Fig 4.13) and the resulting
nodal load equivalence is:

FA /¢ 4 2 -1 qa
FC -1 2 4 qc

In many finite element programs the conversion of distributed loading to
equivalent nodal quantities is achieved automatically. A corresponding inverse
process is required in order to convert nodal forces calculated by a finite element
program, and presented as output, into equivalent distributed boundary loading.

4.7 Dynamic analysis

For dynamic analyses we are concerned with variations of acceleration within
the soil; accelerations lead to equivalent forces through application of Newton’s
laws. We need to be able to write equations of motion in terms of the time
derivatives of the nodal displacements and we have to discover some way of
assigning the mass of the element to the individual nodal degrees of freedom.
Our statement of minimum potential energy, or zero virtual work, that was
used to deduce the general form of the stiffness matrix for any chosen finite
element (4.49) can also be used to generate the mass matrix. The virtual work
from the acceleration forces subjected to a virtual displacement field du is

/ (6u)T pirdV

14

and, with the usual link between internal displacements u and nodal displace-
ments d and their derivatives

u= Nd; w=Nd @=Nd

we obtain integrals of the form
6dT / NTp)NdV | d
v
and the mass matrix to be used in analysis is

m = / NTpNdV (4.83)
14

It can be shown that an exactly similar form of integral is required to produce
the damping matrix:

c= / NTyNdv (4.84)
\4
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where 7 is the material viscosity, linking stresses and rates of displacement.
The element equations of motion then take the form

Kd+cd+md=F (4.85)

where F' is the applied force, now potentially varying with time.

The mass matrix computed using (4.83) is called a ‘consistent’” mass ma-
trix precisely because it is determined rigorously from considerations of energy.
However, it is sometimes computationally expedient—though usually (but not
always) somewhat less accurate—to work with a purely diagonal ‘lumped’ mass
matrix in which the mass of the element m is simply assigned to the individual
nodes in a very discontinuous way. For a three noded homogeneous triangular
element the consistent mass matrix is

201 010

0 2 0101

m 1 0 2 0 1 0
m=lo 10201 (4.86)

101 0 2 0

01 010 2

whereas the lumped mass matrix is

1 0 00 0O

01 0000

m| 0 0 1 0 0 O
™=31000 100 (4.87)

000010

0 000 01

which is obviously somewhat different.

Other procedures have been proposed for producing more suitable diagonal
mass matrices but there does not appear to be any one algorithm which guaran-
tees accurate results. Zienkiewicz and Taylor (2000) suggest that in some ways
lumping mass is equivalent to increasing the material viscosity which thus leads
to somewhat smoother (more damped), if less accurate, solutions.

Damping is often included in dynamic analyses as a numerical device. It is
known that there are dissipative effects present—we expect these to be primarily
associated with real material hysteretic nonlinearities arising from irrecoverable
plastic deformations and frictional dissipation within the material. However,
the computational costs of performing full dynamic analyses using advanced
constitutive models of the type described, or hinted at, in Chapter 3 may be
such that engineers prefer to use more commonly available (more extensively
verified) simpler models—such as elastic-perfectly plastic models—and then add
in some extra damping to allow for dissipation of energy in the elastic region.

A classical way of doing this is through the use of Rayleigh damping, assum-
ing (arbitrarily) that the damping matrix is a linear combination of the mass

and stiffness matrices:
c=am+ K (4.88)
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Figure 4.14: Rayleigh damping
The resulting effective damping ratio is
«@ Bw

=— 4+ — 4.89

¢ 2w * 2 ( )

and this varies with frequency w in a way that damping effects produced by
material plasticity would not be expected to vary. However, if the range of
frequencies of importance in a particular dynamic analysis can be estimated
then the values of a and 3 can be chosen to give tolerably constant damping
over this frequency range (Fig 4.14). With damping ratio £ = &, at w = w; and
at w = wo

a | Puw a | Pws

POl e = & P92 4.90
2w1+ 2 5 2WQ+ 2 ( )

and hence
2£cw1w2 2€c
o= —— ﬂ =

= (4.91)
w1 + wa w1 + w2

Evidently the mass damping operates primarily at low frequencies and the stiff-
ness damping operates more at higher frequencies.

4.8 Finite differences

Numerical modelling is required as a vehicle for the solution of the field equations
that govern geotechnical problems. Finite element schemes provide a powerful
and much adopted treatment of the spatial discretisation of a problem. Finite
difference schemes provide an alternative route to the conversion of continuum
field equations into relationships between discrete numerical values—a link with
finite element discretisation will be noted for the spatial domain. However, we
have just encountered equations which introduce the time domain for transient
or dynamic problems. Problems are usually spatially finite—or at least can
be treated as spatially finite—and the spatial boundary conditions consist of
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prescribed loadings or displacements. In the time domain our concern is usually
to march into the infinite future from some initial condition and, while there
may be some asymptotic condition to which we expect to tend (for example,
an eventual state of zero excess pore pressure once consolidation is complete, or
an eventual renewed state of rest), we expect the numerical modelling to tell us
how fast and by what route we will get there.

We imagine that we are calculating the values of a function ¢ at intervals
separated by finite time steps At (though the stepping could be in space rather
than time). Using Taylor’s series expansion we can write down expressions for
the values of the function one step ahead of, ¢,1, and one step behind, ¢,_1,
the current value, ¢,, in terms of the current values of the function and its
derivatives:

oo A *p AP 3¢
ot "2l o T3l o
9 At* ¢ AP
¢n,1:¢n—Ata—‘f+78—£—?a—£+... (4.93)
From these we can deduce so called ‘central difference’ approximate expressions
for the first and second derivatives

Gn+1 = Pn + At (492)

09 _ bnt1 — Pn—1
¢ bug1 — 205 + dn—1
o2 At? (4.95)

where we have ignored terms in the Taylor series involving At? and higher pow-
ers. These expressions thus have second order accuracy: if the time step is
halved then the error is reduced roughly by a factor of 4. A graphical inter-
pretation (Fig 4.15) confirms our expectation that (4.94) will be more accurate
than a ‘forward difference’ approximation of first derivative

¢ Pn+1 — dn

4.
ot At (4.96)
or a ‘backward difference’ form

a¢ ¢n - ¢n—1

—_ 4.

ot At (4.97)

though it may sometimes be necessary to make use of these forms. However, the
central difference approximation of the second derivative (4.95) is just the dif-
ference between these forward and backward approximations of first derivative.

Spatially, we would naturally estimate strains in a simple triangular element
(Fig 4.16) using

COug g, — Ug,

€x = ~
ox Ty — T
_Ouy uy, —uy,
€y =7 R ————
dy Ys — U1
_6uw Ouy Uy, — Uy, Ugy — Ug,

(4.98)

%y_ay 3y - ro — I rs3 — T1
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Figure 4.15: Finite difference aproximations to slope of a function

Figure 4.16: Strains in triangular element from nodal displacements

and these are evidently first order finite difference approximations to the dis-
placement derivatives. They are exactly equivalent to the approximations im-
plicit in the constant strain triangle finite element (4.58).

Typically, in dynamic problems, we will have some governing equation of the
form

mo+cop+rp=F (4.99)

where m, ¢ and A are mass, damping and stiffness, F' is a driving force and ¢
will usually be some displacement variable. In this equation, these symbols can
equally represent systems of equations for a finite element description of the
problem (see, for example, (4.85)).

Combining (4.94) and (4.95) and (4.99) we can obtain an expression for the
future value of the variable. ¢,,41 in terms of present and past information:

1

A7 CPn—1 (4.100)

1 1 1
(AtQm + QAtC) Ont1 = Fn_)‘(bn'i'@m (200 — Pn—1)+

This ‘explicit’ equation shows us how we can predict the future using only
present and past information. The solution requires starting information ¢, and
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q'bo at t = 0 which will usually be available. This explicit prediction equation is
only conditionally stable (see, for example, Cook et al., 1989) and the time step
to be used for numerical integration must be less than a critical value:

2 Toni
At < Ateriz = == (4.101)

max u

where w4 18 the maximum natural frequency (T, is the minimum period)
of the system. For a simple single degree of freedom equation of motion,

Wio= 2 (4.102)

maxr m
but higher oscillation modes are possible for a system of connected elements.
For a system of spatially discretised finite elements the need for a critical
time step can be interpreted in a slightly different way. If an element has
typical length ¢ then in-plane vibration involves displacement waves travelling
across the element at a speed which will be equal to the speed of sound in the
material—given in §3.2.3 as the one-dimensional compression wave velocity v, =

V(K +4G/3) /p. The time step must be sufficiently small that information
cannot travel across the element within a single time step:

14
At < — (4.103)
Up

and we expect that, whatever the mode of vibration, the element will form an
integral number of half wavelengths in the direction of travel so that the natural
frequency is

Winaz X ”?p (4.104)
It is evident that the choice of time step will be influenced both by the material
properties (which control the compression wave velocity) and by the size of
elements. Small elements of stiff material will necessitate small time steps.
In fact, convergent numerical results will often require the use of time steps
considerably smaller than the theoretical limit for numerical stability (Itasca,
2000).

On the other hand the element size must be sufficiently small that the dy-
namic motion of the system can be adequately reproduced. A vibrating soil
layer (Fig 4.17) will need at least ten elements per wavelength to give adequate
detail (Kuhlemeyer and Lysmer, 1973).

Implicit integration schemes are more numerically stable than the explicit
scheme so far described. Implicit schemes introduce future values into the pre-
dictive formula. For example, the Newmark methods use a relationship

At?

¢n+1 = (bn + At¢n + 7 |:(1 - 25) ¢n + 2ﬁ(é5n+1:| (4105)

én-ﬁ-l = én + At {(1 -) ¢n + ’Yd;n-‘rl:| (4.106)
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Figure 4.17: Shear wave propagating up through soil layer

where 3 and « are numbers that can be selected by the user. Substitution into
the equation of motion (4.99) for time ¢, gives

<5Kt2 + % +>\) i1 =

<y

Fn+1 + ﬂZLtQ ¢n + ﬂAt(bn + 57Zt¢" - C(ﬁn + %¢n+
. . A ;
55 (1=28) 6, — At (L= b, + G (1-20)6, (4107)

and we are able to compute the new value of ¢,,+1 in terms of the information
available at time ¢,, (the external force F), 11 is assumed to be given by some
known time history).

For nonlinear problems A and ¢ may well depend on the state of the system
at time t,+1—which is not known in advance—and some iterative technique
will be required which may delay convergence and increase the computational
cost. However, this procedure is unconditionally stable for 28 > v > 1/2. A
popular choice is v = 1/2 and 8 = 1/4 which leads to the ‘constant average
acceleration’ method. For v > 1/2 and 8 = (y + 1/2)? /4 the method provides
some artificial algorithmic damping but the accuracy of the solution is reduced
(Cook et al., 1989). Of course, as noted by Cook (1995), just because the
procedure is numerically stable for any value of the time step, this does not
mean that the results are guaranteed to be accurate if large time steps are
used and an argument like that associated with Fig 4.17 suggests that the time
steps should be small enough to pick up the detail of the motion at the highest
frequency of the system that is believed to be important.

The one-dimensional consolidation equation has already been encountered
in various forms (§4.2.1):

9’0 0o

“o2 T ot

We can use the central difference approximation for the first and second deriva-
tives ((4.94) and (4.95)) to write this as

(4.108)

2¢, At
Qit+At = Qi t—At T A2 (0i—1,6 —20it + Oit1,t) (4.109)
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where the subscript ; indicates spatial location. This equation can again be
solved explicitly to give prediction of future pore pressure variation at each
node at time t + At in terms of information that is available now at times ¢ and
t — At. However, there are constraints on the choice of time step and of spatial
grid dimension if numerical stability of the prediction into the future is to be

guaranteed:
coAt 1
< —
AzZ — 2
and small time steps are required to guarantee stability.
A similar approach can be used to write the wave equation in finite difference

form

(4.110)

¢ _19%
or2 vf) ot?

for compression waves, where v, = /(K +4G/3)/p is the compression wave
speed. The explicit finite difference form of this equation becomes

(4.111)

’U%AtQ
Qi it =201 — Gi—nr + AT (Pic1t —2¢i s+ dig1t) (4.112)

Again there are limits on stability of the explicit solution

vp At
Ax

<1 (4.113)

and again the size of time step depends on a material property—the wave speed
vp,—and a dimension of the discretisation grid. The finer the grid or the stiffer
the material (the higher the wave speed) the smaller the time step. The wave
velocity v, for compression waves is the speed of sound through the material
and this constraint on time step is again essentially requiring the time step to
be smaller than the time required for the compression wave to travel across the
element.

It has been noted that the simple finite difference expressions for derivatives
in terms of nodal values imply that strains are uniform between nodes and
hence there is an equivalence to the constant strain shape functions assumed
in finite element analysis. The ability of finite difference grids to represent
rapidly varying quantities will be similar to that of meshes of constant strain
finite elements and very fine meshes will often be required in regions (spatial or
temporal) of high gradients of these quantities. Use of finite difference equations
in explicit form has the advantage that the mathematics and hence programming
are very simple and this simplicity and consequent efficiency of computer storage
may often the disadvantage of needing very large numbers of elements and time
steps.

4.9 Solution schemes

For linear problems, such as the application of working loads to systems of elas-
tic materials, the finite element solution of the problem of determination of the
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Figure 4.18: Finite element solution schemes: (a) tangent stiffness; (b) Newton-
Raphson; (c) modified Newton-Raphson

field of displacements (and thence strains and stresses) is relatively straight-
forward. It matters not whether we write the governing equations in terms of
stresses or increments of stresses. The resulting displacements will be directly
proportional to any applied loading (assuming that the resulting displacements
do not change the geometry of the problem significantly). However, we know
that soils are extremely nonlinear materials with mechanical response which is
history dependent. We can expect that the displacement of a geotechnical sys-
tem, reached at the end of a loading process, will depend on the detail of that
process, and not just on the final loads that are imposed. The analysis of such
nonlinear systems poses challenges which are not so different from those linked
with attempts to use fully explicit schemes to predict the future in time domain
analyses of dynamic problems. We can illustrate some of the possible solution
schemes with reference to a single load:displacement relationship (Fig 4.18).

We assume that there is a correct, true link between load and displacement
which we are trying to recover. Inevitably we have to discretise the loading in
some way into finite (as opposed to infinitesimal) steps. The simplest tangent
stiffness algorithm would be satisfied with a prediction based on the current
tangent (incremental) stiffness of the material. Thus, given an initial tangent
stiffness k1, the application of a load AP; would be predicted to produce a
displacement Auj = APy /k; (Fig 4.18a). At this new displacement we are able
to calculate the tangent stiffness to be ko so that the effect of applying a second
load increment AP, is to produce an additional displacement Auf = AP /ko.
Evidently the predicted load:displacement response drifts away from the correct
relationship.

In order to obtain results which are accurate to within some specified toler-
ance it is necessary to use very small loading steps. The accuracy of the method
can be particularly poor if the material changes from elastic to plastic during
a single increment—but the calculation assumes a single (high) initial stiffness
for the entire increment.

The nonlinearity necessitates an iterative approach. The Newton-Raphson
scheme (Fig 4.18b) produces a first prediction of displacement Awu; resulting
from load increment AP, using the initial stiffness k; in the same way as the
tangent stiffness method. However, the constitutive model is used to calculate
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the true load AP, corresponding to this displacement and the difference between
this load AP; and AP, becomes a load imbalance which is now applied using
a tangent stiffness ko calculated at the displacement Aw;. This leads to a new
incremental displacement Aus and a new load imbalance. The procedure is
repeated until the load and displacement satisfy the constitutive model within
the specified tolerance.

This Newton-Raphson method can be expensive computationally because
the tangent stiffness matrix should be recalculated after each iteration. In the
modified Newton-Raphson scheme (Fig 4.18c) the stiffness used for each iterative
computation of displacement within an overall load increment is the same—in
some cases the initial elastic stiffness is used throughout. Evidently, this is likely
to increase the number of iterations required to reach a satisfactory solution but
the saving in not recalculating and inverting stiffness matrices may make this
computationally desirable.

There is an inevitable paradox in these iterative methods that the load im-
balance has to be calculated from a finite displacement increment applied to a
model which is constructed (as in Chapter 3) for infinitesimal increments. The
model has in fact to be integrated along an implied strain path. Potts and
Zdravkovié (1999) describe substepping procedures for achieving this—again
with a specified convergence tolerance being imposed to limit the size of the
substeps within a displacement increment. This substepping scheme must also
be iterative in order to make some adequate accommodation for the variation
in stiffness occurring over a substep. These iterations have to be performed for
each Gauss point in each element of the problem because of course in general
the displacement gradients and hence the strains and stresses will vary within
each element.

The number of substeps can be reduced if instead an ‘implicit’ return strat-
egy is used in which plastic strains are calculated from the conditions at the
(initially unknown) end of the increment. Typically an elastic prediction of the
stress changes is used to start the iteration and an algorithm is then used to
return the stress state to the (hardened or softened) yield surface (Fig 4.19), if
the predicted stress state is found to have violated the yield condition. Once
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again the computational advantage of rapid convergence and reduced number of
iterations has to be set against the computational disadvantage of a more com-
plex driving algorithm. Potts and Zdravkovi¢ discuss the particular desirability
of integrating along a path which is admissible throughout its length (Fig 4.19b)
as opposed to a path which is certainly inadmissible (Fig 4.19a).

When using commercial software packages, engineers may not have much
opportunity to choose the solution scheme—still less the return strategy—which
is to be adopted. However, they should be able to vary the size of the load steps
that they use to drive the problem in order to convince themselves that these
steps are sufficienlty small to give a convergent and presumably accurate result.

Numerical solution of geotechnical problems is driven by time—either explic-
itly, as in transient seepage or dynamic problems, or notionally as a sequence
of construction stages in pseudo-static problems. In either case the purpose of
the numerical subterfuges is to accommodate the finite size of time steps (or
the notional arrow of time, as loading stages) in the same way that the finite
element spatial discretisation divides a continuous field problem into a finite
number of chunks. Two other techniques have been used to achieve the same
result by the application of (pseudo?) physical principles.

It has already been noted that the solution difficulties arise because the
geotechnical materials are nonlinear and our assertion in this book is that this
nonlinearity is primarily the result of plasticity. In the elastic-hardening plastic
models (§3.4), the consistency condition (3.103) specifies that the only permis-
sible stress states are on or within the current yield surface. The finite element
solution algorithm has to find some way of ensuring admissible states of the soil
during finite loading increments.

Elastic-viscoplastic models provide a different constraint on response. There
is still a yield surface which forms a boundary to the region of elastically attain-
able states (Fig 4.20) but there is then a family of progressively larger surfaces
(perhaps all of the same shape) each corresponding to a higher plastic strain
rate. With a yield function f(o,x) and plastic potential g(o) we have
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oe? = u%i (4.114)
1="{e(f)) (4.115)
where () implies that
(p(f))=0 if f<0 (4.116)
(o(f) =o(f) if f>0 (4.117)

~ is some viscosity parameter and ¢ is a monotonic function of f.

Of course, as seen in §3.7, some soils have mechanical properties which can
legitimately be described as viscoplastic. For any soil, however, we can use
a notional numerical viscoplasticity as a means of coping with finite loading
steps. The initial elastic stress increment prediction is no longer seen as leading
to an inadmissible stress state (Fig 4.19) but rather to a high plastic strain rate
stress state (Fig 4.20a). Using notional time to march through the viscoplastic
straining, the plastic strains produce hardening of all the yield surfaces until
eventually the calculated stress states imply viscoplastic strain rates which are
deemed to be below an acceptable tolerance (though it is implicit that, for a
constant load which has caused yielding, truly zero strain rates can only be
obtained at infinite time) (Fig 4.20Db).

A second quasi-physical algorithm, dynamic relaxation, also presents itself.
If forces on a mass are not in equilibrium then Newton’s laws of motion tell
us that the mass will accelerate and move. If we take a simple lumped mass
approach to the distribution of mass at nodes within our finite element dis-
cretisation, we can calculate out-of-balance nodal forces at any stage and again
march through time using the deformations of the mesh to generate new internal
stresses (from the constitutive law—and we have seen in Chapter 3 that moving
from strain increments to stress increments will usually be a well defined process
even for strain softening materials), and hence new out-of-balance nodal forces,
and hence new accelerations. The masses provide distributed inertia but usu-
ally some additional numerical or constitutive damping is needed to speed up
the attainment of equilibrium (when the accelerations become tolerably small).
Such a procedure could of course also be used for real dynamic analyses (Fig
4.21, 4.22) using real material damping rather than notional numerical damping
properties.

The computer program FLAC (Fast Lagrangian Analysis of Continua) (It-
asca, 2000) adopts this solution strategy. Although it is programmed as a finite
difference code the spatial discretisation is handled in essentially the same way
as for constant strain finite element triangles and we can deduce that reliable
results will require a mesh containing a large number of small elements. The
advantage, for nonlinear problems, is that the computational processes involved
in each time step are extremely simple.

Evidently for both this dynamic relaxation method and for the viscoplastic
solution it is rather necessary to choose the time step for calculation carefully.
For dynamic relaxation we are limited by the time it takes for information to
travel across the smallest/stiffest element (recall section 4.8). In both cases a
pseudo-physical analogy has been used to cope with the finite size of loading
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steps. The results obtained will be no more reliable than the detail of the implied
stress:strain response within each step. Potts and Zdravkovié (1999) come down
firmly in favour of the modified Newton-Raphson solution algorithm and this is
probably the numerical approach that has received the most attention precisely
because it is a purely numerical algorithm. It is not obvious that either the
viscoplasticity or the dynamic relaxation algorithm could not be developed to
the same degree of constitutive rigour. One of the difficulties associated with
these approaches is that prior to equilibrium the solution method may require
the calculation of the gradient of the plastic potential in illegal or erroneous
parts of stress space and therefore the stress path during the increment, as it
heads to a convergent state, may be spurious. The error associated with this
will evidently depend on the local curvature of the plastic potential.

An example of the computational efficiency of different solution procedures
is given in Fig 4.23, taken from Potts and Zdravkovi¢ (1999). The settlement
of the edge of an excavation is shown as a function of number of increments.
The modified Newton-Raphson algorithm is found to be fast and accurate—a
result confirmed for other classes of geotechnical system. The tangent stiffness
algorithm is usually quite slow to converge to the correct result.

4.10 Conduct of numerical modelling

Having embarked upon the numerical analysis of a geotechnical problem, how
can an engineer be confident that he or she has obtained the right answer to the
problem? What does it mean to seek the ‘right’ answer to the problem? There
seem to be three aspects to consider.
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4.10.1 Verification: Is the program doing what it claims
to be doing?

Evidently the numerical analysis program itself should be correctly coded and
implemented. If it is a widely used commercially available or publicly accessible
program then there is a good chance that the openness of access will with time
lead to discovery and correction of coding errors. There may be checks that the
engineer should undertake in order to satisfy himself or herself—or his or her
client—that this is indeed the case. This is a verification exercise.

A patch test provides some sort of check on the coding of the elements (Fig
4.24). A small group of elements with at least one irregularly placed internal
node is subjected to the least amount of boundary constraint that is necessary,
and subjected to boundary loads which are compatible with a calculable ele-
mentary uniform state of stress and strain. Thus the loading in Fig 4.24 is
compatible with a uniform normal stress o, in the x direction and zero shear
stress T, and direct stress o,. That stress distribution should be independent of
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the soil model. For an elastic soil the strains in the y direction and the = direc-
tion should also be related by Poisson’s ratio—and this could be checked. At all
Gauss points in the patch the stress and strain components should correspond
to the precalculated homogeneous values.

It should be possible to test individual elements under appropriate boundary
conditions in order to check that constitutive models have been correctly imple-
mented. In general, results for any constitutive model will either be calculable
theoretically or, as published, will have been obtained by numerical algorithms
which (it is hoped) are different from those implemented in the numerical anal-
ysis program thus ensuring a certain independence in the verification process.

Some boundary value problems are capable of closed form solution and at-
tempts can be made to model these using finite elements. Many elastic analyses
are available (for example in the wonderful compendium compiled by Poulos and
Davis, 1974). Some of these—for example, stress and displacement distributions
within elastic layers or half-spaces (§7.2)—will impose the challenge of deciding
where to put the boundaries of the problem (Fig 4.25) in order to minimise
their influence. The bottom boundary may represent a real geological stiffness
discontinuity, but the location of lateral boundaries may often be somewhat
arbitrary. A finite problem will usually be stiffer than its infinite counterpart.
(Alternatively, it may be possible to use so-called ‘infinite’ elements which de-
liberately set out to reproduce boundaries at infinite distance (see, for example,
Zienkiewicz and Taylor, 2000).)

There are some problems in plasticity which are capable of exact analysis—
for example, the expansion or contraction of a cylindrical cavity (pressuremeter
or tunnel, §8.8)—though again the location and effect of the boundaries needs
to be considered carefully. However, as the constitutive model becomes more
elaborate the likelihood that any closed form analysis of any useful boundary
value problem will exist diminishes.

If the program claims to be able to model interfaces which allow concentrated
relative displacement between adjacent blocks of deforming material, then it
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should be possible to set up simple analyses to demonstrate that the mode of
mechanical operation of the interfaces that is described in the program man-
ual can indeed be reproduced. Exactly the same can be said about structural
elements—such as beams, bars, shells, cables.

Problems of transient flow—consolidation—or steady state flow—seepage—
can also be checked against independent analyses for certain simple situations
in order to reassure the user that algorithms for these typical geotechnical ap-
plications have been correctly implemented.

There may be published benchmark results for relatively simple problems
that have been obtained with other programs which can be used as at least
a first check. However, some reported studies (Schweiger, 2003) suggest that,
even when the same benchmark problem is analysed by different people us-
ing the same numerical analysis program (PLAXIS), and the same constitutive
model with the same soil parameters (so that the subjectivity in matching soil
model to laboratory test data is supposedly eliminated), then the same results
are not necessarily obtained (Fig 4.26) probably because of differences in the as-
sumptions governing the detailed numerical description of the past history and
the future perturbations. Even for such a ‘simple’ excavation problem there
are nevertheless decisions to be made in locating the right hand and bottom
boundaries and in the precise way in which the excavation is modelled. This
sort of result should obviously make users cautious and aware that numerical
modelling of complex problems is not to be undertaken lightly.

4.10.2 Are we getting the answers that we think we are
getting?

The computer has reached the end of a finite element analysis without producing
any error messages; post-processing of the output has produced colourful plots
of stresses and displacements. We heave a sigh of relief and move on to the next
project. Unfortunately, it is rarely as simple as this: users of numerical analysis
programs need to do rather more than produce one successful analysis.

First there are the details of the numerical model. We have already men-
tioned boundaries (Fig 4.25). The bottom boundary of a model will often be
defined by some known geological stratum with high stiffness and continuity
which can be considered to provide a rigid base to the problem. Lateral bound-
aries are less easily fixed by natural features of the problem under investigation
and it will be necessary to repeat the analysis with different widths of the nu-
merical model to see how far away the boundary needs to be placed for its
influence to become negligible. Evidently, the cost of numerical analysis will
increase with the size of the problem being studied—the nearer the boundaries
can be located the better. We can clearly economise by taking advantage of
symmetries: the centre line of a foundation may form an obvious plane of re-
flection so that only half the problem needs to be analysed (Fig 4.25); or, for a
circular structure symmetrically loaded, the analysis can treat one segment.

There are boundary conditions to consider. A plane of symmetry can sustain
no shear stress and must be modelled as a smooth boundary with constraint
on normal but not tangential motion. The bottom and distant side boundaries
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might often be described as fully rough—a check on the influence of releasing
the tangential constraint might be appropriate.

Then there are the details of the mesh to be chosen. There may be limited
choice of element type. Probably, higher order elements, if available, are to be
preferred to simple elements, especially if high strain gradients are anticipated.
More, smaller elements need to be placed where gradients are expected to be
highest, and at regions of stress concentration. Many physical problems involve
severe discontinuities: a footing has finite width (Fig 4.25), a retaining wall
has finite height and at the ends of these structural loading elements there will
be sudden changes in boundary loads and element stiffnesses. Sophisticated
programs will permit adaptive mesh refinement during an analysis so that the
mesh is progressively automatically refined in the areas where the highest strain
gradients develop. Alternatively a user might inspect the output obtained with
a simple mesh and repeat the analysis with a new mesh with strategically placed
extra elements. It has to be noted that discontinuities are often associated with
infinities in analytical results and these are always going to prove disturbing
to numerical analysis. By the same token, analytical economy can be obtained
by using large elements in regions where strain gradients are expected to be
low—for example, towards the lateral boundary in Fig 4.25.

The shape of elements is also important to ensure that the stiffness equations
are well conditioned: long thin elements tend to be unsatisfactory.

Data checking forms a vital part of the process—most programs will permit
plotting of the mesh and the boundary conditions and constraints in ways which
will readily reveal any obvious errors. A simple numerical error in one piece of
input data may produce some very visible distortion of the mesh.

We have seen how significant the discretisation of the loading process can be
(Fig 4.23). It is beholden on the user to ensure that the loading has been broken
down into sufficiently small steps that further subdivision of steps produces no
further improvement in the result.

Convergence will often be sought in a key output—for example, the load:-
displacement response of a footing or horizontal displacement of the top of a
retaining structure. Confirmation of reliability of the response requires closer
inspection of the output. For example, it is valuable to plot contours or pro-
files of displacements, strains, and stresses across the model—both horizontally
and vertically—to seek departures from expected monotonic or at least smooth
variations. If the analysis has been performed with an assumed centreline sym-
metry, then contours of any variable should be orthogonal to this centreline.
It is also valuable to plot paths for active elements through the course of the
analysis—either strain paths or stress paths—again to demonstrate that these
are in accord with expectation (and with the underlying modelling assumptions
discussed in the next section).

4.10.3 Validation: Are we getting the answers that we
need?

The third issue in interpreting the results of numerical modelling is much more
fundamental and relates to the modelling itself. There are several stages that
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we should go through in planning a campaign of numerical modelling.

First we need to understand the problem. What effects are likely to be im-
portant? We need to have identified the key controlling influences—soil prop-
erties or features of the construction process—in order to ensure that these are
included in the modelling. In performing numerical analysis there is always the
danger that the complexity of the analysis—and more especially the apparent
finality of the colourful output—will obscure the physical understanding of the
system response. Before we embark on the analysis we should have some idea of
what we expect to happen: we should be able to perform a back-of-the-envelope
calculation to give us some idea of the magnitude of the effects that we expect
to see. If the numerical analysis produces results which are initially counterintu-
itional then we should nevertheless be able to produce new back-of-the-envelope
calculations to support what we have actually seen. It is unlikely that results
for which we have no physical explanation are correct.

We must not be seduced by the precision with which a computer is able
to report numerical results into thinking that the results are in fact imbued
with this level of accuracy. We know that there are approximations in the
finite element method. There are approximations in the assumptions about the
constitutive response of the soil and the detailed description of the numerical
model and its boundary conditions.

The constitutive model may well be the weakest link in performing numer-
ical modelling. All programs used for analysis of geotechnical problems will
include elastic models—perhaps permitting anisotropic elasticity. Any program
that is seriously intended for geotechnical application should certainly permit
the use of the elastic-perfectly plastic Mohr-Coulomb model. Whether such a
model will permit the rather necessary luxury of nonassociated flow (dilation
# friction) is less certain though rather crucial—the numerical advantage of
symmetrical stiffness matrices may have taken precedence over physical plau-
sibility. Many programs will permit the use of Cam clay models. That will
probably be the end of standard constitutive modelling provision. Availability
of kinematic hardening models—or even Mohr-Coulomb models with pre-failure
plastic nonlinearity—is likely to be restricted.

As a result, the possibilities of accurate and reliable matching of experimen-
tal data with the constitutive models actually available are limited. We may well
have to make the type of approximation illustrated in Fig 4.27 (§3.3.4)—and
as we will see in Fig 4.29 even an elastic-perfectly plastic model can generate a
smooth transition from initial elastic to ultimate plastic behaviour of a system
(see also §7.5.1). However, the resulting analysis can hardly be expected to give
a six figure precision for the way in which the real soil would behave.

Even if we are able to make use of a constitutive model which provides a
reasonable fit to data obtained from a range of laboratory stress paths we must
recognise that almost every element in our numerical model will be undergoing
stress changes which are quite different from those that we are able to apply
in the laboratory—we are certainly extrapolating towards the unknown region.
We need to beware that the constitutive model does not contain any hidden
secrets leading to unexpected modes of response, which were not intended by
the developer of the model, when it is used in the analysis for stress paths
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Figure 4.27: Elastic-perfectly plastic approximation to actual stress:strain re-
sponse of soil

for which its behaviour has never been calibrated or investigated. It may be
worthwhile to take a few key elements and study the predicted stress:strain
response in detail to check that it does make sense in the spirit in which the
constitutive model was created.

In geotechnical analyses we know that initial conditions are as important as
constitutive properties in computing response under working loads (the value of
ultimate, failure, loads will be less affected). We rarely have great detail of the
in-situ stress conditions. We may have to attempt to model the full geological
processes by which the soil has reached its present condition—but we certainly
need to recognise the associated uncertainty.

In discussing physical modelling in Chapter 5 we will see how an efficient
programme of physical modelling can be designed if we have a clear idea about
those parameters of a problem and those material properties which are likely
to control the behaviour. We hope that we can generate dimensionless groups
which will characterise the system response and permit specific models to be
interpreted for generic application. The same ideas should guide our numerical
modelling too. Numerical parametric studies should be much more rapid than
physical parametric studies but in terms of presentation of results the route to
distillation should be the same.

With nonlinear history dependent materials such as soils it is to be expected
that the final response that is calculated will depend on the route by which
it is obtained. All aspects of the modelling need to be considered: the past,
and how the soil has reached its present state, and the detail of the future
changes that are expected. Uniqueness of ultimate response without attention
to intermediate detail cannot be guaranteed.
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Figure 4.28: FLAC model of footing on surface of layer of elastic-perfectly plastic
Mohr-Coulomb soil

We have made very little mention of three-dimensional analyses. Everything
that has been said about two-dimensional elements for analysis of plane strain
geotechnical problems can be extended to three dimensions. Three-dimensional
models are tedious to prepare and time consuming to intepret. They should
certainly be preceded by some carefully chosen two-dimensional models. For
three-dimensional numerical models even more than for two-dimensional models
there is the danger that the apparent beauty of the result—any result—will
distract attention from all the assumptions on which it is dependent. The need
to be able to produce a simple qualitative physical explanation for the predicted
behaviour remains vital.

In the end, it is the engineer who uses the software who is responsible for
the results. The aim of this book is to encourage engineers to take an interest
in—because they will probably have to take ownership of—the whole process of
numerical modelling and not just the one result—footing settlement, structural
displacement, tunnel lining movement—which he or she thinks is necessary for
a design application.

4.10.4 Exercise in numerical modelling: FLAC analysis of
footing on Mohr-Coulomb soil

As an exercise in model validation and interpretation—and a demonstration of
some of the features that may influence the results of numerical modelling—
a simple student activity has been devised using the finite difference program
FLAC (Itasca, 2000). This is intended to be illustrative of some of the issues
that might be encountered in numerical modeling and not intended to provide
a definitive analysis of the footing.

The modelling of the load:settlement response of a strip footing on the sur-
face of a layer of elastic-perfectly plastic soil has been kept deliberately simple.
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Table 4.1: Analysis of footing on Mohr-Coulomb soil: soil properties

bulk modulus K 200 MPa
shear modulus G 100 MPa
density p | 1.8 Mg/m®
friction 10) 30° also 20°, 40°
dilation P 0° also 10°, 20°, 30°
earth pressure coefficient | K, 1 also 0.33, 3
400 - 400
pressure pressure at
(kPa) settlement
6mm
(kPa)
200 300}
b.
od 200 - - - -
1 2 3 4 5
settlement (mm) Np

Figure 4.29: Effect of number of elements under footing Ng on footing response
(NL/Np =3, Nu/Np = 2)

The material properties used for the analysis are shown in Table 4.1. Notwith-
standing what was written earlier (§4.4.1, §4.8, §4.10.2), the soil is discretised
as a series of square elements (Fig 4.28). The numbers of elements under the
footing (Np), across the model (Np,), and over the depth of the model (Ng) can
be varied. The load is applied to the nodes bounding the Np elements so that
the half footing width (which is kept fixed at 1 m) corresponds to Ng + 1/2 ele-
ments. The left boundary is a smooth plane of symmetry. The other boundaries
are perfectly rough.

The footing is loaded by pushing it into the soil at a slow constant velocity—
the pseudo-dynamic nature of FLAC has been described above. The chosen
velocity is a compromise between calculation time and accuracy of results.

First, the effect of spatial discretisation with constant model proportions is
explored by varying Np while keeping N1, /Np and Ny /Np constant at 3 and 2
respectively. Typical results for the load:settlement response are shown in Fig
4.29. Tt is noted that with Np > 4 little further improvement is obtained.

Next, keeping Np and Ny constant (at 4 and 8 respectively), Ny, is varied
to explore the influence of the proximity of the right hand boundary. Typi-
cal results are shown in Fig 4.30. In the limit, when Ny = Np, there is no
possibility of soil displacement to the side under the footing and the very stiff
response discovered is that of an elastic material under one-dimensional oedo-
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Figure 4.30: Effect of model width on footing response: variation of Np with
Ng =4 and Ny =8
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Figure 4.31: Displacement vectors around footing (Ng = 4, N, = 16, Ny = 8)

metric loading. As the boundary moves further away its influence reduces until
eventually the model is able to accommodate the displacement pattern for the
failure mechanism for this frictional soil (Fig 4.31). For Ny /Np > 3 no further
significant change in the bearing capacity is obtained.

Keeping Np and Ny, constant (at 4 and 12 respectively), the depth of the
model Ny is changed (Fig 4.32). There are two effects to observe. The initial
stiffness of the footing (P/p) is dependent on the ratio of soil layer thickness
to footing width B. Results can be extracted from Poulos and Davis (1974) to
show that

Plp=FJw (4.118)

where w is a function of H/B and Poisson’s ratio v (Table 4.2). The results
of the FLAC analysis can be used to confirm that the calculated initial footing
stiffnesses correspond reasonably well with the theoretical values as H/B is
changed (Fig 4.32b). The ultimate load also varies with H/B (when Ny < Np
the layer being compressed is very thin and the ultimate load would be extremely
high—and this has not been reached in the example shown in Fig 4.32 for
Ny = 2) but reaches a limiting value once the soil layer is thick enough to
include the full plastic mechanism (Figs 4.31, 4.32).



Table 4.2: Values of w (equation (4.118)) for calculation of settlement of footing
width B on elastic layer of thickness H with Poisson’s ratio v

v
H/B | 0.005 | 03 | 045
1 ]0.7900 | 0.6684 | 0.4170
2 | 1.1959 | 1.0685 | 0.7618
3 | 1.5015 | 1.3523 | 0.9940
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Figure 4.32: (a) Effect of model depth on load:settlement response (Np = 4,
Np, = 12); (b) comparison of calculated and theoretical initial footing stiffness

as function of H/B
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Figure 4.33: (a) Effect of ¢ on load:settlement response; (b) comparison of
bearing capacity factors deduced from numerical analysis with expressions pro-
posed by Meyerhof (1963) and Hansen (1968) (analyses performed with Np = 4,
Ny =16, Ny = 8)

Having explored issues of discretisation and boundary location, this simple
model can be used to compare predicted and calculated bearing capacities for
this frictional soil. In the absence of cohesion and surcharge we expect the
ultimate footing load to be given by

P 1

— = —vBN. 4.119

B 27 v ( )
where N, is a function of angle of shearing resistance ¢. The deduced values of
N, are compared in Fig 4.33 with the values predicted using formulae proposed
by Meyerhof (1963):

14+sing _,
N,=[—""L¢"¢ _ 1] tanl.4 4.12
<1—sin¢e > anl.4¢ (4.120)

and by Hansen (1968):

1+8SN¢ ;iang
— . us n . 1
N, =18 (1 singbe —1)tan¢ (4.121)

The two expressions give rather similar results and the match with the values
calculated using FLAC is satisfactory. Increasing the angle of shearing resistance
increases the distance from the initial stress state to failure so that the elastic
region is greatly increased and the displacement required to reach the ultimate
load is also increased.

The soil model used in these analyses is an elastic-perfectly plastic Mohr-
Coulomb model (section 3.3.4). The analyses presented so far have been per-
formed with a zero angle of dilation ¢ = 0 implying that plastic deformation
occurs at constant volume. The effect of varying ¢ on the load:displacement
relationship is shown in Fig 4.34. The bearing capacity increases slightly as
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Figure 4.34: Effect of angle of dilation 1 on load:settlement response

1) increases: this is not the place to dwell on the implications of the value of
angle of dilation on bearing capacity of frictional soil. The calculation becomes
somewhat wobbly when ¥ = ¢: it was noted in section 3.3.4 that when an-
gles of friction and dilation are equal there is no plastic energy dissipation in
the material—which is physically unreasonable and numerically disconcerting
particularly for a pseudo-dynamic calculation procedure which will be upset by
deformations which are able to occur without any energy change.

The emphasis, in understanding elastic-plastic constitutive models, on the
need to specify the past (the resulting initial size of the yield surface), the
present (the initial stress state in relation to the yield surface), and the future
(the nature of the loading to which the geotechnical system is to be subjected)
applies to a numerical model just as much as to a single soil element. The
analyses described so far have assumed that before the footing is loaded the
ratio K, of horizontal (effective) stress to vertical (effective) stress in the dry
frictional soil is given by )

Ih

!
v

=K,=1 (4.122)
o
Evidently the earth pressure coefficient at rest K, can in fact take any value
between the limits of the active pressure ratio K, and the passive pressure ratio
Ky:

1 1-—sing
K, 1+sing
which, with ¢ = 30°, take the values of 0.33 and 3 respectively.

The effect of varying K, between these limits is shown in Fig 4.35a. The

effect is not great, but on close inspection it can be seen that as K, falls the
stiffness at intermediate loads also falls. The value of K, controls the location
of the initial stress state relative to the Mohr-Coulomb failure loci (Fig 4.35b).
Underneath the footing—these are the soil elements that particularly control the
load:settlement response—the vertical stress increases rapidly as the footing is
loaded, with much less change in horizontal stress. If K, is initially low, so
that the soil is close to active failure (A in Fig 4.35b), then the onset of failure

K, = (4.123)
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Figure 4.35: Effect of K, on load:settlement response

occurs early as the footing load is increased, the purely elastic region finishes
earlier and the overall footing stiffness falls. As K, increases (towards B in Fig
4.35b), the attainment of local failure is delayed and the intermediate stiffness
increases. As expected, varying K, has negligible effect on the ultimate footing
load: this is the result of the development of a plastic mechanism throughout
the soil and the stresses associated with failure are essentially independent of
the starting point.

4.11 Closure

Potts (2003) poses the question: ‘Is numerical modelling just an advanced toy
for academics and the privileged few, or is it in a position to provide a genuine
tool for routine geotechnical analysis?’ He observes that, while many geotech-
nical engineers have had some involvement with numerical modelling, few have
been sufficiently engaged in the detail of the modelling to appreciate the com-
plexities and subtleties that its use implies. In debating a motion that numerical
modelling is well placed to play a central role in much geotechnical design he
observes that numerical analysis can:

e do everything that conventional analysis can do—all the theoretical mod-
elling strategies that are described in Chapter 7 can be reproduced in
numerical modelling;

e accommodate realistic soil behaviour - in principle any of the models de-
scribed or alluded to in Chapter 3 can be invoked in numerical modelling;

e account for complex soil stratigraphy;

e describe mechanisms of system response for comparison with physical
modelling (Chapters 5 and 6);

e describe soil-structure and structure-soil-structure interaction as will be
illustrated in Chapter 8; and
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e accommodate three-dimensional geometries—whereas many of the simpler
theoretical models find this difficult.

On the other hand he also observes that there are difficulties with numerical
modelling:

e because there is no standard numerical strategy for implementation of
nonlinear models;

e because some constitutive models seem to be unable to give reasonable
predictions—and we have noted some obvious deficiencies in Chapter 3;
and

e because, even for apparently simple problems, the results of numerical
modelling can be very dependent on the decisions made by the user.

He further suggests that useful numerical modelling requires skilled operators
who:

e have a detailed understanding of soil mechanics and the underpinning
theory for the numerical algorithms;

e understand the limitations of constitutive models; and

e are familiar with the software that is being used for the numerical mod-
elling.

If the message seems gloomy, it is more that the warning is important because
numerical modelling, much more than physical modelling—which requires equip-
ment and laboratories and technical support—or theoretical modelling—which
requires conscious adaptation and simplification to fit analytical capabilities—is
apparently available at the touch of a keyboard on any computer in any design
office. The potential for disaster through misuse is certainly great.

We have attempted here to give some clues to the problems that may be
associated with numerical modelling in the hope that the users of tomorrow will
be more alert to the challenges to which Potts refers.



Physical modelling

5.1 Introduction

Physical modelling is performed in order to study particular aspects of the
behaviour of prototypes. Full-scale testing is in a way an example of physical
modelling where all features of the prototype being studied are reproduced at
full scale. However, most physical models will be constructed at much smaller
scales than the prototype precisely because it is desired to obtain information
about expected patterns of response more rapidly and with closer control over
model details than would be possible with full-scale testing. This usually implies
that parametric studies should be performed in which key parameters of models
are varied in order to discover their effect. This itself implies that many model
tests will be required and in addition it is often desirable to repeat individual
tests in order to gain greater confidence in the results that are obtained.

If the model is not constructed at full scale then we need to have some idea
about the way in which we should extrapolate the observations that we make at
model scale to the prototype scale. If the material behaviour is entirely linear
and homogeneous for the loads that we apply in the model and expect in the
prototype then it may be a simple matter to scale up the model observations
and the details of the model may not be particularly important but, as will be
shown, this still depends on the details of the underlying theoretical model which
informs our physical modelling. Dimensional analysis is particularly important.

However, if the material behaviour is nonlinear, or if the geotechnical struc-
ture to be studied contains several materials which interact with each other,
then the development of the underlying theoretical model will become more dif-
ficult. It then becomes even more vital to consider and understand the nature
of the expected behaviour so that the details of the model can be correctly es-
tablished and the rules to be applied for extrapolation of observations are clear.
In short we need to understand the scaling laws.

233
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5.2 Dimensional analysis

Dimensional analysis is a method for deducing elements of the form of a theoret-
ical relationship from consideration of the variables and parameters that make
up that relationship. The underlying premise is simply that any phenomenon
can be described by a dimensionally consistent equation linking the controlling
variables. Dimensional analysis of a problem then leads to a reduction in the
number of variables that must be studied in order to understand the problem.
The key is to seek to create dimensionally homogeneous equations whose form
does not depend on the units of measurement. Governing equations cannot just
be plucked from the air: they must come from an underlying insight into the
phenomenon that is being modelled. If dimensional homogeneity appears elu-
sive then this is probably an indication that some key variables or parameters
have been omitted.

The theory of dimensional analysis is encapsulated in Buckingham’s theorem:
If an equation is dimensionally homogeneous, it can be reduced to a relationship
among a complete set of dimensionless products. Once the application of this
theorem has been understood it may appear to be intuitive but it can in fact be
supported by rigorous mathematical proof (Langhaar, 1951). A further general
conclusion can be drawn: A set of dimensionless products of given variables is
complete if each product in the set is independent of the others and every other
dimensionless product of the variables is a product of powers of dimensionless
products in the set.

Dimensional analysis does not reveal the form of the relationships between
the dimensionless products but correct use of the dimensionless products makes
parametric studies more efficient by revealing which variables are truly indepen-
dent and also forms the basis for extrapolating from one scale of observation to
another.

There are various different ways in which dimensions of variables can be
defined but the most commonly used fundamental system reduces everything
to combinations of length [L], mass [M], time [T]. Where thermal or electrical
effects are important then it is necessary also to add in temperature and charge
respectively but those additions will not concern us here. For many geotechnical
problems we are concerned with forces and stresses rather than masses and
the dimension of time only comes in through the conversion of mass to force.
Butterfield (1999) shows that application of classical theories of dimensional
analysis in this situation can produce misleading results unless the alternative
grouping for force [MLT ~2 = F| is used as a member of the fundamental system.

5.2.1 Slope in cohesive soil

Take as an example the factor of safety of a slope formed in purely cohesive soil.
The variables that need to be considered are the factor of safety F', which is
already dimensionless, and is expected to be a function of the geometry of the
problem characterised by the height H of the slope (dimensions of length, L)
and angle 6 of the slope (dimensionless), together with the physical properties of
the soil: its undrained cohesive strength ¢, (dimensions of stress = force/area,
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Figure 5.1: Slope in cohesive soil

FL=2) and unit weight v (dimensions of force/volume, FL=3) (Fig 5.1). We can
immediately write:

F=f(H,0,c.,7) (5.1)

or in terms of dimensions
[1] = £ ([L], [2], [FL=2), [FL]) (5.2)

A quick inspection of the dimensions of these variables indicates that the only
dimensionless group that can be formed is: ¢, /vH. One can then conclude that
the governing equation for this problem is

F=f (%ﬁ) (5.3)

and the number of variables that needs to be considered has been reduced by
two. The factor of safety F' is only of interest in association with the shear
strength: it indicates the degree to which the shear strength can be reduced
while still just ensuring slope stability (F = 1). So the result is in accord with
our geotechnical experience: charts (Fig 5.2) presented by Taylor (1948), for
example, show stability number ¢, /vH as a function of slope angle 6 and also
of depth D to a strong layer below the slope (Fig 5.1)—but this is merely intro-
ducing a second dimensionless group D/H which characterises another aspect
of the geometry of the slope: ¢,/FyH = f(0,D/H).

A practical consequence from the point of view of physical modelling is that
to maintain the same margin of safety in a model and prototype not only the
geometry (the slope angle #) but also the dimensionless group ¢, /vH should
be kept constant. If the slope height is reduced, as it usually will be in a small
scale model, then, if the unit weight of the soil remains unchanged, as at first
sight it must, the strength of the soil must be reduced in the same proportion.

In fact, the unit weight v that we have introduced as a basic variable in
our assessment of slope stability is not actually a fundamental quantity: it is
calculated as a product of density p and gravitational acceleration g. Whereas
the density of a material is a direct function of the packing of the particles
for a soil or is a basic property for a metal, the gravitational acceleration can
change from one celestial body to another (on the moon the acceleration due
to lunar gravity is about 20% of the acceleration due to gravity at the surface
of the earth) and can be artificially controlled in a geotechnical centrifuge, as
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Figure 5.2: Stability chart for slope in cohesive soil (after Taylor, 1948)

described in more detail in Chapter 6. More fundamentally, therefore, we should
write

Fp:]H =f(0,D/H) (5.4)

and our assessment of the conditions necessary for a small physical model of a
slope to maintain the same margin of safety as a prototype slope now concludes
that, if we increase g as we reduce H then the soil properties, strength ¢, and
density p, can be kept unchanged.

woe V]

Figure 5.3: Fall-cone test in cohesive soil
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5.2.2 Fall-cone

The fall-cone used as a quick measure of undrained strength in the laboratory
can also be conveniently subjected to dimensional analysis (Fig 5.3). The pene-
tration d of the cone, released from contact with the surface of a sample of soil
and allowed to fall and penetrate the soil under its own weight will depend on
the mass m of the cone, the gravitational acceleration g, the undrained strength
¢y of the soil and the geometry of the cone, expressed by the tip angle a. (We
neglect the buoyancy effect of the different densities of the soil and falling cone
on the penetration process.) We conclude that

cud?
mg = f(a) = kq (5.5)

so that for a given cone angle a the dimensionless group c,d?/mg should be
a constant k.. The fall-cone is of course used to determine the liquid limit of
cohesive soils as the water content for which a cone with tip angle o = 30° and
mass m = 80 g penetrates a distance d = 20 mm when allowed to fall under
its own weight (§1.8). This analysis demonstrates the much more powerful use
of the fall-cone as a strength measuring device and demonstrates too that the
liquid limit test is itself a strength measuring test. It is found that for angle
a = 30°, ksp = 0.85 (Wood, 1985) so that at the liquid limit all cohesive soils
have undrained strength ¢, = 1.7 kPa. For a fall cone with angle a = 60°, the
cone factor kgp = 0.29. In Scandinavian countries the liquid limit is defined
as the water content at which a 60 g, 60° cone penetrates 10 mm from rest.
Knowing kgop we can deduce that the associated undrained strength is again
¢, = 1.7 kPa. The fall-cone definition of the liquid limit is seen to be in reality a
strength index—and thus helpfully relevant to geotechnical engineering practice.

5.2.3 Consolidation

In the two examples that we have just discussed, slope stability and penetration
of the fall-cone, we do not know the exact form of the theoretical relationship.
Dimensional analysis helps us to understand how we might efficiently explore
it experimentally. There are other situations where we have a clear idea of the
theoretical model which controls the phenomena in which we are interested.
Consolidation is one such example.

Terzaghi’s theory of one-dimensional consolidation tells us that temporal
and spatial variations of pore pressure u are linked through a partial differential
equation which introduces a coefficient of consolidation ¢, (§4.2.1, §4.8):

Ou 0%u

E = C’U@ (56)

This equation is certainly dimensionally consistent because the coefficient of
consolidation ¢, has dimensions L2T~!. We can expect to be able to charac-
terise the solution in terms of pore pressure u as a proportion of some reference
stress (initial pore pressure u; or applied total stress change Ao—the solution
of the consolidation equation requires some particular boundary conditions for
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its completion) as a function of position z and time ¢t. We must suppose that
there is some typical length H that characterises the geometry of a series of
similar consolidation problems. Then

u= f(u; 2t H,c,) (5.7)

and consideration of the dimensions of these variables allows us to write more

efficiently
U Z Cyt
2 ol 5.8
. ( z H) (5.5)

which recovers the dimensionless time variable

cyt

If we were also to write u
U=— (5.10)

u;

z
7 = — 11
- (5.11)

then (5.8) becomes U = f(Z,T). Theory tells us, consistent with this, that the
consolidation equation itself can then be written

ou 0*U

oT 072
and solutions of this equation will be entirely general and capable of application,
by decoding the definitions of U, T" and Z, to specific physical problems. We
only need one set of observations for a known soil to be able to compute an
expected response for any soil.

(5.12)

5.2.4 Fluid drag

In the examples of slope stability and of cone penetration, study of the groups
of variables which controlled the problem indicated that there was really only
one dimensionless group of interest. In other situations there will be many
more variables and there is some element of choice in selection of the impor-
tant dimensionless groups which should desirably be chosen in order to isolate
particular effects. An example from fluid mechanics may help to illustrate this.

Let us suppose that we are concerned to study the drag exerted on a body
by a fluid. We deduce that the drag force F is likely to depend on some or all
of these variables: a typical dimension (assuming that we are considering geo-
metrically similar bodies); the velocity of flow; the density, viscosity and elastic
properties of the fluid. The gravitational field within which the flow is taking
place may influence the drag effects, so we should include the acceleration due
to gravity. There may be situations is which we have measured some pressure
drop across the body and are interested in the correlation of this pressure drop
with the drag force. If the object breaks the surface of the fluid then the surface
tension will also be important. The variables and their dimensions are shown
in Table 5.1.
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Table 5.1: Fluid drag: summary of variables

symbol | variable dimensions

F force ML/T?

4 dimension L

Vv velocity L/T

p density M/L3

L viscosity M/LT

K bulk modulus M/LT?

g gravity L/T?
Ap pressure change M/LT?

T surface tension M/T?

Table 5.2: Fluid drag: different types of fluid force

types of force

external force F
fluid pressure force Apl?
inertial force pv20?
viscous force uol
gravitational force pgl3
elastic force K¢
surface tension